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Abstract— Unit commitment decisions made in the day-ahead 
market and resource adequacy assessment processes are based 
on forecasts of load, which depends strongly on weather.   Two 
major sources of uncertainty in the load forecast are the errors 
in the day-ahead weather forecast and the variability in 
temporal patterns of electricity demand that is not explained by 
weather. We develop a stochastic model for hourly load on a 
given day, within a segment of similar days, based on a weather 
forecast available on the previous day.   Identification of similar 
days in the past is based on weather forecasts and temporal load 
patterns. Trends and error distributions for the load forecasts 
are approximated by optimizing within a new class of functions 
specified by a finite number of parameters. Preliminary 
numerical results are presented based on data corresponding to 
a U.S. independent system operator. 

Index Terms— Demand forecasting, Load modeling, Power 
system planning, Stochastic processes. 

I. INTRODUCTION 

Constraints on the operation of thermal generating units 
require them to be committed well in advance of when they 
may be needed to provide power.  Typically, scheduling 
decisions for a day D are made on day D-1 according to 
forecasts of hourly load aggregated across the buses in a load 
zone.  The information available to planners on day D-1 
includes weather forecasts for day D and historical records of 
previous weather forecasts combined with the corresponding 
actual hourly loads.  The historical data show temporal 
variation in the load over a day that varies according to season 
of the year and day of the week. While some patterns in 
temporal load are predictable based on business hours and 
diurnal light patterns, the portion of load derived from heating 
and cooling depends strongly on the weather.  Further, 
although numerical weather prediction models have become 
increasingly accurate, there remains uncertainty associated 
with the day-ahead weather forecasts.  Thus, the challenge for 

planners is to form an accurate picture of the day-ahead load, 
which not only includes point forecasts of the load in each 
hour, but also acknowledges the precision, or lack hereof, 
associated with those forecasts.  

The uncertainty associated with day-ahead scheduling is 
gaining increased attention with the growing penetration of 
variable generation resources and demand response 
mechanisms. These developments augment the uncertainty 
that has always existed in both the load and the availability of 
thermal units. These factors have motivated investigations into 
stochastic optimization methods for unit commitment, which 
require probabilistic descriptions of the supply and demand for 
power several hours in advance of when they will be realized. 
This paper describes a novel method to develop a stochastic 
model for the load on day D based on a weather forecast 
available on day D-1. The resulting probabilistic description of 
demand is designed to be combined with corresponding 
stochastic models for variable generation and resource 
availability that, together, will comprise inputs for a stochastic 
unit commitment optimization. To facilitate implementation, 
our method is similar to a load forecasting approach already 
used by system planners and is compatible with a wind power 
forecasting method developed by some commercial firms. 

Section II very briefly describes major load modeling 
approaches and Sections III and IV describe our approaches 
for identifying similar days and approximating load patterns.  
We present some preliminary numerical results in Section V 
and conclusions in Section VI. 

II. LOAD FORECASTING APPROACHES 

Common methods for short-term (hour- to week-ahead) 
load forecasting can be characterized as either artificial 
intelligence or statistical techniques [1].  Artificial intelligence 
methods, such as artificial neural networks, are widely used 
but do not provide probabilistic information that could be used 
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to generate multiple probability-weighted scenarios.  Among 
statistical approaches, the most prevalent methods are time 
series and regression models.  Due to limited space, we do not 
provide a complete review but refer the reader to recent 
surveys such as [2]. Instead, we highlight recent representative 
samples of statistical approaches. 

Exploratory data analyses indicate that electricity load in a 
region depends on time of year, day of the week, and hour of 
the day; and is strongly influenced by weather. Forecasting 
methods vary in how they account for these factors. They are 
typically evaluated according to the accuracy of the point 
forecasts they provide for each hour of the next day. 

