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ESTIMATING DENSITY FUNCTIONS: 
A CONSTRAINED MAXIMUM 

LIKELIHOOD APPROACH* 

MICHAEL X. DONG and ROGER J-B WET$ 

Department of Mathematics, University of California, Davis 

(Received 20 December 1998; In final form 10 April 1999) 

We propose estimating density functions by means of a constrained optimization 
problem whose criterion function is the maximum likelihood function, and whose 
constraints model any (prior) information that might be available. The asymptotic 
justification for such an approach relies on the theory of epi-convergence. A simple 
numerical example is used to signal the potential of such an approach. 

Keyword: Constrained maximum likelihood estimation; consistency; epi-convergence; 
Mosco-epi-convergence; pepi-distance 

0. INTRODUCTION 

The problem is to find an estimate h of a density hO: 5 + R+ aswciat- 
ed with a random variable 5, given iid observations tl, c2,. . . , ED, and 
any prior information that might be available about the random 
phenomena modeled by 5. 

Quite a number of procedures have been suggested to deal with this 
primary statistical question. They come in two basic flavors: param- 
etric and nonparametric estimation. In the parametric case, the prior 
information allows us to single out a specific class of density furictions 
characterized by a parameter 0 E RN. Estimating h0 is then reduced to 
finding a best estimate for this parameter. In some sense, it's a density 

*Research supported in part by a grant of the National Science Foundation. 
+ ~ o r r e s ~ o n d i n ~  author. 
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550 M. X. DONG AND R. J-B WETS 

estimation problem with nearly complete information. In the non- 
parametric case, no prior information is available except that the distri- 
bution of the random phenomenon can be described in terms of a 
density function. Now, one has to find a function h whose only known 
property is that it is a density function. These two problem types are in 
some sense at the opposite ends of the class of problems of that 
actually fit under the "density estimation" label. In practice, some 
partial information is usually available about the unknown density, 
but not quite enough to be able to pinpoint the parametric class to 
which h0 belongs. For example, one might know (or suspect) that h0 is 
unimodal, or one might have (or stipulate) bounds on certain quanti- 
les, or still one might even know (or suspect) that h0 belongs to a neigh- 
borhood of a certain density i. This partial information about h0 should 
play an important role in restricting the choice of h to certain subclasses 
of density functions, especially when the sample size is relatively small, 
i.e., doesn't quite reach the asymptotic range. 

The standard approach to nonparametric estimation, say kernel 
estimation [31,32], has some shortcomings that are difficult to patch, 
at least at the theoretical and computational levels. In particular, it 
isn't really possible to include prior information, e.g., bounds on 
moments or the support, level of smoothness, unimodality, and so on. 
Moreover, it's also difficult to say in which sense the resulting esti- 
mated density is the "best" possible given the information available; 
in fact, it usually isn't. Finally, when only a small number of samples 
have been collected, relying on these standard estimation procedures 
could be disastrous. 

Another approach, that is going to be followed in this paper, is to 
formulate the density estimation problem as an optimization problem: 
find a function h  ̂ that maximizes the maximum likelihood function; 
note however that the techniques developed here aren't limited to this 
particular loss function. The choice of h is always subject to the 
constraints 2 0 and J i ( t )d t  = 1 that identify h as a density function. 
If these are the only constraints included in the formulation of the 
optimization problem, the answer turns out to be somewhat mean- 
ingless, at least in general. The optimal i is then the summation of 
Dirac functions that assigns equal mass to each sample point; the 
counterpart of the empirical measure. Usually, however more 
information is available about the distribution of the underlying 
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ESTIMATING DENSITY FUNCTIONS 551 

stochastic phenomena. For example, it may be known that h0 is a 
smooth function, thus it would be natural to restrict the choice 011' an 
estimator to functions with prescribed smoothness properties, i.e., 
introduce additional constraints in the optimization problem. Simi- 
larly, any piece of information that might be available about h0 will be 
reflected by additional constraints to be imposed on the choice of i: 
unimodality, bounds on some moments, and so on. 

"Prior" information, including modeling assumptions, is extremely 
valuable when the samples at hand are too few to reach the asymptotic 
range, as is almost always the case when 5 is Ftd-valued with a' 2 2. 
Indeed, the prior information constitutes a larger share of the total 
information available when only a small number of samples have been 
collected. In [38], Samaniego and Reneau express similar concerns 
about including prior information and modeling assumptions in the 
formulation of the estimation problem. In terms of our optimization 
problem this means that the constraints that describe the prior 
information will then, as they should, play a more significant role in 
determining the optimal estimate. 

There have been some attempts in the literature to include 
smoothness considerations in the calculation of the estimator in the 
form of a single constraint, and this constraint has been included in the 
formulation of the estimation problem in the form of a penalty term 
with a coefficient to be adjusted "in practice". The relationship be- 
tween our model and this literature is clarified in Section 4. 

The quality of a statistical estimator can't be determined exclus~vely 
by its asymptotic properties. Implicit in our approach is the postulate 
that only for estimators that are "best" in some sense, and that use all 
the information available (which includes a finite sample), is it possible 
to find a convincing practical justification. It will be shown in this 
paper that also a theoretical justification is at hand. Although, 
Thompson and Tapia don't quite deal with as general a formulat~on of 
the estimation problem as that considered in this paper, their beautiful 
monograph [44] on "Nonparametric Function Estimation, Modeling 
and Simulation", in some way a forerunner of this work, shares with it 
the same underlying strategy. Other work, of possibly more direct 
antecedence is that dealing with the consistency of the solutions of 
stochastic optimization problems [14,24,40,29,35] and certain con- 
strained estimation problems [36,49,45,51,13,17,41]. 
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552 M. X. DONG AND R. J-B WETS 

The density estimation problem is formulated, and the argrnin 
estimator is introduced in Section 1 which also provides a number of 
illustrative examples. Section 2 outlines our approach which basically 
consists in viewing the estimation problems as a sequence optimization 
problems that converge, in a sense to be made precise, to a limit 
problem whose optimal solution is the true density as explained in 
Section 3. The basic tools that are going to be employed are laid out in 
Sections 5 and 6, with the consistency results coming in Section 7. The 
approach is illustrated in Section 8 by a simple numerical example. An 
appendix reworks the proof in [l] of a law of large numbers for 
random lsc functions in order to relax slightly a couple of assumptions. 
Convergence rates for the argmin-estimators can be calculated. This 
will be dealt with in a separate paper. 

1. THE ARGMIN ESTIMATOR 

Let <',t2,. . . ,SV be independent observations of a random variable 
5 : (Z, A) -+ (iRd, B), E c iRd, and P' the empirical measure generated 
by these samples. This paper is concerned with the following density 
estimator: 

fi" E argmin {Ev& (h) (h E S c H), (1.1) 

where His some functional space, Lo is a criterion function, E "Lo is an 
expectation functional, 

and 

where the set A consists of those functions h that satisfy whatever 
additional information (prior information or modeling assumptions) - 
that might be available about the density function that is to be esti- 
mated. It will be assumed that such a I;" exists; although existence and 
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ESTIMATING DENSITY FUNCTIONS 553 

uniqueness aren't going to be of major concern here, they will be ob- 
tained for some important special cases. 

When is the maximum likelihood function, 

if h ( [ )  > 0, 
00 otherwise, 

one refers to the optimization problem (1.1) as the constr(zined 
maximum likelihood density estimation problem. Since most of the 
criterion functions that one might want to use in the formulation of 
the density estimation problem lead naturally to minimization, and 
since most the optimization literature is usually presented in terms of a 
canonical minimization problem, it will be convenient to also formu- 
late the "maximum" likelihood estimation as a minimization problem. 

It will be shown that /? is a consistent estimator; in [12], we obtain, 
via the theory of large deviations, some results about the convergence 
rate of I?' to the "true" density. Of course, the theory doesn't depend 
on having prior information, so the "usual" framework is included as 
a special case. However, such additional information that often has 
been ignored, because statistical theory didn't validate its use, can now 
be part of the formulation of the estimation problem. A few simple, 
illustrative examples follow: 

Example 1.1 Smoothness Let be real-valued. Suppose there is some 
justification for insisting on "smoothness" of the estimator. Assuming 
the search for an estimator is restricted to differentiable functions, one 
could impose the following constraint: 

where the term on the left is the Fisher information. The connection 
between the resulting estimator and the penalized maximum likelihood 
estimator will be clarified in Section 4. 

If such a constraint is included in the formulation of the estimation 
problem, it implicitly means that this bound is known, or at least, 
that such a constraint can be accepted as a reasonable modeling 
assumption. Of course, nothing would prevent a post-solution analysis 
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554 M. X. DONG AND R. J-B WETS 

of the dependence of the estimates on P. The theory of sieves estimates 
116,421 is concerned with the discovery of the appropriate level of 
smoothness to include in the formulation of the estimation problem. 
Although we shall deal with this issue to some extent in [ll], here we 
view a 'smoothness condition' as just one of the many type of con- 
straints that might, or might not, be included in the formulation of the 
estimation problem. 

