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Abstract

For a nonparametric regression problem with errors in variables, we consider
a shape-restricted regression function estimate, which does not require the choice
of bandwidth parameters. We demonstrate that this estimate is consistent for
classes of regression function candidates, which are closed under the graph topol-
ogy.
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1 Introduction

We consider a nonparametric error-in-variables regression model on the unit hypercube
[0, 1]m, which is of the following form: There are (unobservable) i.i.d. random variables
Ui, i = 1, . . . , ν with unknown distribution µ on [0, 1]m. The functional relation c
between the independent variable U and the dependent variable c(U) can only be
observed together with observation error. The observable data are (Xi, Yi) = (Ui +
Vi, c(Ui) +Wi), where (Vi,Wi) are i.i.d., independent of Ui and stem from a bivariate
distribution with density h(v, w). The problem is to recover c from the observations
(Xi, Yi), i = 1, . . . , ν.

∗georg.pflug@univie.ac.at



Our setup is nonparametric, i.e. no special parametric form of the (generalized)
regression function c is assumed. However, we assume that the possible regression
functions stem from a collection C of candidate regression functions on [0, 1]m, which
is endowed with the graph topology, which we define below.

The graph of a function c ∈ C is given by

gph c = {(u, c(u)) : u ∈ [0, 1]m}

where the overline means closure: We suppose that there is a given translation invariant
distance d in [0, 1]m×R, which generates the same topology as the Euclidean distance.
Translation invariance means that d(z1, z2) depends only on z1 − z2.

The graph topology on C is induced by the set-convergence of the graphs of the
functions that belong to C, cf. Chapter 5 in Rockafellar/Wets [5]. Since we will
assume that our potential choice of regression functions are uniformly bounded, these
graphs are then closed subsets of a compact space, in which case the graph-topology
corresponds to that induced by the Pompeiu-Hausdorff distance between the graphs of
these functions defined as follows:

d(c1, c2) = dH(gph c1, gph c2)

= max[ sup
z∈gph c1

inf
w∈gph c2

d(z, w), sup
z∈gph c2

inf
w∈gph c1

d(z, w)].

Assumptions.

(i) All functions c ∈ C are uniformly bounded, i.e. |c(u)| ≤ K and of bounded
variation.

(ii) C is closed in graph topology, implying that C is compact in graph topology, see
Section 4.E in Rockafellar/Wets [5].

(iii) The density of (V,W ) belongs to the family of functions, which are of the form

hs(z) = exp
(
− sγ[d(z, 0)] + b(s)

)
for z ∈ Rm+1 and γ being a known increasing function on R+, with γ(0) = 0
which is Lipschitz on each finite subinterval, i.e.

|γ(u)− γ(v)| ≤ Ct|u− v|

for 0 ≤ u, v ≤ t. Moreover, we require that limv→∞
γ(v+r(v))

γ(v)
= 1 for every

bounded function r(v). The scaling parameter s is an unknown nuisance param-
eter, but it is known that it lies in the finite interval S = (0, smax] with smax <∞.
b(s) is the norming constant.

2



(iv) Let mK(z) = sup{d(z, (u, y)) : u ∈ [0, 1]m, y ∈ [−K,K]}. Then∫
γ(mK(z)) dP̄ (z) <∞

where P̄ is the true distribution of (X, Y ) under the true values µ̄, s̄ and c̄.

By assumption, the true distribution P̄ has density fµ̄,s̄,c̄(x, y) which is given by

fµ̄,s̄,c̄(z) =
∫
[0,1]m

exp
(
− s̄γ[d(z, (u, c̄(u))] + b(s̄)

)
dµ̄(u). (1)

Identifiability. The density f has three parameters. We have to make sure that
there is a one-to-one correspondence between a density from this family and the pa-
rameter set µ, s, c. We show first, that

lim
z→∞

log fµ,s,c(z)/γ(d(z, 0)) = −s (2)

for all measures µ and c ∈ C. To prove (2), write d(z, (u, c(u))) = d(z, 0)+ r(z, u). The
function r(z, u) is uniformly bounded by sup{d(0, (u, y)) : u ∈ [0, 1]m, y ∈ [−K,K]}
and therefore by assumption (iii)

γ[d(z, (u, c(u)))]/γ[d(z, 0)] → 1

as z → ∞, for all u and all c, which entails (2). Thus the parameter s and hence the
density hs is fully determined by fµ,s,c.