The weather variable most commonly used to predict load 
is temperature because, in most parts of the industrialized 
world, the peak load occurs in summer due to air conditioning.  
Temperature also affects load in winter, but in the opposite 
direction due to electrical heating.  Humidity increases load in 
the summer, while cloud cover increases load in the winter 
and reduces it in the summer. However, these effects are much 
smaller than that of temperature.  Liu et al. [3] noted the 
nonlinear relationship between temperature and load when all 
hourly data throughout a year were considered together and 
applied a nonparametric regression method to estimate it.  
They fit a time series model to the residuals of the load-
temperature regression and included lags of 1, 24, and 168 
hours in their day-ahead forecasting model.  Using actual 
historical temperatures and loads obtained from a U.S. utility, 
they achieved a post-sample mean absolute percent error 
(MAPE) of 1.2% for their 24-hour-ahead forecasts. However, 
they did not explain how they estimated the 23-hour-ahead 
load values required by the lag 1 term.  A drawback of time 
series methods, when used to forecast more than one step 
ahead, is that uncertainty propagates through the lagged terms, 
distorting the variability of forecasts for remote time periods.  
This renders them less suitable for building a stochastic 
process for the load. 

Hong et al. [1] developed a multiple linear regression 
model that included, as independent variables, a piecewise-
quadratic function of temperature; dummy variables to 
represent hour, day-type, and month; a linear trend; and 
interactions among these variables.  They obtained a post-
sample MAPE of 4.6% when using actual weather data to 
hindcast hourly loads for a U.S. utility over a one-year period.   

Black [4] also used multiple linear regression to examine 
the influence of weather on load but focused on summer 
weekdays in the region served by ISO-New England.  He 
incorporated time-of-day effects by developing a separate 
regression model for each hour of the day, including as 
independent variables temperature, humidity, solar radiation; 
lagged, averaged, squared and cubed values of these variables; 
and interactions among them.  The out-of-sample MAPEs 
yielded by these models averaged 2-3% for the whole New 
England region and 3-4% for individual subregions such as 
Connecticut and Southeast Massachusetts.   

While hindcasting studies that use historical weather data 
as input are useful for identifying factors and relationships that 
affect hourly loads, they do not assess the accuracy or 
precision of the load forecasts available in practice, which 

necessarily rely on day-ahead weather forecasts. Although 
weather prediction has greatly improved in recent years, day-
ahead forecasts remain imperfect.  An alternative approach to 
short-term load forecasting is to identify similar days within a 
historical database, where the similarity is based on weather, 
day of the week and time of year. For example, ISO-New 
England identifies up to five similar days drawn from the 
same season with the same day-type according to similarity of 
their actual temperatures to the forecast temperature of the 
given day as well as similarity of forecast loads in the last 
hour of the previous day [5].  Our method has some 
commonality with this approach, in that we create segments of 
days that are similar in some sense. Then, within each segment 
we employ a functional regression method to approximate the 
probability distribution of load in each hour of the day ahead. 

III. DATA SEGMENTATION 

We use a multi-step procedure to control for time of year 
and type of day, and then approximate the relationships 
between weather forecast and distribution of hourly load 
sequences within segments of similar days. Starting from a 
historical database of day-ahead hourly weather forecasts and 
corresponding actual load sequences, the steps are as follows: 

1. Identify date ranges, or “seasons,” in which the 
relationship between weather and load, disregarding day-of-
week effects, is likely to be similar.  This is an ad hoc 
characterization that should vary by region and account for 
diurnal light patterns, heating vs. air conditioning, and 
sociological factors such as holiday lighting and schools being 
in session or not. 

2. Within each season,  

a. Compute the average load for each hour in each 
day of the week, considering holidays as Sundays. Then 
compute multipliers for each day of the week to transform that 
day’s load sequence to a Wednesday load sequence. 

b. Using the transformed load sequences, identify 
segments of days in which the relationship between the day-
ahead weather forecast and the actual load was similar.  
Within each segment, approximate this relationship as a 
regression function and also approximate the distribution of 
residuals from the regression. The approximation method is 
described in Section IV. 

Having completed the segmentation and approximation 
steps, the procedure for generating a distribution of load 
sequences for a given day, D, is: 

1. Identify the season to which day D belongs and the 
segment to which its weather forecast, generated on day D-1, 
belongs.  

2. Apply the regression function to the weather forecast 
and then, if necessary, transform the expected (Wednesday) 
load sequence to match the day of the week. 