Example 1.2 Bounds on moments Suppose 5 is real-valued and there is 
some (prior) information about the expectation and the variance of 5, 
namely, 

assuming that (T; 2 0: + (p: - p:). Then, the set A describing the 
additional information consists of the functions h E H satisfying 

One can also incorporate constraints on the support as in [39]. 

Example 1.3 Shape Usually to include shape information an infinite 
number of constraints will be required. For example, if it is known that 
the true density h0 : Rd -+ R+ is continuous and long-concave (strongly 
unimodal), i.e., that the set A describing the additional information 
consists of the functions of type, 

h ( j )  = e-Q(fl with Q convex, 

then, assuming that Q is c2, the constraints take the form 

where v'Q([) is the Hessian of Q at 5. This might require the use of 
optimization techniques developed for positive definite programming 
[71. 

As another simple example of this ilk, consider the case when 
hO: R + R+ is known (or suspected) to be smooth and monotone 
decreasing. Then, the constraint D
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ESTIMATING DENSITY FUNCTIONS 555 

will be among those determining the set A; cf. [19,20]. In Section 8,  we 
compare the estimates obtained when such a constraint is or is not 
included in the formulation of the estimation problem. 

Example 1.4 The 'bayesian ' premise There are many ways to include 
information of bayesian type. One can, for example, restrict the esti- 
mators to the neighborhood of a certain density, say A. The set A then 
consists of the functions satisfying 

where 1 1 . 1 I A  is an appropriate norm. Or, one could include in the 
formulation of the optimization problem a penalty term that would 
take into account a certain probability distribution on the space of 
density functions centered at i. This will be explored in a projected 
paper [lo]. 

2. EPI-CONSISTENCY 

The consistency of the estimators will be obtained as a consequence 
the consistency of the empirical optimization problems ( 1 . 1 )  (defining 
$') with a certain limit problem whose optimal solution (argrnin) is hO, 
the true density. Since the empirical measure P" can be viewled as 
approximating the probability distribution P of 5, one might surmise 
that this limit problem is: 

where PO is the actual distribution of the random variable 5. Assuming 
that h0 actually solves this latter optimization problem, the consistency 
of the estimated densities $' would be established if the consistency of 
the empirical optimization problems implied the consistency of their 
optimal solutions. This means that the notion of consistency must be 
based on a convergence notion that implies the convergence of the 
optimal solutions of optimization problems. 

The theory of epi-convergence had its origin in the development of 
an approximation theory for variational problems; cf. [ 52, 2, 34,4, 61 
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556 M. X. DONG AND R. J-B WETS 

and is mostly concerned with being able to assert that the solution of 
an approximating problem provides a reasonable approximation to 
the solution of a certain limit problem. The framework in which the 
results are usually formulated is as follows: Every optimization prob- 
lem, say 

min fo(x) such thatfi(x) 1 0, i E 11, 

fi(x) = 0, i E 12, x f S cX,  

can equivalently be expressed as the minimization of just one function, 
provided one allows this function to take on values in the extended 
reals (or at least, (- oo, oo]). Indeed, with 

fo(x) i f f i (x)10,  i e 1 1 ,  fi(x)=O, i E h ,  x E S ;  
oo otherwise; 

the optimization problem 

min f(x), x E X  

has the same (optimal) solutions and optimal value as the original 
problem. The function f is sometimes called the essential objective. At 
the conceptual and theoretical level this device is very powerful since it 
allows us to identify each optimization problem with just one function. 
In particular, the question of approximating optimization problems 
becomes then one of approximating (extended real-valued) functions. 
Moreover, when S is closed and the functions fo,fi are continuous (or 
just lower semicontinuous), the function f is lower semicontinuous, 
and consequently the attention can be focused on lower sernicontin- 
uous (lsc) functions, although the theory of epi-convergence itself 
doesn't need such a restriction. 

The primary result of the theory of epi-convergence now takes the 
following form: If the f" are extended real-valued functions that epi- 
converge tof, then the argminf" converge, in a sense to be specified 
later, to argmin f. 

This is exactly what is needed to deal with the consistency of the 
estimated densities. To conform to this set-up, one identifies the 
empirical optimization problems (1.1) with the functions E"L : H + [W 
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ESTIMATING DENSITY FUNCTIONS 557 

defined by 

and the limit optimization problem (2.1) with the function EL : H -+ k 
defined by 

where 

if h E S; 
otherwise. 

Roughly speaking, given the empirical measures P" generated from the 
samples [', . . . , C", the epi-convergence of the functions F L  to EL 
would then guarantee the convergence of the estimators #' to hO. 

When dealing with consistency, however, one must take into 
account every possible sequence of samples, i.e., the E"L are acltilally 
random functions since they depend on the empirical measure P " that 
in turn depends on the observations of u iid (independent identically 
distributed) random variables ( I , .  . . , 6". These random functions EuL 
are said to be (strongly) epi-consistent with EL if they epi-converge 
almost surely to EL. This is precisely the result that will be derived 
when Lo is the maximum likelihood function, and from this will fol- 
low the (strong) consistency of the constrained maximum likelihood 
estimators. 

Let's point out once more that this approach isn't limited t o  the 
choice of the maximum likelihood function as the criterion function. 
The analysis that is going to follow can also be carried out for any 
other criterion function one might choose, e.g., least squares. Of 
course, some of the details, proof technique, and assumptions might 
turn out to be somewhat different, but one would end up with similar 
results. That's why so far, in the description of the overall approach 
there has only been parenthetical reference to the maximum likelihood 
case. 
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558 M. X. DONG AND R. J-B WETS 

3. THE LIMIT PROBLEM 

When the criterion function is the maximum likelihood function, the 
limit problem takes on the form: 

-J,lnh(<)P(d<) i f h ~ S c H ,  EL(h) = 
otherwise, 

and so far, it has been taken for granted that 

h0 = argmin {EL(h)lh E H). 

Let's now examine this in further detail. To this end, let's introduce the 
Kullback-Leibler discrepancy between two density functions h,g: 

It has the following important properties, 

(i) for all density functions h and g, K(h,g) 2 0, 
(ii) for any density h, K(h, h) = 0, 

that follow from 

With h0 be the (true) density function associated with PO, the 
function EL defining the limit problem can also be written as, 

EL(h) = - JE (In h (S) )ho (S) (dt) if h E S c H, 
otherwise. 

After adding the constant J(ln h0(o)h0(<)(4), the limit problem simply 
becomes 

min K(h, ho) such that h E S c H, 

which means that h0 is a solution of this problem, or equivalently a 
solution of the limit problem (min EL), as long as h0 belongs to S.  And 
assuming that S is closed, if hog S, the limit problem picks out a 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

49
 2

3 
O

ct
ob

er
 2

01
1 



ESTIMATING DENSITY FUNCTIONS 559 

density in S that is as close as possible to h0 in terms of the Kullback- 
Leibler discrepancy. If the constraints that define the set S are limited 
to "hard" information one might have about hO, then h0 will always be 
included in S. However, if some of these constraints come ffrom 
modeling assumptions, then there is the possibility that h0 might have 
been eliminated from S the set of feasible solutions of the estimation 
problem. 

4. RELATION TO THE LITERATURE 

It's beyond the scope of this article to review of the existing liter,ature 
on the maximum likelihood estimator. Consistency of the maximum 
likelihood estimators is well known, one can consult [47], and [48] for 
approximate maximum likelihood estimators. The attention here will 
be focussed on those articles that consider nonparametric estimation 
problems with some side condition(s). The variants of the maximum 
likelihood estimator suggested in the literature rely on adding a pen- 
alty term to the criterion function. Usually, the aim is to guarantee a 
certain level of smoothness for the optimal estimator. 

Good and Gaskins [18] were the first to suggest estimators basted on 
a penalized maximum likelihood criterion. Existence and uniqueness 
of the Good and Gaskins estimators were obtained by de Montricher, 
Tapia and Thompson [9], and consistency by V. K. Klonias [26]. de 
Montricher, Tapia and Thompson [9] and Silverman [43] projposed 
different penalty terms, and proved the consistency of the resulting 
estimators. Leonard [28] studied the maximum likelihood method 
from a bayesian point of view and justified the use of the penalized 
maximum likelihood density estimator on the basis of having access to 
additional information. 

The lemma below will help clarify the relationship between those 
proposals and the argmin estimator (1.1). Let consider the two fol- 
lowing optimization problems: 

and 

min f ( x ) + a g ( x ) ,  X E C C  H, ( u p )  
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560 M. X. DONG AND R. J-B WETS 

where f : C -, R, g : H--, R, C is a closed subset of H, a Hilbert space, 
and a ,  R. 

The focus in these two problems is on the (single) constraint g(x) 5 /3 
in (CP) and the penalty term crg(x) in (UP). Let's refer to (CP) as a 
constrained optimization problem, and (UP) as an unconstrained 
problem, notwithstanding the fact that the constraints x E C are still 
part of the formulation of (UP). 

It's not true, that in general, the solutions of (CP) and (UP) are 
identical, or even comparable, but one has the following implications: 

LEMMA 4.1 Assuming the constrained optimization problem (CP) is 
feasible, then the following conditions are suficient for xC to be an 
optimal solution of (CP): 

3 cr 1 0 such that - g(xC))  = 0 
xC solves (UP). 

(O.C.) 

