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Summary. I t  is shown tha t  the theory of positive linear independence and the 
properties of Jordan-equivalent  matrices can be utilized effectively in order to obtain 
an algebraic characterization of a face structure of convex polyhedral  cones. 

1. Introduct ion 

To each subset  S (}It '~ of ca rd ina l i ty  n ( n ~  t) corresponds in a na tu ra l  way  
an m × n m a t r i x  A. We assume tha t  {0} ~ S, i.e. A does not  conta in  zero columns.  
The  l inear  hull  and  the  posi t ive  hull  of S will  be deno ted  respect ive ly  b y  

l i n A = { t l t = A x ,  x ~ t  ~} and p o s A = { t l t = A x ,  x~91~}, 

where ~l~ s tands  for the  nonnega t ive  o r than t  of ~R". In  ma t t e r s  pe r t a in ing  to 
the  theo ry  of posi t ive  l inear  independence,  we follow the t e rmino logy  and no ta t ions  
of REAY [61. In  re la t ion to convex cones and polytopes ,  we follow the t e rmino logy  
of KrEE [4~- In  par t icu lar ,  a k-/ace of a convex cone C is a face of dimension k. 
A simplicial k-/ace is a k-face which conta ins  exac t ly  k ex t reme rays.  An ( m -  l ) -  
face of an m-cone C is called a [acet. F u r t h e r m o r e  we denote  b y  A j and  iA the  ?.th 
column and the i th row, respect ively ,  of a m a t r i x  A. 

I f  ,7t and  A are Jordan-equivalent, i.e. the  rows of A and A genera te  the  same 
l inear  subspace  1, then  C----posA and  C =  pos.~ have ident ica l  face s t ructure .  In  
par t icu la r ,  if C is pointed, i.e. of lineality dimension [31 zero, then  so is C, and  if 
pos  (Ah,  . . . ,  Aj~) is a k-face of C, then  pos (Ah . . . .  ,~jz) is a k-face of C. A m a t r i x  A 
is in canonical/orm if some of i ts  columns form an i d e n t i t y  submat r ix ,  the  basis; 
all  the  o ther  columns are nonbasic columns. B y  d we denote  the  class of all  
ma t r i ces  in canonical  form which are  Jo rdan -equ iva l en t  to  A,  and  all row and 
column pe rmu ta t i ons  of such matr ices .  B y  A we a lways  denote  a m e m b e r  of d .  
A m a t r i x  is lexico-positive (-negative) if all i t s  columns are lexico-posi t ive  (-nega- 
t ive).  

A min ima l  set of genera tors  A i of C = p o s ( A  1 . . . .  , A . )  is cal led a [rame [ l j .  
A f rame of a face F of C determines F .  A l inear ly  independen t  subset  T of a 
k-face F subdetermines F if C ~  lin T=F.  If ,  for instance,  A = (A 1 , A 2, A3) wi th  
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1 Note tha t  A and .4 need not  have the same number of rows. For  instance, the 
deletion of rows which are ident ical ly  zero will produce a Jordan-equivalent  matrix.  
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(;) A I =  , A2= , An= , then A 1, A 2 subdetermine (but do not determine) 

C = pos A. 
For C a pointed m-cone, an (m - -  k)-face G is said to be complementary to a 

k-face F if FmG= {0} and the linear hull of F and G has the same dimension as C. 

(1) Lemma. If C is a pointed cone, then (i) every extreme ray of C has a 
complementary facet, and (ii) every facet of C has a complementary extreme ray. 

Pro@ (i) Suppose R is an extreme ray of C without a complementary facet. 
Then R would be contained in every facet, whence in the lineality space of C. 
But this contradicts the fact that  C is pointed and therefore of lineality dimension 
zero• (ii) Suppose F is a facet of C without a complementary extreme ray. Then 
every extreme ray of C ties in F, contradicting C 4=F. 

Note that  this lemma is a special case of a theorem by EGGLESTON, GRONBAUM 
and KLEE [2] which, when adapted to cones, states that  every k-face of a pointed 
cone has a complementary ( m -  k)-face. 

2. Convex Cones and Equivalent Matrices 

(2) Proposition. C = p o s A  4={0} is a pointed cone if and only if there is a 
lexico-positive matr ix  A in d .  

