
Multi-period forecasting and scenario generation

with limited data

Ignacio Rios
University of Chile

Santiago, Chile

Roger J-B Wets and David L. Woodruff ∗

University of California, Davis
Davis, CA 95616, USA

October 28, 2013

Abstract

Data for optimization problems often comes from (deterministic) forecasts, but it
is näıve to consider a forecast as the only future possibility. A more sophisticated
approach uses data to generate alternative future scenarios, each with an attached
probability. The basic idea is to estimate the distribution of forecast errors and use
that to construct the scenarios. Although sampling from the distribution of errors
comes immediately to mind, we propose instead to approximate rather than sample.
Benchmark studies show that the method we propose works well.
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1 Introduction

Data for optimization problems often comes from (deterministic) forecasts, but it is näıve
to consider a forecast as the only future possibility. A more sophisticated approach uses
data to generate alternative future scenarios, each with an attached probability. So,
instead of coming up with a specific forecast, one needs to come up with a “stochastic”
description of a number of posible scenarios, each of which specifies the data for future
sub-periods in the model. In fact, these could be a discretization of an extensive range
of future possibilities. Sometimes enough historical data and accumulated model-building
experience might be available to model the uncertainty as a standard stochastic processes
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relying, for example, on a time series model or a stochastic differential system and then
derive scenarios from a discretization of this stochastic process. But, it’s not possible to
proceed in this manner when the data are much too scarce to even consider following such
a classical approach. As will be laid out later, it’s exactly a problem of this nature that
we faced in the context of predicting electricity loads (demand) for day D from essentially
deterministic weather forecasts provided on day D − 1.

We will use the symbol l for the vector of the length T to be forecast using a vector of
predictors w. A single forecast (T = 1) is special case, but we are primarily interested in
situations where a forecast is made for some number of time steps in the future. We refer
to the set of time steps {1, . . . , T} as a study period. We denote the set of historic study
periods as D. Examples of demand forecasts based on leading indicators abound. A classic
example is demand for spare parts based a vector of product sales [13]. Our interest in this
paper is in situations where there is limited data for model fitting. The mechanisms for
forming the forecasting function using historical values ld and wd for d ∈ D are described
in the next section.

Example 1.1. Throughout the paper, we use as a motivating example the forecast of
hourly electricity demand for a day (l of length T = 24 for a study period of one day) based
on forecasts of the evolution of temperature a day (given as w). Appending additional
predictors, such as forecasts for dewpoint, to w is a straightforward extension.

The basic idea is to estimate the distribution of forecast errors and use that to construct
the scenarios. Although sampling from the distribution of errors comes immediately to
mind, we propose instead to approximate rather than sample looking for the following
properties. Smoothness: we assume that there are no discontinuities from lt to lt+1.
Intertemporal error correlation: we consider contiguous subsets (perhaps not proper) of
the study period.

There are two phases to scenario generation. In the first phase, historical data are used
to estimate coefficients, using the following steps:

1. Perform a functional regression to obtain a forecast and a distribution of errors

2. Categorize and partition historic study periods

3. Regression curves computation for the categories

4. Estimation of error distributions

In practice, these phase one steps are executed “every so often” but presumably not every
time scenarios are needed. The estimates provided are used to generate scenarios using
forecasts as they become available. When scenarios for a future study period are needed
and predictor data are available, scenarios are generated using these steps:

1. Scenario skeleton points computation

2. Scenario paths construction
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The rest of the paper proceeds as follows. In Section 2 we describe the methods used
for functional regression. Methods for partitioning the time steps within a study period
and for categorizing study periods base on forecast errors are described in Section 3. The
points that form the so-called “skeletons” of scenario are created using methods described
in Section 4. The section goes on to describe the way these points are connected to form
scenarios. In Section 5 we provide some computational benchmarks to illustrate that
the method can be effectively deployed; this provides some contrast with sampling-based
methods. The paper closes with conclusions and directions for further research.

2 Functional Regression and Error Densities

As outlined in [5], the idea is to find a function that maps wd to ld with minimal errors
for d ∈ D using epi-splines [10]. To discretize, we divide the study period into N sub-
intervals. Let δ = T/N . If each study period is T time units long, then we can think
of each h ∈ 1, . . . , T as a “time” and δ as a fraction of a time unit when N > T , which
is typical. Thus, we think of each of these sub-intervals as ending at time tk = kδ for
k = 1, . . . , N . Implicitly, our construction assumes that the regression curves are twice
differentiable (not necessary C2).