These conditions become necessary when, in particular, C is convex, f 
and g are convex, g is continuous, and there is 2 E C such that g(5)  < /3. 

On the other hand, assuming now that (UP) is feasible and a > 0,  if xu 
is an optimal solution of (UP) there always exists P such that xu is also 
an optimal solution of (CP). 

Proof These properties follow immediately from well-known optim- 
ality conditions for problems of this type. It's also easy, and 
instructive, to write down an explicit proof. So, let's suppose that 
there exist a and xC that satisfy (O.C.). If xC is not an optimal solution 
of (CP) there would exist x0 E C such that 

On the other hand, since xc solves (UP), one also has 

and consequently, 

For this to occur, one must have a > 0 and p - g(xO) < 0, and then, 
this last inequality would contradict the feasibility of xO. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

49
 2

3 
O

ct
ob

er
 2

01
1 



ESTIMATING DENSITY FUNCTIONS 561 

To prove that the conditions in (O.C.) are also necessary when (CP) 
is a convex optimization problem, and there is a 2 E C such .that 
g(2) < P, let xC be an optimal solution of (CP), and consider the 
function 8 : R -+ R defined by 

This is a convex function, real-valued on neighborhood of 0 as fol1,ows 
from the assumptions. Moreover, 8 is a decreasing function of u, hlence 
there always exists a > 0 such that 

This implies that for all u E R, 

Since the preceding inequality holds for all u, one must actually have 

In particular, this yields 

- a(g(x? - P) = 0, 
- xc is a solution of (UP). 

Finally, if for given a 2 0, xu is a solution of (UP), then with 
p = g(x") xu is a feasible solution of (CP) and the pair (xu, a) sarisfies 
(O.C.) which means that xu is an optimal solution of (CP). 

Let now return the density estimation problem: 

min -E"{lnh(&)) = -1 - lnh(()P"(d[), - - 

where P" is the empirical measure and @(h) 5 P is a (single) constraint, 
in addition to those requiring that the solution of this estimation 
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562 M. X. DONG AND R. J-B WETS 

problem must be a density function. Let's refer to this problem as a 
"constrained" maximum likelihood estimation problem. As already 
mentioned earlier, the constraint @(h) 5 p might have been included in 
the formulation of the problem to guarantee a certain level of 
smoothness, but that's not the only possibility. 

Let's also consider the associated problem: 

where the constraint @(h) 5 p has been replaced by the penalty term 
a9(h)  for some a 2 0. This problem requires finding a density function 
that minimizes a "penalized" maximum likelihood function; the con- 
straints restricting the choice of h E H to a function that is a density are 
still part of the formulation of the problem. 

And as an immediate corollary of the preceding lemma, one has: 

COROLLARY 4.2 Assuming the constrained estimation problem (CE)  
is feasible, then sufficient conditions for $" to be an optimal solution of 
(CE)  are: 

3 a 2 0 such that a ( p  - @ ( L V ) )  = 0 
A" solves (PE) 

(O.E.) 

These conditions also become necessary when, in particular, @ is 
continuous and convex, and there is a density function 6 H such that 
@(X) < f l  

On the other hand, assuming now that (PE)  is feasible and that a 2 0, 
if is an optimal solution of (PE)  there always exists ,B such that I;" is 
also an optimal solution of (CE). 

Proof It really suffices to observe that h w - Eu{ln h(5 ) )  : H + is 
convex on the convex set D = {h E HIS,- = 1 ,  h 2 01, and then 
apply the lemma. 

The corollary highlights the close relationship between the inclusion 
of a constraint in the formulation of the density estimation problem or 
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ESTIMATING DENSITY FUNCTIONS 563 

the adding of a penalty term to the objective. In all the examples in the 
literature, it's the objective of the maximum likelihood estimation 
problem that has been modified by a penalty term to enforce 
smoothness, i.e., the formulation of the problem is of type (PE). 
When implementing such an approach, the coefficient a is adjusted so 
as to yield a density exhibiting certain "appropriate" properties. 

From the observations made so far, it might appear that there is 
nothing that favors one or the other formulation, i.e., one involving 
the constraint @(h) 5 p or one involving the penalty term a@(h). One 
might point to Corollary 4.2 as supporting evidence for such an 
assertion. However, Corollary 4.2 doesn't justify such a cldm! 
Notwithstanding the appearances, Corollary 4.2 puts in doubt the 
appropriateness of a formulation of an estimation problem where a 
constraint has been absorbed in the objective as a penalty term: 

(i) Whereas one can immediately give some meaning to the choice of 
,B in (CE) and find some justification for such a choice, the c!boice 
of any particular a in (PE) is much more difficult to justify since 
the interpretation must pass through Corollary 4.2. 

(ii) The choice of ,B in (CE) is independent the sample size whereas the 
choice of a in (PE) does depend on the sample size. Let's illuserate 
this in the context of Example 1.1, where @ is the Fkher 
information, and the constraint @(h) 5 ,B has been included m the 
formulation of the problem to guarantee a certain level of 
smoothness for the estimated densities: i ' , i 2 , .  . . ,p, .  . . . What 
Corollary 4.2 tells us is that one could find a ' ,  a2 , .  . . ,au ,  . . . such 
that when this constraint is replaced by a penalty term aV@(h), 
v = 1,2,. . . , the estimated densities obtained by solving the 
corresponding penalized estimation problem will have the required 
level of smoothness. The important observation here is that the 
coefficient to be assigned to this penalty term depends on the sample 
size Y, and thus a "good" coefficient for a given sample size might 
not be appropriate when the sample size is increased or decreased. 

(iii) There are, at least conceptually, no new difficulties when in- 
troducing additional constraints in (CE), whereas if more than one 
penalty term is included in (PE), the choice of the appropriate 
coefficients for the additional penalty terms requires solving a 
problem that lies at the heart of constrained optimization. 
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564 M. X. DONG AND R. J-B WETS 

Example 4.3 The estimator of de Montricher, Tapia and Thompson. 
The penalty term selected by de Montricher, Tapia and Thompson 
[9,44] is simply 

with 

with the h(k) distributional derivatives. Then @ is a continuous convex 
function, and for any p > 0, one can find a density i; such that ~il < P. 
In view of Corollary 4.2, this means that the problem could equally 
well have been formulated as a constrained maximum likelihood 
estimation problem with the (single) constraint: 

for some p > 0 (since lhl > 0 for any density h). W 

Example 4.4 TheJirst estimator of Good and Gaskins Jn [lq, Good 
and Gaskins propose two specific estimators. The first one of these is 
obtained by solving (PE) with 

fi is not a Hilbert space, &it even a linear space, and @ is not convex. 
So, Corollary 4.2 doesn't apply, at  least not directly. There is more 
than one way to pass from the resulting penalized estimation problem 
to an equivalent constrained problem. Let's proceed as in [44, Section 
4.31 since it leads to a convex optimization problem: First, because 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

49
 2

3 
O

ct
ob

er
 2

01
1 



ESTIMATING DENSITY FUNCTIONS 

one has, 

A E argmin [ - Eu{ln h(e)} + 1 w d t ]  
h€Ct h(E) 

where 

if and only if 

2 := (it)'" t argmin [ -  E " { I ~ ~ ( ~ ) }  + 2u J g ' ( ~ ) 2 d ~ ]  
gEC 

where 

The function $ is not a density function, but can be identified with a 
density that solves the originally formulated estimation problem; 
essentially, one can pass from one problem to the other by a change of 
variable and relaxing the constraint Jg(t)24 = 1, which has no effect 
on the optimal solution(s). Next observe that 

is a convex function. Thus, assuming that u > 0, in view of Lemma 
4.1, there exists ,f3 such that 

The same change of variable h'12 = g leads to an equivalent con- 
strained maximum likelihood hood density estimation problem. . 
Example 4.5 The second estimator of Good and Gaskins The second 
estimator suggested by Good and Gaskins in [18] is 
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566 

where 

M. X. DONG AND R. J-B WETS 

and 

Making the following change of variable, g = hli2, one is lead to the 
following "equivalent " convex optimization problem: 

min [-Ev{ln g(6)) + 2a@(g)] 
gEC 

where 

The same arguments as those in Example 4.4 allow the formulation of 
an equivalent constrained density estimation problem. H 

5. EPI-CONVERGENCE: A PRIMER 

For the purposes of this paper, it will suffice to restrict our attention to 
functions defined on a separable Hilbert space (H,  1 .  I). Let f : H + a 
be an extended real-valued function on H. Its epigraph is the set: 

epi f := {(x, a )  E H x R If (x) 5 a) ,  (5.1) 

i.e., all the points in H x R that lie on and above the graph off .  
Observe that f is lower semicontinuous (Isc) if and only if epi f is closed; 
recall that a function f : H + is lower sernicontinuous at x if 
lim inf,,,, f (x') > f (x). 

DEFINITION 5.1 A sequence { f "  : H + R, v E N) epi-converges to 
f : H -+ at x, if D
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ESTIMATING DENSITY FUNCTIONS 567 

and 

3 xu -, x such that lim sup f "(xu) 5 f ( x )  ((5.3) 
V'03 

If this holds for all x E H, the functionsf" epi-converge tof, f is ctalled 
the epi-limit of thef", and one writes f = epi-lim,,,f" or f "5 f. 'The 
name "epi-convergence" is motivated by the fact that this convergence 
notion is equivalent to the set-convergence of the epigraphs. 