It remains to show that also µ and c are determined by fµ,s,c. The distribution
of (X, Y ) is the convolution of the distributions of (U, c(U)) and (V,W ). Since the
density hs of (V,W ) is known, the distribution of (U, c(U)) and hence that of U and
the function c(u) is uniquely determined by the distribution of (U + V, c(U) +W ), i.e.
the density fµ,s,c.

The generalized regression estimate. Given the sample (Xi, Yi) we estimate
the log-likelihood at the regression function c by

Ψ̄ν(c) = sup
u1,...,uν

sup
s∈S

1

ν

ν∑
i=1

log
1

ν

 ν∑
j=1

exp
(
− sγ[d((Xi, Yi), (uj, c(uj))]

)+ b(s).

Let M be the family of all probability measures on [0, 1]m and let Mν be the subfamily
of probability measures µ, which are of the form µ = 1

ν

∑ν
i=1 δui

, where δu is the unit
mass sitting at point u. With this definition we may write

Ψ̄ν(c) = sup
µ∈Mν ,s∈S

∫
log

[∫
[0,1]m

exp
(
− sγ[d(z, (u, c(u))]

)
dµ(u)

]
dP ν(z) + b(s),

where P ν is the empirical distribution of (Xi, Yi), i = 1, . . . , ν.
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Our estimate for c is then

ĉν = argmax {Ψ̄ν(c) : c ∈ C}. (3)

Notice that we consider the whole argmax set as the estimate: Typically the argmax
is not unique for finite ν.

Our goal is to show the consistency of this estimate under the given assumptions.
The closedness of C in graph topology is crucial. It prevents the sequence of estimates to
have variation increasing to infinity. As illustration, consider the functions u 7→ sin(νu)
on [0, 1]. These functions graphically converge to the set [0, 1]× [−1, 1], which is not a
function. Thus the family of all continuous or all differentiable functions is not closed
in graph topology and thus does not qualify for the candidate set C.

Before stating the main result, we review the usual method for nonparametric
regression. If f(u, y) is the joint density of (Ui, Yi), then the mean regression, i.e. the
conditional expectation of Y given U = u is

c̄(u) = E(Y |U = u) =

∫
y f(u, y) dy∫
f(u, y) dy

.

The Nadaraya-Watson estimate uses a smoothing kernel K for the estimation of the
numerator and the denominator:

cν(u) =
(νhν)

−1∑ν
i=1 YiK((u− Ui)/hν))

(νhν)−1
∑ν

i=1K((u− Ui)/hν))
.

Here K is a kernel function and (hν) is a bandwidth sequence. In the error-in-variables
model, the values of Ui are only observable together with noise, i.e. Xi = Ui + Vi.
This implies that the pertaining characteristic functions (Fourier Transforms) satisfy
ϕX = ϕU · ϕV i.e. ϕU = ϕX/ϕV . By applying the inverse Fourier Transform (IFT) one
gets the deconvolution kernel

Dν(x) =
1

2π

∫ ∞

−∞
exp(−itx) ϕK(t)

ϕV (t/hν)
dt,

where ϕK is the Fourier Transform of the kernel K and the error-in-variables regression
kernel estimate is

c̄ν(u) =
(νhν)

−1∑ν
i=1 YiDν((u−Xi)/hν))

(νhν)−1
∑ν

i=1Dν((u−Xi)/hν))
.

(see [3, 6, 4]). One of the drawbacks of kernel estimates is their dependency on
the right choice of the bandwidth parameter hν . This drawback is even more crucial
for deconvolution kernels, since it is very time consuming to test several choices of hν :
Every time a new bandwidth is tried out, one has to recalculate the IFT anew.
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Let’s now return to our main concern and derive the consistency of our estimates.
Theorem. Under the given assumptions, the shape restricted ML-estimate ĉν

converges a.s. to the true value c̄ ∈ C.
Proof.
Let ψµ,s,c(z) = log fµ,s,c(z) = log

[∫
[0,1]m exp

(
− sγ[d(z, (u, c(u))] + b(s)

)
dµ(u)

]
for

z ∈ [0, 1]m × R. Evidently, z 7→ ψc,µ,s(z) is continuous and bounded from above by

exp
(
b(smax)

)
. Using the concavity of log we may estimate ψc,µ,s from below by

−ψµ,s,c(z) ≤ −
∫
[0,1]m

log exp
(
− sγ[d(z, (u, c(u))] + b(s)

)
dµ(u)

=
∫
[0,1]m

sγ[d(z, (u, c(u))] dµ(u) + b(s).