An epi-spline s(·) will approximate the regression function. We assume that the second
derivative, although not necessarily a continuous function, is bounded. The epi-spline
approximation is based on replacing this term by a, a piece-wise constant function with
a constant value ak, k = 1, . . . , N on each of the N sub-intervals. Consequently, for time
t ∈ (tk−1, tk], one has,

s′(t) = v0 +

∫ t

0
a(η)dη = v0 + δ

k−1∑
i=1

ai + (t− tk−1)ak

and

s(t) = s0 +

∫ t

0
s′(η)dη

= s0 +
k−1∑
i=1

∫ tk

tk−1

s′(η)dη +

∫ t

tk−1

s′(η)dη

= s0 + v0 · t+ δ

k−1∑
i=1

(t− ti + δ/2)ai +
1

2
(t− tk−1)2ak (1)

where s0, v0 and ~a are constants to be determined to as to minimize the error with respect
to the historic values l. Given a bound κ on the curvature of the regression function, this
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leads to the following optimization problem equation:

min ||(edh, h ∈ {1, . . . , T}, d ∈ D)|| (2)

st. edh = ldh − sh · wd
h, (3)

sh = s0 + v0h+ δ

m−1∑
i=1

(h− iδ + δ/2)ai +
1

2
(h− δ (m− 1))2 am, m = dh/δe (4)

ak ∈ [−κ, κ], k = 1, . . . , N (5)

Note that sh is (1) evaluated at time h. In particular, when h = kδ for k = 1, . . . , N , the
expression (4) is equivalent to:

sh = s0 + v0 · h+ δ2
dhδ e∑
i=1

(h− i+
1

2
)ai.

Defining our regression function r(·) as

rh(wd) = sh · wd
h, (6)

the constraint (3) can be divided into two constraints:

edh = ldh − rdh, (7)

rdh = sh · wd
h.

If the norm chosen in (2) is the one or ∞ norm, then the resulting optimization problem
is linear. The two norm results in a quadratic problem.

By solving this optimization problem we obtain s∗0, v
∗
0,~a
∗ and s∗(D) = s(s∗0, v

∗
0,~a
∗), and

with this we can define the function

r̂(w;D) = s∗(D) · w,

i.e., a vector-valued forecasting function created using the historic w and l vectors for the
set of study periods D and evaluated using predictor vector w. We refer to the resulting
forecast for a sub-period h ∈ 1, . . . , T of a particular study period, d, using

r̂h(wd;D) = s∗h(D) · wd
h.

Example 2.1. In our example, for each day d ∈ D the hourly load (ldh) and the hourly
temperature prediction for day d on day d − 1 (wd

h) are available, so we use this data to
obtain our forecast function by solving the previous optimization problem. One variant
of this is described in [5].

A particular variation of this is to include a baseline load. This assumes that the electric-
ity’s demand can be represented as the sum of two components:

• a non-weather component which is related to the normal consumption habits of the
people,
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• a weather component, which we model depending on the forecast.

So, for each sub-period h we estimate the baseline load bh as the average consumption
over the study period,

bh =
1

|D|
∑
d∈D

ldh, h = 1, . . . , 24,

and to incorporate it to our optimization problem we replace the constraint (7) by:

edh = ldh − bh − rdh.

In this case our forecasting function is given by,

r̂h(wd;D) = bh + s∗h(D) · wd
h, ∀d ∈ D,∀h ∈ 1, . . . , T,

so our problem is a particular case of the second by considering bh = 0, ∀h ∈ T .

Another extension is to include a second predictor, as could be the dew point or the wind
speed forecasts. This can be accomplished by estimating a regression function for each
one of the predictors considered, add them in the expression (6) and include curvature
constraints in the optimization problem for each one of them. We have also experimented
with two dimensional epi-splines; however, the results were not significantly better than a
simple linear combination of one-dimensional splines.

For a particular historical study period, d, and sub-period, h, we define the forecast error
for a forecast function computed using historical study periods D:

εdh(D) = ldh − r̂h(wd;D).