Epi-convergence yields the convergence of minimizers and optimal 
values, in a sense that will be made precise below, and it's all that's 
needed in many instances, in particular when H is finite dimensional. 
However, in infinite dimension, it turns out that it is usefid to 
introduce a somewhat stronger notion, namely Mosco-epi-convergence 
which requires epi-convergence with respect to both the weak and the 
strong topologies. 

DEFINITION 5.2 A sequence { f v  : H -4 R, v E N), with (H,  1.1) a 
Hilbert space, Mosco-epi-converges to f : H -+ @ at x, if 

for all x" x (weak convergence), lim inffv(x") 2 f (x); (5.4) 
"'03 

and 

3 x" + x (strong convergence) such that lim sup f "(x) If (x ) .  (5.5) 
U+, 

If this is the case for all x EX, the functionsf" Mosco-epi-converges to 
f, and one writes f " 5 f or f = M :  epi-lim,,, f". 

These two definitions should, more precisely, be qualified as "seq- 
uential", but it won't be necessary to introduce this distinction here. 

THEOREM 5.3 Suppose {f, f " : H -+ R, v E N) are such that j'"5 f ,  
then 

lim sup(inf f ") 5 inf f .  
V-+W 

Moreover, if there is a subsequence {vk)kEN, such that for all k ,  
Xk E argmin f 4 and xk -+ R, then R E argmin f and also inf f @ -+ inf f .  

fl  the functions f" Mosco-epi-converges to f, and there is LI sub- 
sequence such that for all k ,  xk E argmin f "k and xk -;;+ Ji., 
then 3 E argmin f and inf f Q -+ inf f .  
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568 M. X. DONG AND R. J-B WETS 

Proof These results are well known. We provide an elementary proof 
to illustrate the role played by the conditions (5.2), . . . ,(5.5). The 
inequality lim sup, inff"5 inf f certainly holds if inf f = m. If inf f is 
finite, then for all E > 0 there exists x, such that f(x,) < inf f + ~ .  
Because the functions f" epi-converge to $, there exists a sequence 
xu 4 X, such that lirn supvf" (xu) 5 f (x,) < inf f + E. This implies that 
lirn sup, inff" < inf f + E, and since this holds for all E > 0, it yields the 
desired equality. The case when inf f = -m can be argued similarly, 
except that one now starts with the observation that for all K > 0 there 
exists x, such that f (x,) < -6. Again (5.3) yields a sequence xv -, x, 
such that lim sup,f"(x") f(x,) < -6, which again implies that lim 
sup, inff" < -K .  Since this holds for all K > 0, it follows that lim sup, 
inff" = -cc = inff. 

Now let (2, k E N} be such that xk E argmin f 4 for some 
subsequence {ukjkEN, and xk -. X. From (5.2), it follows, 

lim infk (inff " ) = lim infk f " (xk)  2 f (X) . 

On the other hand, 

inf f 2 lim supk(inff " k )  2 lim infk(inf f v k ) ,  

with the first inequality following from the argument above. Hence, 
f (3) = inff, i.e., X E argmin f .  Moreover, this implies that the in- 
equalities in the two preceding identities are actually equalities, and 
consequently inf f * -, inff. 

In the case of Mosco-epi-convergence, the argument is the same, 
except that the Xk converge weakly to 5 and one appeals to (5.4) 
instead of (5.2). rn 

There are other results of the epi-convergence theory that are 
important in a statistical setting, in particular those characterizing epi- 
convergence in terms of the convergence of the (sub) level sets, cf. [17]. 

6. RANDOM LOWER SEMICONTINUOUS FUNCTIONS 

As already mentioned in Section 2, the objective functions E"L of the 
density estimation problems (2.2) are random functions since they 
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ESTIMATING DENSITY FUNCTIONS 569 

depend on the empirical measure P" that in turn depends on the 
samples collected for the random variables e l , .  . . ,&. This will be 
handled in the following framework: Let (E, A, P) be the (underlying) 
probability space with S - the support of P - a Borel subset of !Rd, P 
the probability distribution of the Rd-valued random variable 5, and 
throughout it will be assumed that A is P-complete. This last 
assumption can be dispensed with, but then the definition of a 
random lsc function, that is to follow, needs to be slightly modified, 
and some further technical development is then required that is better 
dispensed with at this stage. 

It will be assumed throughout that H i s  a separable Hilbert space. 

DEFINITION 6.1 A function f : S x H --+ is a random lower semi- 
continuous (random lsc) function if 

(i) for all 5 E S ,  the function x H f (c, X) is lower semicontinuous, 
(ii) (5, x) H f (c, X) is A 8 B-measurable, where B is the Borel field on 

H. 

The notion of a random lsc function, under the name ''normal 
integrand", was introduced by Rockafellar [33] in the context of' the 
calculus of variations. In particular, he showed that in the present set- 
up, f is a random Isc function if and only if the set-valued mapping 
< H epi f (t, .) is a random closed set; recall that a set-valued mapping 
I? : E 3 H x R is a random closed set if I' (5) is closed for all < E B and 
it is measurable, i.e., for all closed subsets F C  H x R, 

Since H i s  separable, which implies that every open set can be written 
as the countable union of closed sets, it follows that also for every 
open set G C H x R, 

The following properties of random closed sets and random lsc 
functions are going to be needed. 

LEMMA 6.2 For f 1  and f 2  be random Isc functions defined on S x H 
and PI, P2c R+, the function Pl  f ' f  ~ z f z  is another random lsc 
function. 
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570 M. X. DONG AND R. J-B WETS 

Proof For all < H pl f I(&.) + /I2 f2(<,,) is ISC as follows immediately 
from the definition of lower semicontinuity. And pl f' + p2 f 2  is 
A@B-measurable since measurability is preserved under linear 
combinations. 

PROPOSITION 6.3 Let f : E x H -, E be a random lsc function. Then, 
the injimal function 

f I+ inff ( f ,  ,) := inin f ( f ,  x) is A-measurable, 

and the set of optimal solutions 

f H argmin f (5, .) : Z 3 H is a random closed set. 

Proof Also these results are well known. The proof is based on the 
arguments in [34, Theorems 3.45 and 3.471. Let r(<) = epi f ( f ,  ,), 
~ ( f )  = inf f ( f ,  .), and A(<) = argmin f (5, .). 

For p E R, 

These sets belong to A since I' is a measurable random closed set and 
H x  (-GO, p) is an open subset of H x R. 

Now observe that the function g defined by g(<, x )  = f (<, x)  - ~ ( f )  is 
another random lsc function; using the convention oo - oo = GO. 

Then, 

argmin f (5, .) = lev0 g ( f ,  .) := { x  E Hlg(f ,  x )  I 0) .  

The proof will be complete if one shows that for any a E R, the level 
set mapping f H leva f (<, .) : 3 H associated with the random Isc 
function f is a random closed set. With A(e) = lev, f ( f ,  .), for any 
closed set FC H, 

A-' (F) = I'-' ( F  x {a ) )  E A, 

since F x  { a }  is a closed subset of H x R. Moreover, A(<) = 
{ x  I (x ,  a) E epi f ( f ,  .)} is closed for all f ,  i.e., A is a random closed 
set. 

PROPOSITION 6.4 [Cst V, Lemma 111.141 A function f : 5 x H -. 
that is A-measurable in 5 and continuous in h is a random lsc function. 
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ESTIMATING DENSITY FUNCTIONS 571 

Proof It suilices to show that f is d 8 B-measurable. Let {h', L ~ t t  N} 
be a countable dense set in H. Set 

f "(C, h) := f (C, h') where L = inf [jlh E ~ ' ( h j ,  u-I)] 
Fa] 

where 5"(hj,v-') is the open ball centered at hi and radius I / - ' .  

Clearly, f"(& h) + f (C, h) as v -+ oo. Moreover, the functions f' are 
A @I B-measurable, since 

and thus, also f is d 8 B-measurable. 

For further properties of random lsc functions, consult [37,46,3] 
and the references therein. 

Let SC (H) be the space of lower semicontinuous functions definled on 
H. Again note that there is a one-to-one correspondence between the 
space of closed subsets of H x R that are epigraphs and SC(H); a set 
E c H x R is an epigraph if (x, ,B) E E + En ( { x }  x R) is either R or 
[B, m) for some 5 ,B. Let SCo(H) denote the space of proper lsc 
functions; a function g is proper if g > -oo and g f m. 

The c-field df induced by the random lsc function f cim be 
generated from the sets {< E El epi f (t, .) n G #0) with G ranging over 
the open subsets of H x R, or equivalently by their complements, i.e., 
df = a - E where 

E = {{C € El epif (t, .) fl G' # 01, G' c H x R open); 

one can even generate df from a smaller collection El of sets, viz., 

The distribution Pf of f refers to the probability measure induced on 
df. Narrow ( = weak) convergence of random lsc functions is defined 
in terms of the narrow convergence of their distributions. For more 
about convergence of random lsc functions, consult [37]. Random 
lower semicontinuous functions are independent, or pairwise indepen- 
dent, if the induced sigma-fields are independent, or pairwise 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

49
 2

3 
O

ct
ob

er
 2

01
1 



572 M. X. DONG AND R. J-B WETS 

independent. They are identically distributed if their distributions are 
identical. And, a family of random lsc functions is iid if they are 
independent and identically distributed, and piid if they are pairwise 
independent and identically distributed. 

