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The Gale-Hoffman inequalities characterize feasible external flow in a (capacitated) network. Among 
these inequalities, those that are redundant can be identified through a simple arc-connectedness criterion. 
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The Gale-Hoffman lemma characterizes feasible external flow (supply, demand) in 
a directed, capacitated network in terms of a number of linear inequalities. These 
inequalities are generated by considering all node subsets and requiring that the 
external flow associated with each subset be less or equal to the total capacity of the 
arcs exiting :from it. For  a particularly appealing statement of this lemma consult 
[11]. This paper is devoted to a refinement of this result. We are concerned with 
characterizing feasibility in terms of a minimal number of  these inequalities. We are 
going to provide a simple criterion that identifies the linear inequalities that are 
redundant. One can also express this geometrically: the Gale-Hoffman inequalities 
determine a (convex) polyhedral set, and we are now interested in finding its facets. 
Thus, one can view this note as providing the description of the facets of one more 
polyhedral set encountered in combinatorial optimization, see e.g., [5], [10]; at a 
formal level, the criterion is similar in nature to the one obtained by Balas and 
Pulleyblank [1] for the perfectly matchable subgraph polytope of a bipartite graph. 

The framework of this paper is somewhat more general than that in the Gale [3], 
Hoffman [6] papers. We shall be interested in the polyhedral set (which turns out to 
be a polyhedral convex cone) of feasible external flows and capacities. This requires a 
minor reformulation of Gale-Hoffman result, but no new argumentation is necessary. 
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Let [,.1,, ,~'] denote the nodes and (directed) arcs of a network. For Y=..~/', let 

f ':= {k~.~/[ k = (i,j),  i~ Y , j ~ s V \  Y} 

be the (directed) arcs connecting Y to JV \ Y, and 

F + ( Y ) : = { j e J ' [  ( i , j )~ Y} w Y 

consist of Y itself and all the nodes that can be reached (in 1 step) from Y. 
The vector b (Y)e  Rl~l is the node-membership vector associated with Y, i.e., 

o  erw s.  n°de'be °n's 
External flow is denoted by f e  R t J r  and represents supply and demand: f > 0 means 

that node i is a supply node, f -<  0 means that i is a demand node, and f j=  0 corre- 
sponds to a transshipment node. The total external flow associated with a collection 
of nodes Yis thus (b(Y),  f ) ;  this quantity could be positive (supply exceeds demand 
in Y), negative (demand exceeds supply in Y), or 0 (supply and demand are balanced 
in Y). 

Similarly, a(Y) ~ ~l.;il records arc-membership in 1?, i.e., 

a ( ~ )k=  {10 if a r ck  is in Y, 
otherwise. 

Arc capacities will be denoted by a nonnegative vector ceR I~JI. The total capacity 
of the flow that can exit a collection of nodes Y is thus limited by (a(Y),  c) ; this 
quantity is necessarily nonnegative. 

A pair (f ,  c )eN Idl × RI~'I is said to be feasible if there exists an (internal) flow 
that satisfies the capacity constraints so that each node is flow-balanced (flow on 
out-arcs -- flow on in-arcs + external flow). 

In these terms, the Gale-Hoffman result takes on the following form: 

Gale-Hoffman lemma. Given a network [s~, xd], a pair of  vectors ( f ,  c)e R tyl x [R t~l 

(external flow, capacities) is feasible if  and only if the external flow is balanced 

(e, f )  = 0 

with e=(1 ,  1 . . . .  , 1), and for all Yc~.U, 

( b ( Y ) , f ) < ~ ( a ( Y ) ,  c). [] 

We refer to the preceding inequalities as the Gale-Hoffman inequalities. 
Unfortunately, when trying to make use of this characterization of feasibility, one 

is usually somewhat overwhelmed by the size of this system of inequalities. For  
example, if ~4/" has 30 nodes, one has to cope with 1 073 741 825 inequalities 
(21"vt + 1). Fortunately, in most applications, a significant number (sometimes more 
than 99%) of the Gale-Hoffman inequalities may be redundant; an inequality is 
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redundant if it is implied by a combination o ( the  other inequalities. This opens the 
door to a reduction in size by eliminating the redundant inequalities. Getting rid of 
redundant constraints is usually achieved by means of linear programming-based 
procedures, see [2, 4] and references therein. But this approach runs quickly out of  
steam as soon as [Y[  is mildly large (larger than 10, for example). 