The errors for a particular sub-period can be used to compute a density of the errors for
that sub-period,

fε,h(x;D),

using epi-splines as described by Royset and Wets [9]. Finally, we integrate it numerically
to obtain the CDF,

Fε,h(x;D).

3 Categories and Partitions

The goal is to divide the historic study periods, D, into subsets so that the errors in each
subset occupy the same quantile of the error distribution; we refer to these subsets as
error categories. It may be necessary, or desirable, to divide the times t ∈ 1, . . . , T into
contiguous partitions so that this is sensible. I.e., categories are formed for each cell of
the partition.

The set H defines a partition of the study period, i.e.,

H = {Hi}|H|i=1 , H1 = 1, H|H| = T,Hi < Hi+1.
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In addition to this, we can define the parts of the study period (I) by considering subsets
of the times, where the i-th part of the study period is given by the set [Hi, Hi+1).

We consider K error categories of the error distribution; to ease exposition, they are
assumed to be equally-sized slices of the distribution, but this is not required. To do
this, let K = {k0, . . . , kK} = {0, 1/K, 2/K, . . . , (K − 1)/K, 1} be the set of cutting points.
Then, using the CDF for all of D, Fε,h(x;D), we can compute the inverse distribution
function at each point k ∈ K.

We categorize the study periods according to the rule: for j ∈ J = {0, . . . ,K − 1} and
h ∈ H,

d ∈ Dj
h ⇔ ldh − r̂h(wd;D) ∈ [F−1ε,h (j/K;D) ,F−1ε,h ((j + 1)/K;D)),

where each category has a probability equal to 1/K.

Note that each part of the study period has the same number of categories, i.e., J is
independent of the sub-period h ∈ H. Also, for each h ∈ H,⋃

j∈J
Dj

h = D.

Having partitioned the study periods we can estimate, for each error category j ∈ J and
each sub-period h ∈ [Hi, Hi+1), i ∈ I, our predictor function,

r̂(w;Dj
Hi

).

Then, for each h ∈ H and each error category j ∈ J , we calculate the errors related to a
conditional regression curve and the CDF of the conditional errors,

F−1ε,h,j

(
x;Dj

h

)
.

For a given period d ∈ D, sub-period h ∈ {1, . . . , T} and category j ∈ J we have a set of
values,

r̂h(wd;Dj
H1

), . . . , r̂h(wd;Dj
H|H|

).

Each cell of the partition has a different regression and hence, for all middle partition
boundaries, there could be two points (one from the regression for the cell to the left
of the boundary and one from the right). We avoid discontinuities deriving a single
regression curve per category, r̂j , by merging the ones obtained at the limit hours. In
particular, for each boundary, Hi for i ∈ {1, . . . , |H|} we have |H| values. So, in order
to avoid discontinuities and obtain a single regression curve per error category, r̂j(w), we
consider a weighted combination of the regression curves at the limit hours. Formally, for
h ∈ [Hi, Hi+1],

r̂jh(wd) = (
Hi+1 − h
Hi+1 −Hi

) · r̂h(wd;Dj
Hi

) + (
h−Hi

Hi+1 −Hi
) · r̂h(wd;Dj

Hi+1
).

Example 3.1. Figure 1 shows an example of the process described above considering:
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• H = {1, 12, 24}, which defines two parts of the study period, I = {I1, I2} =
{(1, 12), (12, 24)}. This allow us to model separately the errors in the morning and
afternoon, which are certainly different,

• K = {0, 0.5, 1}, delimiting two error categories, ie, J = {0, 1}. Using this we are
able to cover days where the demand was above and others where it was below the
average.

Figure 1a depicts how the error categories are built. The black lines represent the distribu-
tion of the errors, whereas the black dots symbolize F−1ε,h (0.5;D) for each h ∈ H. Figure 1b
presents how the regression curve for the category 1 is obtained based on the forecasting
functions estimated for this category and for each day part, D1

Hi
, with i ∈ {0, 1}. Finally,

Figure 1c gives a representation of the error distributions conditioned on the error category
and sub-period. In this figure each black curve represents the distribution of the errors
for a given category j ∈ J and cell of the study period partition Hi ∈ H, fε,Hi,j(x;Dj

Hi
),

and the points depict their expected value.
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(a) Definition of the error categories (b) Regression curves computation