LEMMA 6.5 Let f : Rd x H -+ R a random lsc function, and el, e2 : 
(2, A) -t (IRd, B), with 2 c Rd, iid random variables. Then, f l ,  f : 

E x H -+ R with f "., x )  = f (el (.), x )  for L = 1,2, are idd random 
lsc functions. 

Proof With I' (5) = epi f (E, .), and l?,(E) = e p i y  (E, .) for L = 1,2, one 
has that for any open set GI c H x R, 

I';'(G1) = &;'(I?-'(GI)) for L = 1,2. 

Since f is a random lsc function, r-'(GI) E B, and consequently 
&;'(I?-'(GI)) E A' the u-field induced by eL. Since A1 and d2 are 
independent, it follows from the construction above that the induced 
u-fields 41 and AfZ must also be independent. The preceding identities 
also imply that the random lsc functions f', f 2  will be identically 
distributed if &', e2 are identically distributed. 

7. CONSISTENCY 

As already indicated in Section 2, consistency will be obtained by 
showing that the random functions E"L almost surely epi-converge to 
EL, or in other words, that the estimation problems are epi-consistent 
with a certain limit problem, identified in Section 3. The key to such an 
almost sure epi-convergence result is the law of large numbers for 
random Isc functions, see [25, 50, 3,22, 11. The particular versions that 
are going to be used here are recorded below. 

In this section, to simplify notations, let P = PO denote the actual 
distribution of 5. For a (measurable) function a : E -, R, it's positive 
and negative parts are the functions a+,a- : E -t a+ given by 
a+(O = max [O, cr(S)] and a_(<) = max [O, -a([)]. 

THEOREM 7.1 ([I, Theorem 2.31) Let (H, 1.1) be a separable Hilbert 
space, {guy v E N) a sequence of piid (pairwise independent and 
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ESTIMATING DENSITY FUNCTIONS 573 

identically distributed) random variables with common distribution P 
deJined on (E, A) with A P-complete, and let f : 9 x H --+ he a 
random lsc function. 

Suppose that for all x0 E H there is a neighborhood V of x0 and a 
measurable function (Y : E - 54 with Jsa-(c)P (4) < oo such that 
P-almost surely f (., x) 2 cv for all x E V. Let P" be the (random) empirical 
measure induced on (E, A) by the random variables g', . . . , r, and k t  

be the (random) expectation off with respect to P". Then, with 

Ef ( 4  = Jd%, x)P ( 4 1 ,  

F-almost  surely : epi-lim EUf = Ef. 
U' ca 

Actually, the statement of this theorem is slightly more general than 
Theorem 2.3 in [I]. It is assumed in [1] that the function a is sumable,  
i.e., that Ja( t )  P ( 4 )  is fmite. That's actually never used in the proof in 
[I], except when appealing to the classical version of Fatou's Lxmma 
to claim that ~ f '  is Isc. But that's also the case under this weaker 
assumption, cf. the Appendix. Moreover, by appealing to Etennadi's 
[15], rather than the standard, strong law of large numbers, 0n.e can 
relax the assumption of independent samples to only pairwise inde- 
pendence. The details are provided in the Appendix for f a random lsc 
function defined on E x X with X a Polish space. 

The assumption that the random Isc functions f" are rninorized 
locally by a function a whose integral is bounded below is an essential 
component of the hypotheses. For purely technical reasons, this 
function will be assumed to be quadratic in Theorem 7.2, this is 
predicated in part by the method of proof adopted in [3]. But, given 
the application that's going to be made of this theorem, this assump- 
tion is totally harmless. On the other hand, to obtain the almost sure 
Mosco-epi-convergence of E" f Ef it is going to be necessary to restrict 
ourselves to random convex lsc functions. 

THEOREM 7.2 ([3, Theorem 6.2)] Let (H, 1.1) be a separable ~Yjlbert 
space with ( - 1  a smooth norm, { g", v E N) a sequence of piid (pairwise 
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574 M. X. DONG AND R. J-B WETS 

independent and identically distributed) random variables with common 
distribution P defined on (=,A) with A P-complete, and let 
f : E x H -, be a random convex Isc function. Suppose that for 

P-almost surely : f ( F ,  .) 2 -a01 . -x012 + &I ( E )  

with x0 E H, a0 E R,, crl E ~ ' ( ( 2 ,  A, P); R) ,  and 

3u E ~ ' ( 2 ;  H )  such that j f ( ~ ,  v(F))P(d<) < 

Let P" be the (random) empirical measure induced on 
random variables el, . . . , e", and 

00. 

( Z , A )  by the 

be the (random) expectation o f f  with respect to PV. Then, with 
Ef (4 = JdF, x )  P (4 1, 

Pw-almost surely : Mosco-epi-lim EUf = Ef.  
V+W 

Proof The statement of Theorem 6.2 in [3] isn't quite in this form, it 
is slightly more general. It reads: Suppose (X, 1 . 1 )  is a separable Banach 
space with 1 .1  a smooth norm, {g" : E x H -, W, v E N) a sequence of 
piid random convex lsc functions P-almost surely bounded below by a 
quadratic minorant gu(<, x )  2 -cro)x -x012 f c r l ( F )  with x0 E H, a0 E 

R,, c q  E c'((E, A, P); [R) and suppose there exists 9 E L2(=; H )  such 
that J g l ( < ,  D(())P(d[) < oo. Then, P-almost surely 

To pass from this to the statement of the theorem, one relies on 
Lemma 6.5, and simply let gU(-, x )  = f (gY(.), x). 

The consistency of the a r p i n  estimator will follow from these laws 
of large numbers and Theorem 5.3 ("convergence" of the argmin 
under epi-convergence) once it has been verified that 

ifh ~ s ;  
otherwise; 
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ESTIMATING DENSITY FUNCTIONS 575 

is a random lsc function, since 

recall that 

ifh(E) > 0; 
00 otherwise. 

Let's begin with a couple of preparatory lemmas. Henceforth, 

with 13d is the Borel field relative to the Borel set B C Rd. 

LEMMA 7.3 Let H be a Hilbert space. If for < E E, the valuution 
functional h I+ h(<) is continuous on a set C C  H, then the function 
h H Lg ([, h) is continuous on C. 

Proof For {h" E C, v E N} a sequence converging to h E C. One has 
to show that lim,b(<,h") = &(<, h) for [ an arbitrary point in E. 
Continuity of the valuation functional on C means that hV(J) -+ h(<) 
for all < E B and all h E C. 

(a) If h(J) > 0, then hv([) > 0 for v sufficiently large, and this implies 
b((, hV) = -lnhv([) -, -In h(E) = &(El h). 

(b) If h(J) < 0, then hV(<) < 0 for v sufficiently large, and conse- 
quently &(J, h") = oo -, 00 = b(<, h). 

(c) Finally, if h(<) = 0, then given any p > 0, one can find S > 0 such 
that for any 0 E (0, 6), -In t9 > p, and since for v sufficiently large, 
hU(<) E [-6,6], it follows that then Lo (<, h) 2 p which implies 
Lo([, h") -, oo = Lo(<, h). 

Let /hil and lhlm denote the t' and LO" norms of a (measurable) 
function h : E -, R. 

LEMMA 7.4 Let C c H c M where (H, 1.1) is a Hilbert space. O'there 
exist 7 > 0, K. > 0 such that for all h E C, lhl> 7 and (hl, 5 6, then for 
P-almost all < E E, the valuation functional h I+ h(J) is continuous on C.  
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576 M. X. DONG AND R. J-B WETS 

Proof Since for all h E C, l h ( 2  77, and for P-almost all < E Z, Ih(<)l_< K ,  

one has that P-almost surely Ih(<)) 5 (n/q))h) which yields the conti- 
nuity of the valuation functional h H h(O for P-almost all < E Z. . 
THEOREM 7.5 Let (H, (.I), with H c M, be a Hilbert space and sup- 
pose that 

is closed. 

(a) If H is a reproducing kernel Hilbert space, then L : 2 x H -, R, as 
akjined by (7.1), is a random Isc function. 

(b) Ifh E S implies (h( 2 E and (hl, < K for some E > 0, n > 0, then there 
is a set Z1 of P-measure 1 such that L : S1 x H is a random lsc 
function. 

Moreover, if A is convex, then L is a random convex lsc function. 

Proof If H is a reproducing kernel Hilbert space, the valuation 
functionals h H h(<) are continuous. This is also the case, at least for 
all < in some set of P-measure 1, when there are E, K > 0 such that 
h E S implies Ihl2 ( and Ihl, _< K, cf. Lemma 7.4. Thus, by Lemma 7.3, 
h H LO(<, h) is continuous for all < E 5 or all < E Z,, as the case might 
be. It then follows from Proposition 6.4 that Lo is a random lsc 
function. Since, S is 1.1-closed, by assumption, the indicator function, 

0 i f h € S ,  
oo otherwise, 

is a random lsc function. It is lsc in h, and trivially jointly measurable. 
It now suffices to appeal to Lemma 6.2 to complete the proof, since 
L(<, h) = Lo(<, h) + 6s (h). 