The function
g(z) = smax · γ(mK(z)) + b(smax)

satisfies −ψµ,s,c(z) ≤ g(z) uniformly in µ, s, c and is P̄ -integrable by assumption (iv).
Thus there is for every ε > 0 a bounded set Kϵ in [0, 1]m × R such that |ψµ,s,c(z)| is
bounded on Kϵ and ∫

Rm+1\Kϵ

|ψµ,s,c(z)| dP̄ (z) ≤ ϵ (4)

for all µ ∈ M, s ∈ S, c ∈ C. Introduce

Ψν(µ, s, c) :=
∫
ψµ,s,c(z) dP

ν(z)

=
1

ν

ν∑
i=1

log

[∫
[0,1]m

exp
(
− sγ[d((Xi, Yi), (u, c(u))]

)
dµ(u)

]
+ b(s).

By the the a.s. weak convergence of P ν to P̄ , and the integrability and continuity of
ψc,µ,s, it follows that Ψ

ν(c, µ, s) converges a.s. pointwise to

Ψ(c, µ, s) =
∫
ψc,µ,s(z) dP̄ (z)

=
∫

log
[∫

exp(−sγ[d(z, (u, c(u))])
]
dµ(u) dP̄ (z) + b(s).

We show that for fixed c, the family {ψµ,s,c(·)} fulfills a bracketing condition in the
sense of the Blum-de Hardt Theorem (see the Appendix), from which follows that

sup
µ∈M,s∈S

|Ψν(µ, s, c)−Ψ(µ, s, c)| → 0 a.s. (5)

Fix an ε. By (4), we may restrict ourselves to z ∈ Kε. Since the function c is

bounded, we may find a finite collection of Borel sets {B(ε)
j } covering [0, 1]m such that

for all j
sup

u∈B(ε)
j

c(u)− inf
u∈B(ε)

j

c(u) ≤ ε.
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Likewise we may find a finite collection s1 = smin < s2, . . . < sp = smax ∈ S, such that
|si+1 − si| ≤ η and |b(si+1)− b(si)| ≤ η, where η will be chosen later.

For n > 1/η, find a finite set of probability measures Mη = {µℓ} on [0, 1]m such

that the measures of B
(ε)
j take all possible values k/n, k = 0, . . . , n. Then

ψµ,s,c(z) = log
∫

exp
(
− sγ[d(z, (u, c(u)))]

)
dµ(u) + b(s)

= log
∑
j

∫
B

(ε)
j

exp
(
− γ[d(z, (u, c(u))]

)
dµ(u) + b(s).

For this given ψµ,s,c, find an element µℓ of Mη such that |µ(B(ε)
j )− µℓ(B

(ε)
j )| ≤ 2η and

si ≤ s < si+1. Define the upper function as

Uℓ,i(z) = log
∫
exp

(
− siγ[d(z, (u, c(u)))− η)]

)
dµℓ(u) +K · η + b(si+1)

and the lower function

Lℓ,i(z) = log
∫

exp
(
− si+1γ[d(z, (u, c(u))) + η]

)
dµℓ(u)−K · η + b(si).

Obviously,
Lℓ,i(z) ≤ ψµ,s,c(z) ≤ Uℓ,i(z).

By the Lemma in the Appendix,

Uℓ,i(z)− Lℓ,i(z) ≤ 2Kη + sup
u,c(u)

|siγ[d(z, (u, c(u)) + η]− si+1γ[d(z, (u, c(u))− η]|

+|b(si+1)− b(si)|
≤ 2Kη + 2Ctη + |si+1 − si| sup

z∈Kϵ
γ[mK(z)]

≤ const.η

for z ∈ Kε with t = sup{mK(z) : z ∈ Kε}. Thus, for an appropriate choice of
η,
∫
Uℓ,i(z) − Lℓ,i(z)dP (z) ≤ ε. There are only finitely many intervals of functions

[Lℓ,i, Uℓ,i] which cover all ψµ,s,c. Therefore, (5) is shown.
We now argue pointwise for fixed ω. Since (µ, s) 7→ Ψ(µ, s, c) is continuous, it

follows that Ψν(·, ·, c) converges continuously to Ψ(·, ·, c) for fixed c (see Basic Fact 1 in
the Appendix). This implies that Ψ̄ν(c) := supµ∈Mν ,s∈S Ψ

ν(µ, s, c) converges pointwise
to Ψ̄(c) := supµ∈M,s∈S Ψ

ν(µ, s, c) (see Basic Fact 2 in the Appendix).
We show now that the functions c 7→ Ψ̄ν(c) are equicontinuous. To this end, we

show that for each pair c1 and c2, each µ1 ∈ Mν and each s ∈ S, there is a µ2 ∈ Mν

such that for zi ∈ Kε

|Ψν
c1,µ1,s

(z1, . . . , zν)−Ψν
c2,µ2,s

(z1, . . . , zν)| ≤ smax · Ct · ε
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with ε = d(c1, c2): If µ1 =
1
ν

∑ν
i=1 δu1

j
then choose u2j such that

d((u1j , c1(u
1
j)), (u

2
j , c2(u

2
j))) ≤ ε.

