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Summary. It is shown that the theory of positive linear independence and the
properties of Jordan-equivalent matrices can be utilized effectively in order to obtain
an algebraic characterization of a face structure of convex polyhedral cones.

1. Introduction

To each subset SCR™ of cardinality # (n=1) corresponds in a natural way
an m xn matrix 4. We assume that {0} &S, i.e. 4 does not contain zero columns.
The linear hull and the positive hull of S will be denoted respectively by

lind ={t|t=A4x, xR} and posd={t|{t=Ax, xcWp},

where % stands for the nonnegative orthant of ®*. In matters pertaining to
the theory of positive linear independence, we follow the terminology and notations
of REAY [6]. In relation to convex cones and polytopes, we follow the terminology
of KLEE [4]. In particular, a k-face of a convex cone C is a face of dimension Z.
A stmplicial k-face is a k-face which contains exactly 2 extreme rays. An (m —1)-
face of an m-cone C is called a facet. Furthermore we denote by 4, and ;4 the ke
column and the i™ row, respectively, of a matrix 4.

If 4 and A are Jordan-equivalent, i.e. the rows of A and A generate the same
linear subspace!, then C=posA4 and C=posd have identical face structure. In
particular, if C is pointed, i.e. of lineality dimension (3] zero, then so is C, and if
pos(4,,, ..., A;) is a k-face of C, then pos(4;,, ..., A,) is a k-face of C. A matrix 4
is in canonical form if some of its columns form an identity submatrix, the basis;
all the other columns are nonbasic columns. By o/ we denote the class of all
matrices in canonical form which are Jordan-equivalent to 4, and all row and
column permutations of such matrices. By 4 we always denote a member of &/.
A matrix is lexico-positive (-negative) if all its columns are lexico-positive (-nega-
tive).

A minimal set of generators A; of C=pos(4,, ..., 4,) is called a frame [1].
A frame of a face F of C determines F. A linearly independent subset 7 of a
k-face F subdetermines F if C~linT==F. If, for instance, A= (4,, 45, 43} with
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1 Note that 4 and 4 need not have the same number of rows. For instance, the
deletion of rows which are identically zero will produce a Jordan-equivalent matrix.
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A= (é) , Ap= <(1)) AS:(‘?)), then 4;, 4, subdetermine (but do not determine)

C=pos4.
For C a pointed m-cone, an (m —k)-face G is said to be complementary to a
k-face F if FnG={0} and the linear hull of /' and G has the same dimension as C.

(1) Lemma. If C is a pointed cone, then (i) every extreme ray of C has a
complementary facet, and (ii) every facet of C has a complementary extreme ray.

Proof. (i) Suppose R is an extreme ray of C without a complementary facet.
Then R would be contained in every facet, whence in the lineality space of C.
But this contradicts the fact that C is pointed and therefore of lineality dimension
zero. (ii) Suppose I is a facet of C without a complementary extreme ray. Then
every extreme ray of C lies in F, contradicting C 4= F.

Note that this lemma is a special case of a theorem by EGcGLESTON, GRUNBAUM
and KLEE [2] which, when adapted to cones, states that every k-face of a pointed
cone has a complementary (m — k)-face.

2. Convex Cones and Equivalent Matrices

(2) Proposition. C=posA =={0} is a pointed cone if and only if there is a
lexico-positive matrix 4 in 7.

Proof. Let 4 be lexico-positive. The lineality dimension of C, and therefore
of C, is different from zero if and only if there exists 4; such that —4,¢C [3 and 5].
But A is lexico-positive; thus pos(dy, ..., d,)2{—A4;} for j=1,...,n since
every —«}1} is lexico-negative. This completes the proof in one direction, If C is
a pointed m-cone (m>0), then at least one of its generators, say 4,, is extreme.
By lemma (1), posA; possesses a complementary facet I, say I'=pos(4,, ...,
Ay Appirs ooy Apyy) with 4,, ..., A, subdetermining F. Construct 4’ such that
the columns A4, ..., 4,, (in that order) constitute the basis. Since lin (43, ..., 4,,)
= {x|x,=0} is a supporting hyperplane of C’, all entries in row ;4" must be of
the same sign. Therefore ;4= 0, since aj;= 1. All nonbasic columns with positive
entry in the first row are trivially lexico-positive, while those with zero entry
belong to lin (43, ..., 4,,) and thus to F', which is itself a pointed (m — 1)-cone.
We use the same construction to make ag;=0 for posd4; CF”, viz. let posA; be
an extreme ray of F’, select a complementary face in F’ and a set of (m--2)
columns subdetermining this subfacet of C’; construct 4" such that Ay, Ay,
and these (m —2) columns constitute a basis. This keeps ;4" unchanged. The
proof is then easily completed by recursion.

Tt is possible to strengthen somewhat the ‘“only if” direction of Proposition (2).
In fact, the proof of the proposition yields:

(3) Remark. If C=posd4 #{0} is a pointed cone, then there is a lexico-
positive matrix 4 in .« such that its basic columns correspond to extreme rays
of C.

(4) Theorem. F is a k-face of a pointed m-cone C=posd (0<Ck<m) if and
only if there exists in & a matrix 4 of the form

P I8 o o V
T\ o WU w)
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where I® is an identity matrix of order &, U and V are lexico-positive, and those

columns in 4 which correspond to ( 1(3‘)) subdetermine F. (The columns of (8)

characterize the remaining generators of F.)

Proof. F is contained in some facet F,, ;. By Lemma (1) there exists an
extreme ray complementary to F,,_,,, say pos4,. We obtain A’ in &7 by selecting
a basis formed by 4,, and {(m —1) extreme generators of F,,_,,. After an ap-
propriate arrangement of columns and rows, we can write

1 0...0 4+

A/

I
P
.