The convexity of L(<,.), when S is convex, follows from the 
convexity of Ss and Lo(<, .) which, in turn, follows immediately from 
the concavity of In. . 

The pivotal role played by Lemma 7.3 in this proof underscores the 
emphasis placed in statistical applications on reproducing kernel 
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ESTIMATING DENSITY FUNCTIONS 577 

Hilbert spaces. Of particular interest here is the fact that when S is an 
open set and p = 1,2, . . . , the Sobolev spaces 

Hp(E) = {{h E M (S; R)lh(") E L2 (Rd; R), n = 0, . . . , p), 
2 d H$(5) = {h E 12((Wd; R)lh(") E L (53 ; R), 

h("-') = 0 on bdry 5, n = 1,. . . , p )  

are reproducing kernel Hilbert spaces; again derivatives are to be 
understood in the sense of distributions. Hence, when H is H ( X )  or 
H$(E), in particular if 

Lo is a random lsc function on B x H. However, in such cases, there is 
no guarantee that S is closed, since the integration functional, 

is not, in general, continuous on H'(z). This means that the set 

is not necessarily closed. For a simple example, consider the (density) 
functions h" where 

{ [ l ]  i f < ~ ( l , v ) ,  
hU(<) = 0 otherwise. 

Clearly, for all v, hv(c)d< = 1, but lhvlHI -+ 0, i.e., h" -+ h = 0 which 
certainly doesn't sum up to 1. 

Remark 7.6 If (H, 1.1) with H c M ,  is a reproducing kernel Hilbert 
space, the valuation functionals h w  h(<) are continuous, anti con- 
sequently hU(t) -, h(t) for all < E S whenever h"1.1-converges to h. In 
view of the dominated convergence theorem, to have JhU(iE)d<-, 
Jh(<)#, it would certainly suffice for I-+ suphEs h(<) to be a sumnable 
function, a relatively mild restriction. 
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578 M. X. DONG AND R. J-B WETS 

Remark 7.7 If (H, 1.1) with H c M, is a Hilbert space, and h E S 
implies IhJ 2 E ,  JhJ, 5 K for some E > 0, K > 0. Then in view of Lemma 
7.4, and again, the dominated convergence theorem, one would have 
that JShW(<)d< 4 JSh(<)q whenever h" E S 1-1-converge to h and Z was 
bounded. rn 

Remark 7.8 Note that the condition Jhl? E for some E > 0 will be 
automatically satisfied in the following circumstances: Let S c Ftd, and 
either H = ,C2(:; R) or lhl2 ylh12 for some y > 0 with 1.12 the  no norm. 
Since h E S implies h 2 0 and Jsh(<)& = 1, given any 0 < 7 < 1, one 
can find p > 0 such that 

the second inequality coming from Holder's inequality. Hence, 
Ih12 2 E = (1 - 7) p-d'2. rn 

THEOREM 7.9 (epi-consistency) Let (H, I.]), with H c M, be a sepa- 
rable Hilbert space and ( (I, t2,. . .) a sequence of pairwise independent, 
identically distributed random variables. Suppose that 

is closed, and either one of the following conditions is satisfied H is a 
reproducing kernel Hilbert space and E is bounded, or h E S implies 
Ihl 2 E and Ihl,l n for some E > 0, K > 0. Then, the random Isc 
functions E"L epi-converge P-almost  surely to EL, with EVL and EL 
as defined by (7.1)-(7.3), i.e., they are ?-as. epi-consistent. 

Proof It suffices to verify that the assumptions of Theorem 7.1 are 
satisfied. The hypotheses imply, via Theorem 7.5, that there always is a 
set El a set of P-measure 1 such that L : x H -+ R is a random lsc 
function. So, we as well assume that L is defined on x H. The 
properties of the logarithmic function yield: 
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ESTIMATING DENSITY FUNCTIONS 579 

with a-(t) = 0 unless h(<) > 1 in which case ~ ( t )  = h(<) - 1. In both 
cases, Z is bounded or Ihl, 5 6, Ja_(t)P(g) is bounded, and thus 
from Theorem 7.1 it follows that 

epi-lim Evf = Ef, Pw-almost surely. 
u+Lm 

The theorem refers to EVL : Zy x H -+ as random lsc functions. 
To see this simply observe that L(&.), .) can be identified with a 
extended real-valued function defined on Zy x H. These are random 
lsc functions, and EvL is a just finite sum of such functions (Lemma 
6.2). 

COROLLARY 7.10 (consistency) Let's assume that the hypotheses of 
Theorem 7.9 are satisfied, h" f argminE'L, and h" is cluster poikt of 
the sequence {h', h2,. . . ). Then P-almost  surely, hw E argrnin. EL. 
Consequently, ifargrnin EL is a singleton, and hO, the true densitj?, has 
not been excluded by the addition of the "rior" information, i.e., h'' E A, 
then F-almost surely, the cluster point of the h" must be hO. Zf h0 $! A, 
then h" is a density in A that minimizes the Kullback-Lcibler 
discrepancy from hO. 

Proof The assertions follow from Theorem 5.3 since F-almost  
surely, the random functions EUL epi-converge to EL. From the 
discussion in Section 3, it follows that whenever h0 belongs A it 
minimizes EL. If h0 doesn't belong to A, again from the discussion in 
Section 3, it follows that the densities in argmin EL then mirnmize 
the Kullback-Leibler discrepancy K(h, hO) = - JhO(<) ln(h(t)/hO([)) 4 
from hO. 

Although, in general one can't exclude the possibility thiat the 
optimization problems, min EuL and min EL, have more that one 
solution, this can only occur under very special circumstanws that 
would have to involve serious nonconvexities introduced by the 
additional constraints. This is a consequence of the following 
proposition 

PROPOSITION 7.1 1 (strict convexity) The functions E "Lo and& are 
strictly convex on their eflective domain, i.e., where they are less thajrl cm. In 
particular, this means that if the set A is convex (and S is nonempt.~), the 
sets argmin EuL and argrnin EL are singletons, unless they are empty. 
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580 M. X. DONG AND R. J-B WETS 

Proof For any density functions ho, hl E H, with hA = (1 - X)ho + Ahl 
for X E (0, I), from the strict concavity of In, one has 

Thus, for all X E (0, l), 

This strict inequality is preserved when integrating both sides with 
respect to P" or P, unless both ho and hl are 0 on a set of positive 
measure. In this latter case, ho and hl do not belong to the effective 
domain of EULo orland ELo. 

If the constraints determine a convex set S, the strictly convex 
functions EVLo and ELo admit unique solutions whenever the set of 
minimizers is nonempty. 

So far, the consistency results don't guarantee that given a sequence 
of argmin-estimators i" they will actually have a cluster point h". 
This will, of course, be the case if the set S determined by the 
constraints is compact. But that's too strong a condition to expect it to 
be satisfied in most applications. Weak-compactness can more readily 
be achieved, either because it's built in the formulation of the problem, 
or by imposing an additional constraint, such as one requiring that the 
solutions of the estimation problem be bounded. In such a situation it 
is possible to also assert the existence of a weak-cluster h" to the 
sequence of argmin-estimators i" provided one can prove Pa-almost 
sure Mosco-epi-convergence of EvL to EL. 

THEOREM 7.12 (Mosco-epi-consistency) Let (H, [.I), with H C M, be 
a separable Hilbert space with 1.1 a smooth norm, and { f ', f2 ,  . . . } a 
sequence of pairwise independent, identically distributed random 
variables. Suppose that the set A determined by the "prior" information 
is convex, and that 
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ESTIMATING DENSITY FUNCTIONS 58 1 

is closed, and either one of the following conditions is satisfied 

(a) H is a reproducing kernel Hilbert space, the function < H suph,,ph(<) 
is summable, and h;" E H for some ho E S with ELo(ho) < oo; 

(b) ~ E S  implies IhJ 2 E and Jhl,< n for some E > 0,  f i  > 0 and for 
some ho E S,  ELo(ho) < oo. 

Then, the convex random lsc function EUL Mosco-epi-converge .P- 
almost surely to EL with E V L  and EL  as defined by (7.1)-(7.3)., i.e., 
they are PM-as. Mosco-epi-consistent. 

Proof As in the proof of Theorem 7.9, one relies on Theorem 7.5 to 
conclude that L is a convex random lsc function, the convexity of S 
following directly from the convexity of A. The theorem now follows 
directly from Theorem 7.2 since the assumptions imply that &(<, h) 2 
infh,dl - h([))=: a,(<) is summable, and thus, with a. = 0,  L(<, h) 2 
aolh(+ar([).  Moreover, in case (a), with j(.,<) h;I2, one: has 
j E ,C2(z; H) and since ho E S ,  

with the last inequality coming from the assumption E&(ho) < w. 
In case (b), when h E S ,  Jhl, _< oo, and again with j(., E )  z ho, o.ne has 

j E L2(Z H) and JL(<, j(., O ) P ( g )  < m. rn 
COROLLARY 7.13 (consistency) Let's assume that the hypotheses of 
Theorem 7.12 are satisfied and that S is nonempty and bounded, 
h" = argrnin E"L. Then, the sequence {h", v f N) admits a weak-cluster 
point hm that Po"-almost surely is the unique solution of rnin EL. v h o ,  
the true density, belongs to A, then F'-almost surely hoe = hO. v h o $  A, 
then h" is Po"-almost surely the density in A that minimizes the 
Kullback-Leibler discrepancy from ho. 