Then, using the Lemma in the Appendix,

|1
ν

ν∑
i=1

log
1

ν

ν∑
j=1

k · exp
(
− sγ[d(zi, (u

1
j , c1(u

1
j)))]

)

−1

ν

ν∑
i=1

log
1

ν

ν∑
j=1

k · exp
(
− sγ[d(zi, (u

2
j , c2(u

2
j)))]

)
|

≤ sup
i

| log
ν∑

j=1

exp
(
− sγ[d(zi, (u

1
j , c1(u

1
j)))]

)
− log

ν∑
j=1

exp
(
− sγ[d(zi, (u

2
j , c2(u

1
j)))]

)
|

≤ sup
i

sup
j

|sγ[d(zi, (u1j , c1(u1j)))]− sγ[d(zi, (u
1
j , c1(u

1
j)))]|

≤ smax · Ct · ε.

Therefore also

|Ψ̄ν(c1)− Ψ̄ν(c2)| = | sup
µ∈Mν ,s∈S

Ψ(µ, s, c1)− sup
µ∈Mν ,s∈S

Ψ(µ, s, c2)| ≤ smax · Ct · ε

uniformly for all ν. Thus we have shown that Ψ̄ν(c) are equi-continuous and converge
pointwise to Ψ(c). By Basic Fact 3, Ψ̄ converges continuously to Ψ. By the Basic Fact
4, limsupνargmax CΨ̄

ν ⊆ argmax CΨ̄.
Finally, notice that argmax c∈CΨ̄(c) is a singleton and consists only of c̄. By the

proven identifiability, fµ̄,s̄,c̄ is different from any other fµ,s,c and the argmax of Ψ̄(c), i.e.
the last component of argmax of Ψ(µ, s, c) is c̄. This follows from the Gibb’s inequality,
stating that for any two densities f1, f2 which are not a.s. identical∫

f1(x) log(f2(x)) dx <
∫
f1(x) log(f1(x)) dx,

applied for

f1(z) =
∫

log
[∫

exp
(
− s̄γ[d(z, (u, c̄(u))] + b(s̄)

)]
du

and f2(z) =
∫

log
[∫

exp
(
− sγ[d(z, (u, c(u))] + b(s)

)]
du.

2

2 Graphically closed sets of candidate regression

functions

In this section, we identify a few classes of regression functions that are closed with
respect to the graph topology. Of course, these are just examples and it’s easy to see
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how such classes could easily be enriched. For example, if it is known, or at least
one suspects, that the regression function one is estimating is convex on [0, α) and
concave on [α, 1], one can rely on the first one of the lemmas below to conclude that
the collection of such bounded functions is closed with respect to the graph topology.
Of course, many other such combinations are possible.

Lemma 1.
The family Cc of uniformly bounded convex functions on [0, 1]m is graphically closed.
Proof. Let cν be a sequence from Cc converging graphically to a bounded closed

set C. We have to show that C is the graph of a convex function. We show first that
the cν converge pointwise. Suppose to the contrary. Then there is a point x, such that
liminf cν(x) = a < b = limsup cν(x). We may find a sequence νk such that cνk(x) → a.
Since (x, b) is in the graph limit of cνk , there is a sequence of points xνk → x such that
cνk(xνk) → b. Without loss of generality we may assume that right from the beginning
we found a sequence xν → x such that cν(x) → a and cν(xν) → b. Now find a sequence
βν > 1, βν → ∞ slowly enough such that yν := x(1 − βν) + βνxν → x. Notice that
xν = yν

1
βν

+ (1− 1
βν
)x. Hence by convexity

cν(xν) ≤
1

βν
cν(yν) + (1− 1

βν
)cν(x)

or equivalently
cν(yν) ≥ βν [c

ν(xν)− cν(x)] + cν(x).