3. Add a randomly distributed error according to the 
estimated error density for the segment. 



IV. APPROXIMATION METHOD  

Within each segment, we construct a stochastic process for 
the next day’s load in two steps.  We begin by deriving an 
estimate of the next day’s (D) load pattern by means of a 
functional regression based on the hourly sequences of 
temperature and dewpoint forecasts on day D-1.  Next, we use 
the errors that result from applying this model, within the 
segment of days that were used to train the regression 
function, to estimate an error density function for each hour. 
Combining these two estimates allows us to build a stochastic 
process from which we can generate potential load scenarios 
for day D. 

A. Fit Approximating Function 

To obtain the regression curve we rely, for the first time, 
on a new technology based on representing functions, more 
precisely approximating them as epi-splines. An epi-spline of 
order k is a real-valued function where the interval on which it 
is defined has been partitioned into a large but finite collection 
of subintervals and requiring that on each subinterval, its kth 
derivative be constant. Epi-splines were originally used to 
derive term and volatility structures associated with financial 
markets [6] and since have been used in a number of other 
contexts. We exploit the fact that epi-splines are defined by a 
finite number of parameters, namely, the kth derivatives and 

1k −  integration constants, and are particularly suited to 
converting an infinite dimensional functional estimation 
problem, equivalently an optimization problem, into a finite 
dimensional one. In addition, epi-splines allow the 
incorporation of constraints that express “soft” information 
about the shape of the regression function [7]. For example, by 
requiring that the expressions defining the first derivative be 
nonpositive, we can impose the condition that during certain 
time spans, the load necessarily decreases, and so forth.  

Dividing the time interval (0, 24] hours into N = 24 m  
subintervals, our regression function takes the form: 

( )j j j
h w h h
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where  j denotes a day in segment J, { }1, , 24h ∈ …  denotes 

an hour of the day, w indexes a set of weather variables, j
hw  

denotes a forecast of  weather variable w for hour h of day j, 
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The function ( )s τ  is completely determined once we fix the 

integration constants 0 0,s v  and the 2nd derivatives 

1( , , )Na a… .  Finding the regression curve then comes down 

to finding this finite number of parameters to minimize some 
measure of the errors in estimating the loads observed in a 
particular segment, taking into account any side constraints 
(soft information) that one may have included in the 

formulation of the estimation problem.  Applying the 1L  norm 

(minimizing the sum of absolute errors) or the L∞  norm 

(minimizing the maximum error) in the objective results in a 

linear program, while the 2L  norm (sum of squared errors) 

leads to a quadratic program with linear constraints. 

The quality of the approximation is higher if segments of 
historical days are homogeneous, but could suffer if a tight 
segmentation results in a very small training data set for each 
segment.  Decision makers are often very concerned that peak 
loads not be underestimated, and such constraints can be 
incorporated as soft information using linear inequalities.  If 
there is a high degree of confidence about the forecast for load 
just before midnight on day D-1, then the approximated load 
just after midnight on day D can be constrained to fall within a 
certain range.  Experimentation with incorporating such 
considerations is ongoing, but the results reported in Section V 
are derived without any soft information constraints. 

B. Approximate Error Distributions 

Once the regression curve has been determined, which can 
be interpreted as providing the “overall trend” or expected 
value of the stochastic load process (for day D), our next step 
is to generate distributions of the errors, again for a given day-
type segment. For each hour, we generate a nonparametric 
estimate of this distribution by approximating the density by 
an exponential epi-spline; i.e., a function of the type  

( ) ( ) [ ], ,
u x

f x e x α β−= ∈           (3) 

where u(x) is a 2nd order epi-spline of the form defined in 
Section IV.A and the range [α, β] represents a number (say 3) 
of sample standard deviations around the sample mean of 
errors computed for the segment.    We can include any soft 
information we might have or suspect about the shape of this 
distribution, for example, we can stipulate that the density be 
unimodal. We use maximum likelihood as our criterion 
function and the estimation problem reduces to solving a finite 
dimensional optimization problem with linear constraints and 
a slightly nonlinear but convex objective. Extensive 
experimentation regarding density estimation is reported in [8] 
and further theoretical foundations are laid out in [9]. 