Proof After observing that S is weakly compact, the assertions 
follows directly from the preceding theorem, Theorem 5.3, the 
discussion in Section 3, and Proposition 7.1 1 which allows us to claim 
the uniqueness of the solutions. rn 
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582 M. X. DONG AND R. J-B WETS 

8. IMPLEMENTATION: AN EXAMPLE 

So far, the attention has been concentrated on the theoretical 
foundations of our approach. In this section, a simple example 
illustrates the overall strategy that will be used in the numerical 
implementation. A project paper [ll] will provide the details, and will 
report on the results obtained when estimating the densities of uni- 
variate and multivariate random variables. 

Let el, c2,. . . ,<" be iid samples coming from a random variable 6 
that has exponential distribution with Eg = 1, i.e., 

~O(F) = {;( if C b 0 
otherwise. 

To obtain the argrnin-estimator h", see (1.1), one has to solve the 
following infinite dimensional optimization problem: 

V 

min -x lnh(Ce)  
e= i 

so that lR h(<)d( = 1, 

In general, such problems don't have a closed form solution, and 
one has to resort to numerical procedures to find a solution, and con- 
sequently, finite dimensional approximations schemes will have to be 
examined. 

One could rely on a piecewise line approximation, implicitly 
implying that the density function is of class C O  (zero order 
smoothness), see [44] for example. By relying on splines, say B-splines, 
one could guarantee a density estimator with a higher order of 
smoothness, see again [44]. But, there are some drawbacks to such an 
approach. One difficulty is that the set of knots required to anchor the 
splines is hard to choose. Another one, that would haven't played a 
role here but is important when dealing with the densities of 
multivariate random variables, is that there is no "practical" high 
dimensional spline theory that can be used in this context. 
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ESTIMATING DENSITY FUNCTIONS 583 

An alternative approach is to use a finite number of terms of an 
orthonormal basis for H. Let 

iPk : E 4 R, k = 1 , .  . } with H = linear-span {$, dl . .  .) 

be such a basis. And now, replace the optimization problem by 

sothat A U ~ / ~ ~ ( < ) ~ C = ~ ,  
k=l 

k= 1 

U k E R ,  k =  l , . .  

The optimization problem involves now a finite number of variables, 
viz., u l ,  u2 , .  . . , uq, but there are still an infinite number of constraints, 
in particular the nonnegativity constraints. This is a so-called semi- 
infinite programming problem, cf. [23]. Algorithmic procedures to 
solve such problems come in various flavors depending on the struc- 
ture of the problem at hand. One that we have used in certain cases is 
the Phase I-Phase I1 procedure of Polak and He 1301. Questions related 
to the choice of the approximating problem and the accompanying 
solution method will be addressed in much more detail in [I 11 as 
mentioned earlier. 

Here, let's consider H = L ~ ( [ o ,  131; R) with orthonormal base 

and let 
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584 M. X. DONG AND R. J-B WETS 

The nonlinear semi-infinite programming problem becomes: 

1 " 1n - ,+-ccos  1 JZ ( y ) u k ]  
min --c [, ' e = ~  a k=, 

sin(kn) 
SO that uo + &/5C-uk = I/&, 

k= 1 k7r 

when there is no additional information available about the random 
variable 6.  

If for example it is known that the density is a decreasing, more 
precisely nonincreasing, function on [0,9], then we can add the 
constraints: hq([) 2 hq(E1) whenever [< <' and the estimation problem 
becomes: 

1 " 1 f i  knee 
min - - E l .  [ z ~ + - ~ c o s ( T ) ~ k ]  

e=i Je ,=I 
sin(k7r) 

so that %+&/5C- . . kn uk = 114, 

The solutions to these two optimization problems, whose graphs 
appear in Figures 8-1 and 8-2, where obtained by replacing the infinite 
number of constraints by a finite number of them. The constraints 
hq(&) 2 0 for 0 < El 5 . tJ 5 9, with J finite, were substituted for the 
infinite number of constraints h,(c) 2 0 for all c E [O, 91, and a similarly 
substitution was made for the constraints enforcing the solution to 
(CE)  to be nonincreasing. The resulting problems are then finite 
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ESTIMATING DENSITY FUNCTIONS 

FIGURE 8-1 Argmin-estimator given 20 samples of an exponentially distributed 
random variable. 

FIGURE 8-2 Argmin-estimator with monotonicity constraint. 

dimensional optimization problems than can be solved by a number of 
available packages for nonlinear programming problems. We relied on 
a software package developed by, and graciously put at our dislposal, 
by Andrt Tits [27] that implements their version of the sequential 
quadratic programming method. It turned out that in both cases, the 
solutions obtained did not only satisfy the constraints at t = t l ,  . . . , t j ,  
but also at all points < E [O, 81. If that had not been the case, one could 
add to the collection (Jl,. . . ,b) a number of points to this 
"discretization" of [O, 81 by picking points E at which the proposed 
solution fails most significantly the nonnegativity and/or the non- 
increasing condition. 

The example to be dealt with numerically, has sample size u =: 20. It 
is on purpose that v has been selected quite small. Any reasonable 
nonparametric estimation method should work relatively well. when 
the sample size is relatively large, but might fail to come up with 
believable results when the sample size is small. Kernel estimation 
techniques, for example, perform very poorly when v is small. 
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586 M. X. DONG AND R. J-B WETS 

The solution of (EU) is graphed Figure 8-1. The argrnin-estimator 
was computed with 8 = 4.1 (substantially larger than any of the 
samples t', . . . , cZ0) and q = 3, i.e., with four base functions; the mean 
square error was 0.02339 (20 replications). The use of a richer 
approximating basis, i.e., with q > 3 yields estimated densities that 
oscillate in the tail and have larger mean square errors. 

The solution of (EC), that insists on densities that are nonincreas- 
ing, is graphed in Figure 8-2. With 8 = 4.1, and q = 3, one obtains a 
solution with mean square error below 0.02876, but an even better 
solution is obtained with q = 5, in which case the mean square error is 
just 0.008743 (again with 20 replications). 

From an information viewpoint, there is an explanation for this. 
Theoretically, it might appear as if an approximation involving a 
richer basis should always provide a more accurate approximation. 
But since the sample is quite small, or equivalently very limited 
information is available, the solution procedure can only reliably 
calculate a limited number of determining parameters. The inclusion 
of more base functions would imply that enough information is 
available to justify the determination of additional parameters. Hence, 
depending on the amount of information that is available, one can 
only estimate the density to a certain degree of accuracy and more 
terms do not necessarily generate better solutions, as is the case when 
solving (EU) with more than four base functions. When more 
information becomes available, for example, if it is known that the 
density function is monotone nonincreasing, then the density can be 
estimated to a higher degree accuracy when a richer basis is used in the 
formulation of (CE). And this is actually the case here since more 
parameters can be calculated reliably, and the argmin-estimator gets 
significantly more accurate when solving (CE) with q = 5. 

The relationship between the formulation of the approximating 
problems and the information available certainly deserves further 
exploration. 
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A. APPENDIX 

We provide the proof of Theorem 7.1, essentially as it appears in 
[I, Theorem 2.31. There are two slight modifications. The first one is 
the relaxation of the assumption that the integral of the lower 
bounding function a is finite. We now require only that the integal of 
its negative part be bounded, i.e., 

And the second one is replacing the iid assumption with the somewhat 
weaker assumption that the random samples are piid, i.e., pairwise 
independent and identically distributed. 

Let (E, A, P) be the underlying probability space with A complete 
with respect to P, and (X, d )  a Polish space, i.e., a complete separable 
metric space. The integral of a measurable extended real-valued 
function cu is defined as So(<) P(d<) s Sa+(() P(d() - Sa-(() P ( e )  
with a,, a- the positive and negative parts of the function a. The 
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590 M. X. DONG AND R. J-B WETS 

value to assign to Ja(<) P(@) is clearly determined as long as both 
integrals of the nonnegative functions a+ and a- are not oo, in which 
case one could convene to set Ja(<) P(&) = oo; this is consistent with 
the "minimization" context we have adopted here. 

The following are the basic assumptions under which we are going 
to operate: 

ASSUMPTION A.l The function f : E x X -, [W is A 63 B-measurable 
where L3 is the Bore1 field on X ,  and f (<, .) is lsc for all < E 2, i.e., f is a 
random lsc function. 

ASSUMPTION A.2 For each x0 E X there exists a neighborhood v of x0 
and a measurable function a(<) : Z -+ such that Ja-(<) P(&) < oo 
and 

for all x E V :  f (x ,<) 2 a ( 8 .  

ASSUMPTION A.3 The random variables tl, t2,. . . are pairwise inde- 
pendent and identically distributed. 