Pro@ Let A be lexico-positive. The lineality dimension of C, and therefore 
of C, is different from zero if and only if there exists Ai such that  --A~dC [3 and 5]. 
But A is lexico-positive; thus pos (A1 . . . . .  A,) ~ {--Xi} for j = t . . . . .  n since 
every --.~j is lexico-negative. This completes the proof in one direction• If C is 
a pointed m-cone (m> 0), then at  least one of its generators, say At, is extreme. 
By lemma (t), posA 1 possesses a complementary facet F, say F = p o s ( A  2 . . . . .  
Am, Am4 1 . . . . .  Am+t) with A 2 . . . . .  A,, subdetermining F. Construct A' such that  

! ! • l 

the columns A1 . . . . .  A= (in that  order) constitute the basis. Since hn (A~ . . . . .  A~) 
= {x I x 1= 0} is a supporting hyperplane of C', all entries in row 1A' must be of 
the same sign. Therefore ~A = 0, smce a n =  1. All nonbasic columns with positive 
entry in the first row are trivially lexico-positive, while those with zero entry 
belong to lin (A~ . . . . .  A ' )  and thus to F', which is itself a pointed ( m -  l)-cone. 

t !  t ~  H t 

We use the same construction to make a2i~0 for posAi ~F  , viz. let posA2 be 
an extreme ray of F', select a complementary face in F '  and a set of ( m -  2) 

t t  

columns subdetermining this subfacet of C'; construct A" such that  A'I', A2, 
and these ( m -  2) columns constitute a basis. This keeps 1A' unchanged. The 
proof is then easily completed by  recursion. 

I t  is possible to strengthen somewhat t h e "  only if" direction of Proposition (2). 
In fact, the proof of the proposition yields: 

(3) Remark. If  C = p o s A  4={0} is a pointed cone, then there is a lexico- 
positive matr ix  .4 in ~¢ such that  its basic columns correspond to extreme rays 
of C. 

(4) Theorem. F is a k-face of a pointed m-cone C = p o s A  (O<k<m)  if and 
only if there exists in ~ a matr ix  A of the form 

I (k) U 
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where IIk} is an identity matrix of order k, U and V are lexico-positive, and those 

c o l u m n s i n A w h i c h c o r r e s p o n d t o ( i O ) ) s u b d e t e r m i n e F . ( T h e c o l u m n s o f ( u )  

characterize the remaining generators of F.) 

Proo/. F is contained in some facet Fo,_I). By Lemma (l) there exists an 
extreme ray complementary to F(~_I), say posA a. We obtain A' in ag by selecting 
a basis formed by A1, and (m- - l )  extreme generators of F~,~_I). After an ap- 
propriate arrangement of columns and rows, we can write 

A t  

t l o . . . o  + + 

t 

l 

where A1 corresponds to A 1, and the columns A' ' 3, A,~ subdetermine F,' ' ' " ,  (m-- 1)- 
T h e  arguments proving that 1A' ~ 0 are identical to those given in Proposition (2). 

. . . .  . . . ,  A' E' If 1Ai=O, then AjEhn(A=, Am) and therefore iE (m-l). If F ' = F ( _ 1 ) ,  i.e. 
if k =  m -  t,  the construction terminates. Otherwise there exists a facet F,' (m-2) 
of F((~,-1) containing the k-face F' .  By Jordan equivalence, the cone C' spanned 
by the columns of A' is pointed since C is pointed. The facet E' C,~-1) is pointed 
since it is a subcone of the pointed cone C'. Hence Lemma (t) applies, yielding 
the existence of an extreme ray, say posA~, complementary to F,'(~_~) in F(~_x). 
By selecting a basis consisting of A'I, A'2, and (m--2)  extreme generators of 

t 

l 
°°° 

t 

A,, = 

Ftt (m-2), we obtain 

O[ 0 . . . 0  + . , ' +  

0 + . , . +  

where A';, A . . . . . .  2 correspond to A1, A , ,  and the columns A~' . . . . .  An subdetermine 
F," ,, , " > a  - "  F," {=-~1" We note that  ,A -----,A, and that 2Aj = , ,  if Aj C {m-l). The columns 
whose two first components vanish belong to F," (=_=). If k <  m -- 2, the construction 
continues until it reaches 

A (m-k} = 

t 

t 

+ 
o + + 

+ . . . +  

l 
° ,  *g 

t 

+ 

= ( / (O -k} ick} 0 ' 

(o) 
where V is lexico-positive, the columns corresponding to ~(k) subdetermine F 

and all columns whose ( m -  k) first components are zero characterize generators 
in F. 
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Any change of basis involving only columns in (k}O will not affect the 

first (m--k) rows of A Cm-kl. We proceed to use this fact to transform A Cm-k} (00) 
into a lexico-positive .,~ with the desired properties. The columns in 7ck}~ 

determine a subcone of a pointed cone, which is therefore pointed itself. The 
same is true, because of Jordan-equivalence, for the cone spanned in ~ by the 
columns of ( i  {k} U'). By Proposition (2), there exists a lexico-positive matrix ( i  {kl U) 
which --  after a possible rearrangement of columns -- is Jordan-equivalent 
to (I (~1 U). The corresponding basis change yields A, completing the proof in 
one direction. 