(c) Estimation of error distributions

Figure 1: Construction of the categories and the error distributions

4 Scenario construction

The preceeding sections describe methods of obtaining an error distribution fε,Hi,j(x;Dj
Hi

)
for each error category j ∈ J and sub-period Hi ∈ H and a set of forecasting functions
r̂j(w), one for each category j ∈ J . The basic idea to generate the scenarios is to discretize
the error distributions and then use these points, known as skeleton points, as a structure
for the full scenario process.
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4.1 Skeleton points computation

Given wd for a future study period, d, the forecasting function and error distributions can
be used to construct discretized outcomes with associated probabilities at the points in
time given by H. Conditional on being in an error category, j ∈ J at some particular Hi,
we use this somewhat simplified notation

F
l̃jHi

(x) = Fε,Hi,j

(
x− r̂jHi(w

d)
)

to represent the CDF of l̃jHi , which is the random variable for the future value of lh. Let
f
l̃jHi

(x) be the corresponding PDF. Given a set of cutting points of increasing value in

[0, 1], c = {0, c2, c3, . . . , 1}, we form this set for the values of l̃:

C
l̃jh,d

=

{
F−1
l̃jh,d

(0),F−1
l̃jh,d

(c2),F−1
l̃jh,d

(c3), . . . ,F−1
l̃jh,d

(1)

}
=

{
0, C2

l̃jh,d
, C3

l̃jh,d
, . . . ,F−1

l̃jh,d
(1)

}
.

To reduce the notation for the moment, we re-index and rename the set to be simply
C =

{
C1, . . . , C|C|

}
. Note that with this indexing C1 = 0 and C|C| = F−1

l̃jh,d
(1).

For the j ∈ J and Hi of interest, we now form intervals that exhaust all possibilities for l̃
and compute their probabilities:

Pr
(
l̃ ∈ [Ck, Ck+1]

)
= Fl̃(Ck+1)− Fl̃(Ck),

which we write later as pd,jHi,k
. In order to summarized the values on each interval with a

discrete point we compute, for each one of them, the conditional expectation,

E
[
l̃|l̃ ∈ [Ck, Ck+1]

]
=

∫ Ck+1

Ck

x · fl̃(x)dx∫ Ck+1

Ck

fl̃(x)dx

.

As a result of repeating this process for the predictor wd we obtain a set of scenario
skeleton points, which we write as l̄d,jHi,k

for k = 1, . . . , |C| − 1, for all j ∈ J and all i ∈ I
each with an associated probability, pd,jHi,k

.

Example 4.1. Figure 2 shows the scenario skeleton points generated for our example.
In this case, the set of points in [0, 1] selected were {0, 0.5, 1}, and this implies that the
number of scenarios generated for each category j ∈ {0, 1} and hour h ∈ H \{1} is 2, each
one with probability 0.5.
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Figure 2: Computation of scenario points

4.2 Scenario paths generation

From the previous step we obtain, for each d ∈ D and j ∈ J , a set of scenario skeleton
points

l̄d,jH1,1
,
{
l̄d,jH2,k

}|C|−1
k=1

, . . . ,
{
l̄d,jH|H|,k

}|C|−1
k=1

,

and their corresponding probabilities. The last thing is to connect them in order to
generate a stochastic process path for a full study period, which is a scenario.

Noting that a scenario path can be obtained by picking a single scenario skeleton point at
each h ∈ H and connecting them, the main idea to build our scenarios is to cover all the
possible combinations of scenario skeleton points at different sub-periods h ∈ H, for each
error category j ∈ J .

We refer to a scenario skeleton as the sequence of scenario skeleton points that support a
given scenario. Noting that at each sub-period Hi each scenario skeleton point l̄d,jHi,k

can
be described by a pair of indexes (j, k), where j ∈ J and k ∈ {1, . . . , |C| − 1}, a scenario
skeleton can be defined by choosing a pair (j, k) at each sub-period Hi ∈ H. Then, a given
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scenario skeleton a can be represented as

a =
(
a1, . . . , a|H|

)
=
{

(j1, k1), . . . , (j|H|, k|H|)
}
,

where ah = (jh, kh) is the pair chosen for the sub-period h ∈ H to build the scenario
supported by the skeleton a.