By construction cν(xν)−cν(x) tends to b−a > 0 and cν(x) tends to a. Thus cν(yν) → ∞,
which leads to a contradiction. The proof is complete, since the pointwise limit of
uniformly bounded convex functions is a bounded convex function. 2

Define the graph of a monotonic function in [0, 1]m × R as a closed set C, whose
projection to [0, 1]m is [0, 1]m and which has the following property: There do not exist
pairs (x, a) and (y, b) in C ⊂ [0, 1]m ×R such that x < y and a > b. Here x < y means
that all components satisfy xi < yi. Define the family Cm of monotonic functions by
this property.

Lemma 2.
The family Cm of monotonic functions on [0, 1]m is graphically closed.
Proof. Let cν be a sequence from Cm converging graphically to a bounded closed

set C. If C is not the graph of a monotonic function, then there exist pairs (x, a) and
(y, b) in C such that x < y and a > b. But then there must exist sequences xν → x and
yν → y such that cν(xν) → a and cν(yν) → b. There are neighborhoods Nx of x and
Ny of y such that x′ < y′ for all x′ ∈ Nx, y

′ ∈ Ny. We may choose xν ∈ Nx, yν ∈ Ny for
ν large enough and hence for these ν one has cν(xν) ≤ cν(yν), which contradicts a > b.

2

Lemma 3.
The family Cu of unimodal functions on [0,1] is graphically closed.
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Proof. A function c is unimodal, if there is an argument x such that c is mono-
tonically increasing in [0, x] and monotonically decreasing in [x, 1]. Any value x, for
which this condition holds, is called a mode and the set of modes is denoted by M(c).

We prove first the following result: If cν is a sequence of unimodal functions con-
verging in graph topology to a set C, then if

M∗ = limsupM(cν) = {x : ∃xνk ∈M(cνk)},

then C cannot contain two points (x1, y1) and (x2, y2) such that x1, x2 ∈ M∗ and
y1 ̸= y2.

Suppose the contrary. Then there are points x1 < x2 in M∗, such that (x1, y1) and
(x2, y2) are in C and y1 < y2 (w.l.o.g). There is a sequence νk for which there exist xνk ∈
M(cνk) such that (xνk , c(xνk) converges to (x1, y1). By unimodality, supx≥xνk

cνk(x) ≤
c(xνk) and we cannot find a sequence uνk ≥ xνk such that c(uνk) → y2 > limν c(xνk).
This however contradicts the assumption. Since we have proved that C ∩ M∗ × R
contains only one value, the rest of the proof follows from the proof for monotonic
functions. 2

Lemma 4.
The family of Lipschitz functions CL on [0, 1]m is graphically closed.
Proof. Suppose that cν are L-Lipschitz and that cν graphically converge to c. We

have to show that c is also L-Lipschitz. Let x and y be two points. If the graphical
distance between cν and c is smaller than ε, then there exist points xν and yν such
that ∥xν − x∥ ≤ ε, ∥yν − y∥ ≤ ε, |cν(xν)− c(x)| ≤ ε, |cν(yν)− c(y)| ≤ ε. Then

|c(x)− c(y)| ≤ |cν(xν)− cν(yν)|+ 2ε ≤ L∥xν − yν∥+ 2ε ≤ L∥x− y∥+ 2(L+ 1)ε.

Since ε is arbitrary, the result follows. 2

3 Examples

We have implemented the estimate (3) using the MATLAB function fmincon for the
optimization. In our figures, we show the true regression function as dashed, while the
estimated curve is the solid line

We compared the errors-in-variables model with the ”classical” monotonic regres-
sion estimate, which does not assume errors in the regressor. Using the same data as
in Fig. 2, this estimate turns out to be quite unsatisfactory if not lousy.
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Figure 1: Convex regression: Here C is the family of all convex functions.
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Figure 2: Monotonic regression: Here C is the family of monotonic functions.
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Figure 3: The same data as in Fig.2, but the regression estimate is here the classical
monotonic regression estimate.
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Appendix

Basic Facts about convergence of functions on metric spaces.
Let (M, d) be some metric space.

1. Suppose that supµ∈M |Ψν(µ)− Ψ(µ)| → 0 and that Ψ is continuous. Then (Ψν)
converges continuously to Ψ.

Proof: Let µν → µ. Then

|Ψν(µν)−Ψ(µ)| ≤ |Ψν(µν)−Ψ(µν)|+ |Ψ(µν)−Ψ(µ)|
≤ sup

µ∈M
|Ψν(µ)−Ψ(µ)|+ |Ψ(µν)−Ψ(µ)| → 0.