Let's begin with two preliminary lemmas. For Fatou's Lemma one 
could also consult [21]. 

FATOU'S LEMMA (trivially generalized) Let {p" : Z 4 [W, u E N) be 
A-measurable functions such that for all v E N ,  cp"2 a with a : E -, 
a A-measurable function such that Ja-(<)P(d<) < oo. Then 

lim inf p" (5) P(d<) 5 

Proof First observe that cp= liminf,p" is A-measurable and that 
cp > a. Since cp 5 p" for all u, and the integral is order preserving, one 
has 

from which the assertion follows directly. 

BEER'S CONSTRUCT [5] Let f : X 4 be a proper, lsc function that 
majorizes a real-valued function g. 
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ESTIMATING DENSITY FUNCTIONS 

The following construction: 

where 

generates a sequence of functions { f": X-+ R, u E N} with the fol- 
lowing properties: 

(a) g 5 f " 5 f "+' 5 f for all u; 
(b) f "(x) -t f (x) for all x E X; 
(c) if g is locally lipschitzian, so are all the f ", and if g is lipschitzian, 

then so also are all the f ". 
Proof It is evident that the functions f" are real-valued, and for all x, 
the sequence C~"(X)}, ,~ is monotone nondecreasing with g(x) the 
lower bound and f (x) and upper bound. That takes care of (a). If 
f " ( 4  %f ( 4 ,  then 

which implies Czl max[d(x, xu), If "(x) - awl] < oo where (x", cr") is 
a point in epi f that nearly minimizes, say up to E" > 0 with E" 10, the 
distance between (x ,  f "(x)) and epix remember that f proper gua- 
rantees epi f nonempty. Thus, xu -+ x, If "(x) - a"( -t 0, and since f is 
lsc, one has f (x) 5 lim inf, fix? = lim inf,av = l imd "(x) < f (x). Evi- 
dently a contradiction, and consequently f"(x) 4 f (x). 

Let lip G or lip f be the (smallest) lipschitzian constant that can be 
associated with a mapping G or a function f. For any mapp~ng G: 
X - t  X x  R, one has (d t (~(x l ) ,  epif ) -d t (~(xz) ,  epif)l I IGCXI) - 
G(x2)(. If G is (locally) lipschitzian, this property will be inherited by 
dt(.,epi f )oG. Now, if f "  is (locally) lipschitzian, then GL'(x) = 

(x, f "  (x)) is (locally) lipschitzian with lip G " _< lip f " + 1, anld so is 
d t(., epi f ) o G" with the same lipschitzian constant. Since J' "+' = 

f "+ d +(., epi f ) o G", f "+' is (locally) lipschitzian with lip f '"' <_ 2 
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592 M. X. DONG AND R. J-B WETS 

lip f "+ 1. By induction it now follows that if f 1  = g is (locally) 
lipschitzian, so are all f ". a 
THEOREM A.4 Let (X ,  d )  be a Polish space, (g", v E N) a sequence 
of piid (pairwise independent and identically distributed) random 
variables with common distribution P defined on (Z, A) with A 
P-complete, and let f : Z x X -, [W be a random Isc function. 

Suppose that for all x0 E X there is a neighborhood V of x0 and 
a measurable function a : Z -+ R with Jz  a-(C)P(&) < oo such that 
P-almost surely f (., x) 2 a for all x E V and all v. Let P" be the 
(random) empirical measure induced on (E, A) by the random variables 
ijl, .. . ,r, and let 

be the (random) expectation o f f  with respect to P". Then, with 
Ef (-4 = J s f  (5, x ) P ( 4 ) ,  

epi-lim E"f = Ef, P-almost  surely. 
v+03 

Proof Let's begin by observing that under the assumptions, that (the 
generalized) Fatou's lemma implies that Ef is lsc. To prove epi- 
convergence, one has to show that P"-almost surely condition (5.2), 
i.e., 

for almost all <' , t2, . . . : lim inf E"f(xU) > Ef (x), Vx" -t x, (A. 1) 
V' m 

and P-almost surely condition (5.3), i.e., 

for almost all[',<2,... : 3 x " - + x : l i m s u p E " f ( x V )  IEf (x), 
v+w 

('4.2) 

are satisfied. Let's begin with the first one of these. 
Fix x0 E X. Let V be an open neighborhood x0 and a : 5 + R the 

associated function such that Js a-(S)P(&) < oo. We verify first that 
almost surely (A. 1) holds for the restriction of E"f and of Ef to V. 

One possibility is that on a subset of 2 positive measure, the 
function f( . ,  x) = oa identically, for all x E V. Then the result it trivial 
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ESTIMATING DENSITY FUNCTIONS 593 

since then Ef = co on V, and clearly, for all x E V, Po"-almost surely 
EVf (x) = co when v is large enough. 

So, let's proceed under the assumption that P-almost surely 
f (&x) < co for at least some X E  V, and let's appeal to Bleer's 
construction to generate a sequence of functions (g k(& X) : V --+ R, 
k E N) with the following properties: 

(i) each g k  is a random lsc function on 2 x V; 
(ii) each is lipschitzian in x, with lipschitzian constant independent 

of F; 
(iii) g k(<, X) 2 a(t), and g k(<, X) converges monotonically to f "(t, x) as 

k -t ca. Simply let, 

where dt((x, a), (x', a')) = max[d(x, x'),  )a - a')]; note that f (tj ,  .) is 
proper on V. 

The lower semicontinuity of gk(& .) is immediate from the recursive 
definition, in fact it's lipschitzian as follows from Beer's construction. 
The measurability of g k  follows, by induction, from that o f  the 
mapping 

where y is a random Isc function with y(t, .) < f (t', .), or equivalently, 
from that of 

And, this is an immediate consequence of [32] after observing the 
following: 

(1) h : (Z x X) x X is (A @ 13) 8 B-measurable; 
(2) for all (5, X) E Z x X, h(t, x ;.) is lsc. 

This takes care of property (i) claimed for gk, while properties (ii) and 
(iii) are direct consequences of Beer's construction. 
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594 M. X. DONG AND R. J-B WETS 

With the aid of the sequence gk(& x), one can verify (A.l) on V as 
follows. For x E V and k fixed, defined 

which is bounded below since gk(<, x) 2 cr(t). The Etemadi's version of 
the strong law of large numbers (for real-valued random variables) [15] 
implies 

In fact, for D = {xi, i = 1, . . .) a countable dense subset of V, one has 
that PM-almost surely, EUg -+ ~g on D; one exploits here the fact 
that D is countable. Since D is dense in V, the lipschitzian property in 
(ii) allows us to extent this to EUg -. Egk on V PW-almost surely. 
Finally, since the collection of functions {gk, k E N} is countable, one 
is able to conclude that except possibly for a set of null P-measure, 

Next, let x be an arbitrary point in V, and suppose first that 
Ef(x) < ca. Since for any k, the lipschitzian constant of gk(&.) is 
shared by all the < (it is 2k - I), hence Egk and for all v, ~ " g  are also 
lipschitzian. Thus, except possibly for a set of P-measure 0, for any 
sequence xu -, x (in V ): 

for all k = 1, .  . . ,: EUgk(xV) -+ Egk(x). 

On one hand, the monotone convergence property in (iii) implies that 
for k sufficiently large, ~g k(x) is ciose to Ef (x), say Ef (x) - Eg k(x) < E 

for some (small) E > 0, and on the other hand, for all k, 
f (<, .) > g k(<, -). For k sufficiently large, this yields, 

lim inf EUf (x ") 2 lim E "g k(x ") = ~g k(x) 
U--100 v-w 

Since E can be chosen arbitrarily small (adjusting k in the process), it 
follows that (A.l) is satisfied when Ef(x) < oo. The case (Ef)(x) = oo 
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ESTIMATING DENSITY FUNCTIONS 595 

is similar; the only modification is to replace the phrase E arbitrarily 
small by ~ ~ ~ ( x )  arbitrarily large. 

So far, it has been verified that P-almost  surely (A.l) holds for 
X E  V. Since X is assumed separable, a countable number of such 
neighborhoods V cover X. Therefore, there is a set of full P-measure 
on which the above holds for all x E X. 

We now verify that P"-almost surely condition (A.2) for epi- 
convergence is satisfied. Consider the set epi+Ef = {(x,P) c; X x  

2 Ef (x)) as a (nonempty) subset of X x R, and let 11, = 

{(xi, Pi), ie N) be a dense countable subset of epi+Ef; note that 
pi = oo is allowed. The lower semicontinuity of Ef implies in particular 
that the set D .r= {(x ', ~f (x 3, i E N) is dense in the lower boundaxy of 
the epi+Ef. Namely, for each x E X, there is a subsequence of points in 
D that converges to (x, Ef(x)). Applying again Etemadi's version of 
the strong law of large numbers of each x i  separately, and using the 
countability of D, one concludes that on a set of full PM-measure, 
E "f (x ') converges to Ef (x ') for all x ' with (x ', Ef (x 3) E D. 

Clearly, for an given x one can find {x ", v E N) with (x V,  

Ef ( x 9 ) ~ D  and Euf(x")EtEJTx) P-almost  surely, and this then 
verifies condition (A.2). H 
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