Algorithm 1 provides a method to generate the set of scenario skeletons (A) that supports
all the scenarios we want to generate. In line 3 we initialize a new scenario skeleton a
which starts in the error category j. In the next line we apply the routine Skeletons to
the initialized skeleton a.

Algorithm 1 Scenario skeletons generation

INPUT: H =
{
H1, . . . ,H|H|

}
C = cutting points

Fε = {Fε,h(x;D)}h∈H
l̄ =

{
l̄d,jh,k

}
j∈J ,h∈H,k∈{1,...,|C|−1}

r̂ =
{
r̂jh(wd)

}
j∈J ,h∈H

1: A← {∅}
2: for j ∈ J do
3: a← ((j, 1))
4: A←Skeletons(A, H, C, a, l̄, r̂, Fε)

5: return A

The routine Skeletons(A, H, C, a, l̄, r̂, Fε) enables us to generate all the scenario
skeletons starting at a partial skeleton a and save them in the set of skeletons A. In this
context, a partial skeleton a is a sequence of pairs ((j1, k1), . . . , (jn, kn)) where n < |H|,
i.e. it defines a scenario path only up to the sub-period Hn ∈ H.

Algorithm 2 presents how this routine works. A given skeleton a is completed when
it contains a pair of coordinates (j, k) for each sub-period h ∈ H. Then, as shown in
line 3 it is stored in the set of skeletons A. If the skeleton a is not ready, to add the
next coordinate we first check to which error category the last entry of the skeleton a
belongs. To accomplish this we take the last element of a (lines 5 and 6); compute the
error associated with the corresponding skeleton point and obtain the value of the CDF
for that error (line 7); and find the error category with the function Fec, which returns

the value j′ such that x ∈
[
j′

K ,
j′+1
K

]
.

Then, having found j′ we append to a the skeleton points belonging to that error category
in the next sub-period (line 10) and we apply the routine Skeletons. As a result of
applying this routine recursively we obtain the set A, which contains all the scenario
skeletons that will generate the scenarios for the full process.
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Algorithm 2 Skeletons starting from a partial skeleton a

1: procedure Skeletons(A, H, C, a, l, r, Fε)
2: if |a| = |H| then
3: A← A ∪ {a}
4: else
5: i← |a|
6: (j, k)← ai . ai is the last element of a

7: x← Fε,Hi

(
l̄d,jHi,k

− r̂Hi(wd;D);D
)

8: j′ ←Fec(x)
9: for k := 1 to |C| − 1 do

10: a← a ∪ ((j′, k))
11: a,A← Skeletons(A, H, C, a)
12: a← a \ ((j′, k))

13: return a,A
14: end procedure

It’s important to remark that a scenario skeleton a starting in j ∈ J , i.e. a1 = (j, 1),
doesn’t necessarily belong to the same error category over all the sub-periods. So updating
the error category with the function Fec permits the possibility of scenario paths crossing.

Having the set A we just have to connect the scenario skeleton points belonging to each
skeleton a ∈ A in order to generate our scenario paths. A full description of our approach
to do it is formally outlined as Algorithm 3. This algorithm loops over all the scenario
skeletons in the set A, generating a total of |A| scenario paths.

For a particular scenario skeleton ~a =
(
(j1, k1), . . . , (j|H|, k|H|)

)
, the first step is to initialize

the probability of the scenario (s) under construction pds (line 4). Then, for each sub-period

Hi ∈ H the distance (εi) between the skeleton point l̄d,jiHi
and the regression curve of the

corresponding error category r̂j
′

Hi
(wd) is computed, as shown in line 8. To find the error

category related to each skeleton point we used the same approach as the one described
above (lines 6 and 7).

To compute the load for a given sub-period h ∈ [Hi, Hi+1] we consider the regression curve
of the corresponding error category and the weighted sum of the deviations at the limit
sub-periods (εi and εi+1), as shown in line 11. Finally, in line 12 the probability of the
scenario s is updated.
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Algorithm 3 Scenario paths computation

INPUT: l̄d,jH1,1
and pd,jH1

, ∀j ∈ J ,
l̄d,jHi,k

and pd,jHi,k
, ∀j ∈ J , i ∈ {2, . . . , |H|} , k ∈ {1, . . . , |C| − 1} ,

r̂jh(wd), ∀j ∈ J , h ∈ {1, . . . , T} ,
A = set of scenario skeletons obtained applying Algorithm 1.