2. Suppose that the upper semi-continuous (u.s.c.) functions Ψν are defined on Mν ,
which are increasing compact sets such that

∪
ν Mν is dense in M. Suppose that

the u.s.c. function Ψ is defined on M such that (Ψν) converges continuously to
Ψ in the following sense: If µν ∈ Mν converge to µ ∈ M, then Ψν(µν) → Ψ(µ).
Then it follows that

limsupνargmax MνΨν ⊆ argmax MΨ
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and
lim
ν

sup
Mν

Ψν = sup
M

Ψ

as ν → ∞.

Proof: We show first that liminfν supMν Ψν ≥ supMΨ. Let Ψ(µ) ≥ supMΨ− ε.
Then there are µν ∈ Mν such that µν → µ. By continuous convergence

liminfν sup
Mν

Ψν ≥ lim
ν

Ψν(µν) = Ψ(µ) ≥ sup
M

Ψ− ε

and hence
liminfν sup

Mν
Ψν ≥ sup

M
Ψ.

Let now µ̄ν ∈ argmax MνΨν and let µ̄ be a cluster point of µ̄ν , i.e. µ̄ = limk µ̄
νk .

By continuous convergence limk Ψ
νk(µ̄νk) = Ψ(µ̄) and by the previous result

liminfkΨ
νk(µ̄νk) ≥ supMΨ. Hence Ψ(µ̄) ≥ supMΨ, i.e. µ̄ ∈ argmax MΨ. In

addition, limν supMν Ψν = Ψ(µ̄) = supMΨ.

3. If Ψ̄ν are equi-continuous and Ψ̄ν converge pointwise to Ψ̄, then continuous con-
vergence holds.

Proof: If cν → c, then

|Ψ̄ν(cν)− Ψ̄(c)| ≤ |Ψ̄ν(cν)− Ψ̄ν(c)|+ |Ψ̄ν(c)− Ψ̄(c)| → 0.

4. Let Ψ̄ν(c) be an hypo-convergent sequence of u.s.c. functions on a compact
topological space C. Let cν ∈ argmax CΨ̄

ν . Then all cluster points of the sequence
{cν} lie in argmax CΨ(c). If argmax CΨ(c) is a singleton, then convergence holds.

Remark.
Basic Fact 2 is wrong if continuous convergence is replaced by hypo-convergence

(for the definition of hypo convergence see section 7.B in [5]). As a counterexample,
let C = [0, 1],

Ψν(x) =


2 for x = π/ν
1 for x = 1
0 elsewhere

and

Ψ(x) =


2 for x = 0
1 for x = 1
0 elsewhere

Then Ψν hypo-converges to Ψ but does not converge continuously. If Cν is the set of
dyadic rationals in [0,1], which are multiples of 2−ν , then ∪νCν is dense in [0,1], but
limsupνargmax CνΨν = 1, while argmax CΨ = 0.
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Lemma. The following inequalities are valid

| log
∫

exp[h1(u)] dµ(u)− log
∫

exp[h2(u)] dµ(u)| ≤ sup
u

|h1(u)− h2(u)| (6)

or in discrete form

| log
(∑

i

exp ai

)
− log

(∑
i

exp bi

)
| ≤ sup

i
|ai − bi|. (7)

Proof. This follows from∫
exp[h1(u)] dµ(u) ≤

∫
exp[h2(u)] dµ(u) · sup

u
exp[|h1(u)− h2(u)|]

=
∫
exp[h2(u)] dµ(u) · exp[sup

u
|h1(u)− h2(u)|]

Specialising to a discrete measure sitting on finitely many points, we get (7). 2

Theorem (Blum-De Hardt’s Theorem on uniformity of the SLLN) Let
(Zi) be sequence of independent, identically distributed random variables on some
probability space (Ω,A, P ) and P ν the pertaining empirical measure. Let H be a
family of measurable functions. Suppose that for every ε > 0 we can find a finite set
of integrable functions on Ω: L1(ω), . . . , LNε(ω) and U1(ω), . . . , UNε(ω) such that

(i) Li(ω) ≤ Ui(ω) for 1 ≤ i ≤ Nε,

(ii)
∫
Ui(ω)− Li(ω) dµ(ω) ≤ ε,

(iii) For every H ∈ H, there is an i such that Li(ω) ≤ H(Z(ω)) ≤ Ui(ω).

Then
sup
H∈H

|
∫
H(z) dP ν(z)−

∫
H(z) dP (z)| → 0 a.s.

as ν → ∞.
(See Dudley (1984), 6-1-5.)
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