Our own motivation came from some questions in stochastic programming [9, 12] 
where one is interested in the probability that under a certain choice of capacities, 
there will be feasible flow, given that the external flow is only known in probability, 
i.e., external flow is a random quantity and one needs to check feasibility for a// 
possible realizations. For example, given c and a probability distribution for f, we 
would like to compute 

Prob{(b(Y) ,  f )  ~< (a(I~), c) for all Y~ Jff }. 

This would be p o s s i b l e -  by checking the inequalities for a few million samples, 
for example - -  provided the number of inequalities is not too large, suggesting the 
elimination of all redundant inequalities. This approach turns out to be much more 
efficient than checking feasibility by flow algorithms for a few million cases! 

The following theorem provides a simple characterization of  redundancy for 
the Gale-Hoffman inequalities, which can be checked without recourse to linear 
programming-based techniques. In fact, all that is required is a procedure that 
checks for arc-connectedness. 

Recall that given a system of linear inequalities (dk, x ) ~ 0  for k s c ( ,  a linear 
inequality (d~, x )  ~ 0 is redundant (i.e., implied by the other inequalities) if d~ can 
be obtained as a positive linear combination of the remaining dk, k s  (x(\/~). 

A node-set Y c  ~2 is arc-connected if there are no sets V1, V2 that partition Y such 
that and F+(VI) ~ F+(V2) ~ Y=0;  equivalently, if the arcs of ~¢ are taken to be 
undirected, the subgraph induced by the nodes of  Y is connected. 

Theorem (characterization of redundancy). For all nonempty Y c  JV, the associated 
inequality 

(b(Y) ,  f )  <~ (a(Y) ,  c) 

is redundant if and only if Y or .AF \ y are not arc-connected. 

Proof. If the sets V1, V2 partition Y, then b(V1)+b(V2)=b(Y).  Moreover, if they 
are not arc-connected there are no arcs from V1 to V2 and vice versa, i.e., 
a(fT) + a(~'~) = a(Y). Thus the inequality (b(Y) ,  f )  ~< (a(  Y, c) is the sum of the two 
inequalities: 

(b(V1),f)<~(a(V~),  c), (b(V2), f )~< (a(~'2), c). 

Similarly, if U~, U2 partition JV\Y,  let U]:=U1 u Y, U~:=U2w Y, then 
b(U])+b(U'2)=b(Y)+e.  Also, a(~g)=a((J])+a((?;) since the condition 
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F+(UI) m F+(U2) ca (+V'\ Y ) =  0 implies that C i consists of the arcs from Y into U2, 
and (f;_ consists of the arcs from Yinto U1, i.e., 0~ w U~= f ' and  U] ca (?;=0.  

To prove the "only if" direction, we need to show that the vector ( - a ( Y ) ,  b(Y)) 
cannot be obtained as a positive linear combination of all other such pairs and the 
vector (0, - e )  where this last vector comes from the inequality ( - e ,  f )  ~< 0 associated 
with the condition that the external flow must be balanced; (e, f )  ~< 0 is the same as 
@(~g'), f )  ~<0 = (a (+e) ,  c). 

Let l, / be such that y / =  Y and ~ = g Z \ Y ~ .  Let us also define b/:=b(Y~), aJ= 
a ( g )  and Jr: = {1, 2 , . . . ,  21wl}\{/,/}. What we have to show is that the following 
linear system has no solution: 

d = ~ xja/+x~a I, bZ= ~ x/bJ+xzbZ-xoe, 
jeJ! J~JI 

Xo>/O, xl>/O , xj>~O Vj¢Jz. 