1

where A corresponds to 4,, and the columns 43, ..., 4;, subdetermine F,, 4.
The arguments proving that ;4' = 0 are identical to those given in Proposition (2).
If Aj=0, then Ajclin(dy, ..., 4,) and therefore AcF, _y. If F'=F,_,, ie.
if k=m —1, the construction terminates. Otherwise there exists a facet F,_,
of F,_s containing the k-face F’. By Jordan equivalence, the cone C’ spanned
by the columns of A4’ is pointed since C is pointed. The facet F,_;, is pointed
since it is a subcone of the pointed cone C’. Hence Lemma (1) applies, yielding
the existence of an extreme ray, say posAj, complementary to F,,_, in F(;,,_l).
By selecting a basis consisting of A, A3, and (m —2) extreme generators of
F,,_g, we obtain

1 0...0{ 0...0 |+ -+
1 0.0 |4+
A/I —
1
* ® *
1
where A7, Ay correspond to 43, A3, and the columns A3, ..., A, subdetermine

Fy_3. We note that ;4”=,4’, and that ,4/>0 if 4;¢F,_1y. The columns
whose two first components vanish belong to F,, . If k<< m — 2, the construction
continues until it reaches

) {m—k)
e Lk (T o T
0 wmy w)’

Kl

I
and all columns whose (m — k) first components are zero characterize generators
in F.

0
where V is lexico-positive, the columns corresponding t0(~m) subdetermine ¥
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0 0
Any change of basis involving only columns in (f(k)f?) will not affect the

first (m —k) rows of A”~H. We proceed to use this fact to transform A {m—#)

I ® 7
determine a subcone of a pointed cone, which is therefore pointed itself. The
same is true, because of Jordan-equivalence, for the cone spanned in ®* by the
columns of (J® ). By Proposition (2), there exists a lexico-positive matrix (I® )
which — after a possible rearrangement of columns — is Jordan-equivalent

to (I U). The corresponding basis change yields 4, completing the proof in
one direction.

0
into a lexico-positive A4 with the desired properties. The columns in| )

If there exists 4 in &7 as above, C==pos4 is a peinted cone by Proposition (2).

U
F is a k-face of C, and therefore F is a k-face of C, since there exists >0 such
that the vector (g, €%, ..., €*7%0,...,0) is the normal of a supporting hyper-
plane P of C with PnC=F.

In view of Remark (3) and the particular use of Proposition (2) made in the

proof of Theorem (4), it is possible to strengthen somewhat the “only if” direction
of this theorem.

0 0O = .= .
Moreover, the columns of (I("} )determine a pointed subcone F of C=pos 4.

(5) Remark. If F is a k-face of a pointed m-cone C=rposA, then there exists

- 0
A in &/ asin (4) and such that the basic columns in ( I(")) correspond to columns
of A which determine extreme rays of F.

(6) Corollary. Let C=posA be a pointed m-cone. Then 4,, ..., 4, (A<<m)
determine a simplicial k-face of C if and only if there exists 4 in &7 as in (4)
where I® is an identity matrix of order 2 which corresponds to the columns
4;, ..., 4,, V is lexico-positive, and U is a nonnegative matrix.

(7) Corollary. Let C—=pos A be a pointed cone. Then pos 4, (pos(4,, 2))
an extreme ray of C (is a 2-face of C) if and only if there exists 4 as in (6) with
k=1 (k=2).

Proof. It suffices to observe that every 1- or 2-face of a pointed cone is a
simplicial face.

3. Reay Matrices and Positive Bases

(8) Definition. We call an m Xs matrix R=0 a Reay matrix if it is upper
D, *

block triangular, R= D2. , such that each D, is a ¢, x1 negative matrix

o D,
with ¢,=¢t;,,=0 for i=1,...,s—1 and X t,=m

(9) Proposition (ReAy [6]). If there exists 4 in & such that A= (I, R) where
R is anm x s Reay matrix with 1 <s=<m, then the matrix 4 determines a positive
basis [5] for #™.
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i
Proof. Let u;= D.t; with ug=0. If A determines a positive basis for ", by
1

[7, Theorem 2], there exists a decomposition of the columns of 4 into s subsets
AW, ..., A® of decreasing cardinality where card A%=¢,4+1,7=1,...,s, and

s
AO=A,. w1, Ay, Ay, such that kL=JlA(k):A and pos{A®W o...oA4%) is a
linear subspace of ™ of dimension u;. We can choose v;= »; and renumber such

that
dim lin (A(l) TRRVY. LtV {Az{{;_l,«pl» ey AW}) = U

and hence so that
dimlin({4,, ..., A} o{dus1. ... A o oy - Ay}) = o

The proof is completed by renumbering so that for j==s the vectors in the above
union become 4,, ..., 4,, and by letting (4, ..., 4,,) be the basis of 4.

Note that for the “if” direction, the fact that the size of the matrices D,
decreases is not necessary. From Propositions (1) and (6) we obtain:

(10) Corollary. Let C=posA be an m-cone. Then lin(4,, ..., 4;) is the line-

- - ® o U W

ality space of C if and only if there exists 4 in = such that 4 :( o ImH o ¥ )

where I® is an identity matrix of order %4 which corresponds to the columns

Ay, ..., 4,, U contains a kxs Reay matrix where 1=<s<#% and V is a lexico-

positive matrix. If 4 corresponds to a frame for pos 4, then U is a Reay matrix.

Algorithms for finding matrices of the form referred to by Theorem (4) and
Reay matrices are described in [8].
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