1: s← 1
2: S = {∅}
3: for ~a ∈ A do . ~a =

(
(j1, k1), . . . , (j|H|, k|H|)

)
4: pds ← |J |−1
5: for i := 1 to |H| do
6: x← Fε,Hi

(
l̄d,jiHi,k

− r̂Hi(wd;D);D
)

7: j′ ←Fec(x)

8: εi ← l̄d,jiHi
− r̂j

′

Hi
(wd)

9: for i := 1 to |H| − 1 do
10: for h := Hi to Hi+1 do

11: l̂dh,s ← r̂
ji+1

h (wd) +
(

Hi+1−h
Hi+1−Hi

)
· εi +

(
h−Hi

Hi+1−Hi

)
· εi+1

12: pds ← pds · p
d,ji+1

Hi+1,ki+1

13: S ← S ∪ {s}
14: s← s+ 1

15: return l̂dh,s and pds , h ∈ {1, . . . , T} , s ∈ S

Note that the expression in line 11 ensures a smooth transition between scenario skeleton
points in consecutive sub-periods {Hi, Hi+1} , i = 1, . . . , |H|−1. Moreover, the expression
in line 12 shows that the probability related to a scenario s can be computed as the product
of the scenario skeleton point’s probabilities that support it.

Example 4.2. Figure 3 shows the scenario path construction for our first category.
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Figure 3: Scenario path construction

Since we consider two categories and {0, 0.5, 1} are the cutting points, the probability
related to each scenario is given by:

p =
1

2
· 0.5 · 0.5 = 0.125

Following this methodology we build a number of paths equal to

|J | · (|C| − 1)|H|−1

where |J | is the number of categories considered, |C| is the number of cutting points and
|H| is the number of cells of the partition.

Example 4.3. Figure 4 shows the 8 scenarios generated by our approach for our previous
example.
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Figure 4: Full set of scenarios

It’s important to remark that in this example there are no crossings between the scenarios
across the error categories because it’s a small example just to illustrate our methodology
to generate the scenarios so there are very few cutting points.

5 Benchmark results

In this section we report on some computational experiments to benchmark the scenario
generation method just described. To provide a concrete problem domain, we continue
with the electricity demand application. No work has been done on generating scenarios
for 24-hour random variable based on day ahead information so directly comparing our
results with the methods used in the literature is not possible. However, we adapted the
methodology described in [3] to our problem and we used this to generate scenarios and
compare them with the ones obtained with our approach. This allows us to benchmark
the last steps in the process (the first steps are used by both methods).

In the remainder of this section we give some background and then explain how we adapted
the forward construction method introduced by [3]. Then, we present the approach we
used to compare both scenario generation methods, and finally we show the results of this
comparison.
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5.1 Alternative scenario generation methods

A very common approach to generate scenarios from historical data is the use of clustering
methods ([2], [8], [15]). In this case, recalling that each of the observations available for l
is a vector of length T , clusters can be generated to summarize all the historical data in
a set of representative centroids, which can be considered as equally likely scenarios.

Another accepted approach are Monte Carlo sampling methods ([12]). The problem to
implement it in our case is that with limited data one cannot estimate a distribution for a
T -dimensional problem (e.g., when T = 24), so one cannot sample from any distribution.
However, for each sub-period h ∈ T one can obtain a distribution of the observations, and
from these distributions samples can be generated. Finally, by connecting the samples
generated at each sub-period h a full process for a scenario can be generated.

In summary, a Monte Carlo approach can be summarized as follows:

1. Generate the distribution of lh for each h ∈ T , Fh(l),

2. Generate a set of random numbers ξ = {ξ1, ξ2, . . .},

3. For each random number ξi generate a scenario path by considering,

lih = F−1h (ξi), ∀h ∈ T.

It’s important to remark that the scenario paths generated by these steps are perfectly
correlated, which might not be desirable.

Example 5.1. Considering the same data used in our previous example we first generate
the hourly distribution of the loads. Figure 5 shows the functions we obtained.

Figure 5: Hourly distributions
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Then, considering these distribution and a given a list of random numbers in [0, 1] (|ξ| =
100) we generate paths, which are shown in the Figure 6.