If there exists X in d as above, C-= pos A is a pointed cone by Proposition (2). 
( o )  _ 

Moreover, the columns of Ii~} determine a pointed subcone F of C =  pos A. 

F is a k-face of C, and therefore F is a k-face of C, since there exists e >  0 such 
that the vector (e, e~,..., e "~-~, 0 . . . . .  0) is the normal of a supporting hyper- 
plane P of C withP~C=F. 

In view of Remark (3) and the particular use of Proposition (2) made in the 
proof of Theorem (4), it is possible to strengthen somewhat t h e "  only if" direction 
of this theorem. 

(5) Remark. If F is a k-face of a pointed m-cone C=p o sA ,  then there exists 

A in d as in (4) and such that the basic columns in ( 0 ) 
of A which determine extreme rays of F. ilk) correspond to columns 

(6) Corollary. Let C = p o s A  be a pointed m-cone. Then A 1 . . . . .  A k (k<im) 
determine a simpliciaI k-face of C if and only if there exists ,4 in d as in (4) 
where I Ckl is an identity matrix of order k which corresponds to the columns 
41, . . . ,  Ak, V is lexico-positive, and U is a nonnegative matrix. 

(7) Corollary. Let C = p o s  A be a pointed cone. Then pos A 1 (pos(A 1, A,)) is 
an extreme ray of C (is a 2-face of C) if and only if there exists A as in (6) with 
k-- I  (k= 2}. 

Proo[. I t  suffices to observe that  every l-  or 2-face of a pointed cone is a 
simplicial face. 

3. Reay Matrices and Positive Bases 

(8) Definition. We call an m x s  matrix R ~ 0  a Reay matrix if it is upper 

D1D~..* ] 
block triangular, R = [_[ 0 "D,J' such that  each D i is a t~ × 1 negative matrix 

with t i > t i + l > 0  for i = t  . . . . .  s - - I  and ~. ti=m. 

(9) Proposition (REAY [6]). If there exists .4 in ~g such that  .4=  (I, R) where 
R is an m X s Reay matrix with 1 ~_ s ~ m, then the matrix A determines a positive 
basis [5] for ~m. 
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i 
P r o @  Let  u i = ~ t i wi th  % =  0. If A de te rmines  a posi t ive  basis  for gt ~, b y  

1 

~7, Theorem 2], there  exis ts  a decomposi t ion  of the  columns of A into s subsets  
A (1~, . . . ,  A (~ of decreasing ca rd ina l i ty  where card  A (i~= t i + t ,  i = 1, . . . ,  s, and 

A (i)= Auc~_l)+l , A , , ,  Am+ i, such t ha t  U A(~)= A and pos (A (1) ~ . . .  ~ A (])) is a 

l inear  subspace  of ~m of dimension u i. We can choose v i ~  u] and  renumber  such 
t h a t  

d im lin (A (1) ~ . . .  ~ A(J-1) ~ {A~o_,+l . . . . .  A~j}) = u i 

and  hence so t ha t  

dim lin ({A 1 . . . . .  A~I } ~ {Am+ 1 . . . . .  A~,} ~ . . .  ~ {Au,~_l,+l . . . . .  Av,}) =: u]. 

The proof is comple ted  b y  renumber ing  so t ha t  for f,== s the  vectors  in the above  
union become A 1 . . . . .  A m and  b y  le t t ing  (A 1 . . . . .  ,4,~) be the  basis  of A. 

Note  t h a t  for the  " i f "  direct ion,  the  fact  t h a t  the  size of the  mat r ices  D i 
decreases is no t  necessary.  F r o m  Propos i t ions  (1) and  (6) we ob ta in :  

(10) Corollary. Let  C = p o s A  be an m-cone. Then lin(A~ . . . . .  Ak) is t i le line- 

a l i ty  space of C if and  only if there  exis ts  A in s ]  such t ha t  A = I (m-k) 0 

where  I Ck~ is an i den t i t y  m a t r i x  of order  k which corresponds to  the  columns 
A1 . . . . .  Ak, U conta ins  a k × s  R e a y  m a t r i x  where t < _ s ~ k  and  V is a texico- 
posi t ive  ma t r ix .  If  A corresponds  to a f rame for posA,  then  U is a R e a y  ma t r ix .  

Algor i thms  for f inding mat r ices  of the  form referred to b y  Theorem (4) and 
R e a y  mat r ices  are descr ibed in [81]. 
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