V. PRELIMINARY RESULTS 

We obtained historical hourly loads for the eight load 
zones in ISO-New England from January, 2006, through 
August, 2012, as well as the corresponding day-ahead hourly 
forecasts of temperature and dewpoint temperature from 
March, 2007, through August, 2012. Because, in the aftermath 
of the financial crisis, the load was about 5% lower in 2009-11 
than in 2006-08, we conduct our analysis using the more 
recent data.  In this paper, we present results for the 
Connecticut load zone, which accounts for about 26% of the 



total demand in New England.  We focus on summer days, 
defined as June – September, in which the highest peak loads 
of the year occur in the late afternoon.  Figure 1 shows the 
average hourly load sequence for each summer day of the 
week.   

 
Figure 1. Average load sequence in each day of summer, 2010-2012 

The process for identifying segments of similar days is a 
subject of ongoing study.  Figure 2 shows scatter plots for 
hourly load vs. forecast temperature in the summer months of 
2010 – 2012.  Noting the strong positive correlation, we used 
k-means with Euclidean distances to cluster the sequences of 
hourly forecast temperatures into k=3 sets.  Figure 3 plots the 
centroid of each set as a 24-hour time series. The centroid for 
all summer days nearly coincides with the moderate day 
centroid.  This process, applied to data from 2010 to 2012, 
resulted in identifying 3 segments of 91 hot days, 152 
moderate days, and 84 cool days, respectively.  Figure 4 
shows the relationship between load and dewpoint 
temperature, in addition to (dry bulb) temperature. 

 
Figure 2. Load vs. day-ahead temperature forecast in the four summer 

months, 2010-12. 

 

Figure 3. Centroids of the clusters of summer day temperature forecasts. 

 
Figure 4. Load vs. forecast dewpoint temperature for hours with forecast 

temperatures in specified ranges. 

We developed the approximating functions using data 
from 2010 and 2012 and applied them to hindcast loads in 
2011, using m = 1 subinterval for each hour.  All results 

presented here are based on the 1L  norm. Note that, unlike 

previous hindcasting studies, the estimated loads in 2011 were 
obtained by feeding the historical day-ahead weather forecasts 
into the models; thus, some of the hindcast error is attributable 
to weather forecast error and some to our model.  Figure 5 
shows within-sample relative errors in the load for each of the 
three segments.  For each summer day in 2011 (the test set), 
we determined which segment it belonged to by minimizing 
the distance between its forecast temperature sequence and 
each of the three centroids, then applied that segment’s model. 
Figure 6 shows the corresponding post-sample relative errors 
for the three segments in 2011.  The within-sample and post-
sample MAPEs are given in Table I. 

 
Figure 5. Time series plots of errors in hot, moderate, and cool summer days 

(from top to bottom) of the training set. 



 

Figure 6. Time series plots of errors in hot, moderate, and cool summer days 
(from top to bottom) of the test set 

TABLE I. MAPE (%) for each segment.  

Segment Training set Test set 

Cool days 4.11 5.40 

Moderate days 4.13 3.98 

Hot days 3.03 4.01 

  

For generating alternative scenarios of load sequences, the 
error distributions provide a measure of variability.  Figure 7 
shows approximate error densities for hours 6 and 17 of hot 
summer days, when the lowest and highest loads occur. Peak 
loads (hour 17) are more uncertain. These densities can be 
numerically integrated to obtain cumulative distribution 
functions, from which multiple scenarios of load for each 
hour, corresponding to a given weather forecast, can be 
generated. 

 

Figure 7. Approximate densities for the errors in the trough and peak hours. 

VI. CONCLUSIONS 

We have described new methods for obtaining distributions 
of load; i.e., predictions of load uncertainty, in each hour of 
day D, based on weather forecasts available on day D - 1. Our 
goal is to use the estimated trends and error distributions to 
generate probabilistic scenarios for the day-ahead load to use 
in stochastic unit commitment procedures.  Another major 
and growing source of uncertainty in unit commitment is 

introduced by renewable generation, such as wind power. 
Recently, some commercial forecasts for wind power are 
being generated based on identifying analog weather patterns. 
By estimating our models within segments of similar days, 
we hope to facilitate the development of joint distributions of 
load and wind power based on weather forecasts.  

Our experiments show that the models produce errors that 
are competitive in the aggregate. In fact, we obtain similar 
MAPE values as have been found in hindcasting studies that 
eliminated weather forecast uncertainty.  We are continuing to 
refine the methods. On-going research focuses on reducing the 
errors in the most important peak load periods and adapting 
the approach to times of year when temperature is not as 
strong a predictor of the load. 
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