Figure 6: Monte Carlo paths

The two methods just described use observations as an input in order to generate the
scenarios. However, we would like to take into account our day ahead predictors w in
our scenario generation method. Then, an alternative is to generate samples from the
distribution of the errors for each sub-period h = 1, . . . , T , and add them to the expected
load curve generated using our epi-splines approach to generate samples of the full process
(of dimension T ). Finally, having our set of samples ξ = {ξ1, . . . , ξN} we apply a scenario
reduction method to build our scenarios starting from these samples. In our case, we
implemented the methodology described in [3] to accomplish this.

5.1.1 Sample generation

As in the model we propose, we implement an extension of the Eichhorn et al. methodology
to reduce scenarios by relying on the forecasting function r̂(w;D), generating samples of
the hourly errors and adding them to the function in order to generate samples of the
process. By using this approach one can generate as many scenarios as desired, and also
we take into account the values of the predictors w when generating the samples.

The first step is to generate the distribution of the errors, which can be accomplish by
using the exponential epi-spline technology introduced by [10]. The next step is to generate
samples from these distributions. To do this we proceed as described in Algorithm 4. The
main idea is to generate random uniform numbers at each time h ∈ T (line 4) and obtain
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a sample of the errors from their inverse cumulative distribution function, F−1ε,h (ω;D),
as shown in line 6. To capture correlation between consecutive periods we consider as
random number a linear combination of the previous (ω1) and the actual (ω2) random

number considered (line 5). Finally, line 7 shows how the sample for the period h, ld,sh , is
computed as the sum between the main regression curve r̂dh(w;D) and the error sample
εh.

Algorithm 4 Samples generation

INPUT: N = number of samples to generate,
ρ = measure of the correlation between the errors of consecutive hours,

F = {Fε,h(x;D)}h∈{1,...,T},
r̂ =

{
r̂dh(w;D)

}
h∈{1,...,T}.

1: for s := 1 to N do
2: ω1 ← U [0, 1]
3: for h := 1 to T do
4: ω2 ← U [0, 1]
5: ω ← ρ · ω1 + (1− ρ) · ω2

6: εh ← F−1ε,h (ω;D)

7: ld,sh ← r̂dh (w;D) + εh
8: ω1 ← ω

9: return ld,sh , s = 1, . . . , N, h ∈ {1, . . . , T}

Note that by using ρ = 1 we obtain perfectly correlated samples.

Example 5.2. Figure 7 shows an example of the probability density functions obtained
for Connecticut, USA in the Autumn of 2011.
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Figure 7: Error distributions at different hours

Using these distributions we generate samples for each hour. Then, connecting these
hourly samples we generate paths for the full process. Figure 8 presents an example of
N = 500 perfectly correlated (ρ = 1) samples using the distributions depicted in Figure 7.

Figure 8: Monte Carlo paths generated for September 15th 2011, considering ρ = 1. The
blue line depicts the expected loads; the red line shows the actual loads; the gray lines
represent the samples generated.
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5.1.2 Forward scenario construction

Based on N samples of the full process we can build a scenario tree using the scenario
reduction methodology described in [3]. In particular, we implement a variation of the
forward construction in which we allow the construction of clusters only in a subset of
sub-periods, H ⊂ {1, . . . , T}. This is because the number of scenarios grows exponentially
with the number of periods T .

The forward selection method described in Algorithm 5 enables summarizing a set of
observations C in k clusters chosen such that the weighted distance from their centroids
to all the observations is minimized. Then, the C points are classified in the k clusters,
assigning each observation to the cluster whose centroid is the closest to that point.

Algorithm 5 Forward Selection

1: procedure Forward Selection(C, k)
2: J ← C
3: I ← {∅}
4: while |I| 6= k do
5: Find g such that

g ← argmin
u∈J

∑
j∈J\{u}

pj min
i/∈J\{u}

|ljt − lit|

6: J ← J \ {g}
7: I ← I ∪ {g}

8: return I
9: end procedure

The forward construction approach is based on building clusters recursively at each period
h ∈ H with the forward selection algorithm. This is described by the Algorithm 6.
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Algorithm 6 Forward Construction

INPUT: l = observations available,
k = number of clusters per sub-period considered,
H = sub-periods on which we generate the clusters,