To the contrary, let us suppose that (~2o, x~, (2/,j~J~)) is a (feasible) solution, and 
let us examine the properties that such a solution must possess. Let 

d]-:= {j6Jt] :?j> 0}. 

Observe that if k¢ ~z, a~= 0 and thus 

o = E vk+ 
j+J[ 

which would mean that 2j= 0 if ~ 1?t, i.e., j(~J[, or equivalently, 

For all Yjc jV,  we define 

Yj:=YjmYt and ~ : = Y / c ~ Y  z. 

We are going to argue that if Yj is such that either ~ is a proper subset of Y~ 
(0¢  ~ .¢  Yl), or ~- is a proper subset of  ~ (0¢ Yj¢ Yt) thenj¢J[. 

To see this we consider the system of equations involving b ~ which we now write 
as follows: 

( I+2o)  = Z 2+b~ ViEYt, (2o-:2~) = • 2+bJi Vi+Y z. 

If q~J;- and 0 ~ Yq ~ Yt, from the arc-connectedness assumption it follows that 

either F+(~-q)~ YI~O or F+(Yt\Yq)~ Yt~O. 

Since q+J?, L c  Y,, we always have F+(Yq) c~ Y,=0, hence 

~(ie Yl\f'q, i'6 f'q) such that i'~F+(i). 

Now observe that whenever this node ie Yj for s o m e j e J i  + , then i' necessarily belongs 
to Yj. Indeed, j eJ [  implies g c  g and thus the arc (i, i ')q~g, i.e., i ' e ~ .  For this 
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pair i, i', we would have ., 

(1+2o) = 2 2jbJ'<2q + E "~] bji'< 2 2 jb{=( l+2o ) ,  

a clear contradiction. Thus, there are no q~J[ with Yq a proper subset of YI. 
The same argument is used to prove that there are no q~J;- with ](q a proper 

subset of  ~ ,  using this time the system of equations 

( 2 0 - 2 z ) =  ~ 2jb¢ Vi~ h. 
jEJ~ 

We give the details for the sake of completeness. If  q~J[ and 0 #  ~'q# ~ ,  from the 
arc-connectedness assumption it follows that 

either F+(f'q) r~ ~#O or F+(~\Yq) C~ ~#O. 

Since q~J[, ~-q= ~, we always have F+(f'q) r~ ~ - -0 ,  hence 

3(i6}:~\Yq, i' ~Yq) such that i' ~F+(i). 

Now observe that whenever this i~ ~ for some j~J;-, then i' necessarily belongs to-- 
Yj. Indeed, j E J [  implies ~ =  Y~ and thus the arc (i, i ')6 ~ ,  i.e., i'~ Yj. For this pair, 
i, i', we would have 

(20--2/) = 2 2JbJ'<Zq Q- ~ XJ bj'< 2 2JbJ=(xo--2l-) ' 
J~JT" jEJ[ jeJ~- 

a contradiction. Thus, there are no q~J[ with ~?q a proper subset of Yl. 
Thus the on]ly index that could possibly belong to J[ is the index corresponding 

to ~ ,  say Yp = JV. This would mean that (2o, 2t, 2p) satisfies the following relations: 

1 +20=2p,  2o-2t_=2p, 2 0 ) 0 ,  2_l/>0, 2p>jO, 

which is not possible. Thus J[ must be empty. But that also is not possible, since 
then we would have bt=2lb~-2oe with 20/>0, 2t~>O. 

Thus, when Y and 22 \ Y are arc-connected, 

(b(Y),  f )  < (a( '2),  c) 

is never redundant. [] 

If, capacities g are given, and one is interested in the facets of the polyhedron 

Pf= {f[ (-e ,  f )  <~ O, (b( Y), f )  <~ (a( Y), c) V Y c J ~  } 

the frontal approach would again lead to linear programming problems of huge size 
(with 21~t+ 1 rows or columns depending on the formulation). Fortunately, we can 
first use the criterion provided by the preceding theorem to identify the facets of the 
polyhedral convex cone 

P(f,c) = { (f ,  c) I ( - e ,  f )  ~< 0, (b(Y),  f )  - (a(~-), c) ~< 0, V Y< A/" } 

determined by the Gale-Hoffman inequalities, assign the value g to c, and only then 
have recourse to linear programming-based techniques. 
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Implementation. Given the arc-connectedness criterion, it is fairly easy to'design 
a recursive procedure based on examination of the subsets of ,J~'. Because of the 
symmetry of our criterion in Y and JV \ Y, it will really suffice to parse through only 
half of the subsets of J r ,  and for each Y~I  ,'~ corresponding to a nonredundant 
inequality, we shall then also output the "complementary" inequality: 

{b(~ V" \ Y), f }  <<. @(J" \ Y), c). 

The following recursive algorithm, which represents a postorder, depth first, traversal 
of a binary tree, will do the job. It is initialized with Y=0 and W= ~V\{i} for some 
node i. 

procedure Facets(Y, W: set of nodes) ; 
begin 

if We 0 then begin 
PickNode(i, W) ; 
W::W\{ i} ;  
Facets(Y, W) ; 
y:= y~  {i}; 
Facets(Y, W) ; 
if Connected(Y) and Connected(~U \ Y) then CreateIneq(Y) ; 

end; 
end; 

The procedure PickNode(i, W) simply picks a node i from the set W, and pro- 
cedure CreateIneq(Y) outputs the two inequalities 

(b(Y), f )  ~< <a(f'), c), (b(JV \ Y, f )  ~< (a(~V-~ Y), c). 

The function Connected(Y) checks if the network defined by the nodes in Y is arc- 
connected. An example of such an algorithm appears in Section 6.2 in [7]. The 
preceding procedure will produce all the nonredundant inequalities except 
( - e ,  f }  ~< 0 associated with the requirement that the external flow must be balanced 
(total supply equals total demand). 

As a small example, consider Figure 1. It shows a network with 5 nodes and 7 
arcs, and all the cuts shown in Figure 1 give rise to two inequalities. In addition to the 
inequality that guarantees balanced (external) flow, there are 25 = 32 Gale-Hoffman 
inequalities. Procedure Facets checks 25-~- 1 = 15 subsets of ~V. It turns out that 
12 out of the 15 sets give rise to nonredundant inequalities. We initialize procedure 
Facets with W= Jg'\  { 5 }, so that 5 ~ #/" \ Y for all sets Y. The three sets giving rise to 
redundant inequalities are Y= { 1, 4} and Y= {2, 3}, both resulting in a disconnected 
Y and Y= {2, 3, 4} making ~4/'\ y disconnected. In total, the example therefore has 
( 12 + 1) - 2 = 26 nonredundant inequalities. 
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Fig. 1. All cuts drawn give rise to two nonredundant inequalities. 
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The procedure was also tested for some larger examples. Using N E T G E N  [8], we 
generated a number of test networks. As one would expect, the number of non- 
redundant inequalities (for a fixed number of nodes) is generally related to arc- 
density of the network. In a network with 20 nodes and 100 arcs starting with 22o = 

1 048 576 Gale-Hoffman inequalities, we found that only 14.2% of the inequalities 
were redundant;  excluding input/output  times, it took about 50 minutes on a SUN 
3/50 to identify all the redundant inequalities. In another example with 20 nodes 
and 31 arcs (in other words with much lower arc-density) we found that 99.65% of 
the inequalities were redundant, and the calculation took about 20 seconds on the 
same computer, using this time some performance improving (algorithmic) schemes 
outlined in [12]. This last example is very illustrative because it has a number of 
important features. Firstly, the number of Gale-Hoffman inequalities is so huge that 
one cannot hope to use them successfully for any purpose and certainly not to 
compute network reliability. Secondly, removing dominated inequalities based on 
linear programming-like algorithms is as good as out of the question because of the 
size of the linear programs involved. But the number of  facets of the feasibility set 
is low enough (3632) that one can make use of them in different applications. 
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