1: for h ∈ H do
2: Ch ← {∅}
3: γ ← Forward Selection(l, k, H1)
4: C1 ← C1 ∪ {c}
5: for h ∈ H \ {H1} do
6: for c ∈ Ch do
7: γ ←Forward Selection(c, k, h)
8: Ch ← Ch ∪ {γ}

9: return ld,sh , s = 1, . . . , N, h ∈ {1, . . . , T}

As a result of applying the forward construction algorithm we obtain, for each h ∈ H, a
set of clusters Ch with their corresponding centroids. Then, each observation ld,s can be
represented with a set of centroids

C(ld,s) =
{
C1

(
ld,s1

)
, . . . , CT

(
ld,sT

)}
,

where Ct(·) is a function that return the centroid of the cluster to which the observation

ld,st belongs.

In order to connect the centroids that represent each observation and obtain a scenario
for the full process we compute a weighted sum of the values related to each centroid. For
example, given h ∈ [Hi, Hi +1], the value of the scenario corresponding to the observation
ld,s is

l̂dh =

(
Hi+1 − h
Hi+1 −Hi

)
· ld,sih +

(
h−Hi

Hi+1 −Hi

)
· ld,si+1

h

where si and si+1 are the indexes of the centroids CHi

(
ld,si

)
and CHi+1

(
ld,si+1

)
respectively.

Finally, the probability related to each scenario is equal to the sum of the probabilities of
the observations belonging to that cluster and the last period, i.e.,

qk =
∑
i∈CkT

pi

for each k = 1, . . . , kT .

Example 5.3. The following figures show examples of the scenarios for September 15th
2011 in Connecticut generated by the version of forward construction described here. We
also considered as parameters k = 2 and T = [1, 8, 16, 24]. The difference between these
plots is the data used and the correlation coefficient ρ.
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Figure 9: Scenarios generated by a version of forward construction with ρ = 1

Figure 10: Scenarios generated by a version of forward construction with ρ = 0.9
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Figure 11: Scenarios generated by a version of forward construction with ρ = 0

5.2 Results

As noted in [6], the ultimate goal of incorporating stochasticity in optimization problems
is to make better decisions. So a straightforward way to measure the quality of different
scenario generation methods is to solve the underlying optimization problem and see which
scenario tree leads to better decisions. The optimization problem we use for the benchmark
is the stochastic unit commitment (UC) problem (see [14]).

We use the two-stage formulation of Carrion and Arroyo [1], extended slightly as presented
in [11]. Our approach to compare the quality of different scenario trees can be summarized
as follows: given two scenario trees, for each one of them,

1. Solve the extensive form of the optimization problem using scenarios,

2. Solve the optimization problem considering the real observations and fixing the first
stage variables to be the ones obtained in the step 1.

For these experiments we considered the historical weather forecasts and electricity de-
mands of the autumns of 2009 and 2010 in Connecticut, USA, to estimate scenarios for
the Autumn of 2011. In addition to this, we generated a varying number of scenarios,
{4, 8, 16, 32}. For each number of scenarios and for each date, we generated two scenario
trees: one considering the approach presented in this paper (RWW ) and the parameters
described in Table 1; and the other one using the Forward Selection method introduced
by [3] and implemented as described in the previous subsections (FS) using 1000 samples.
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Number of scenarios K H c

4 {0, 0.5, 1} {1, 24} {0, 0.5, 1}
8 {0, 0.5, 1} {1, 12, 24} {0, 0.5, 1}
16 {0, 0.5, 1} {1, 10, 15, 24} {0, 0.5, 1}
32 {0, 0.5, 1} {1, 12, 24} {0, 0.01, 0.5, 0.99, 1}

Table 1: Parameters involved in the scenario generation with the RWW method.

To compare the results obtained with the different scenarios we compute, for each day,
the optimality gap (G(RWW ) and G(FS)) in relation to the actual loads (see [7]) of the
SCUC problem considering the data used in [4].

In Table 2 we present the percentage of days on which the solution obtained with the
RWW scenario generation method leads to a smaller, equal and bigger optimality gap
than the one obtained with the FS scenario generation method. In particular we can see
that, independent of the number of scenarios considered, the number of days on which the
methodology presented in this paper results in a lower optimality gap is more than the
number of days on which the FS method does.

Number of scenarios

4 8 16 32

% of days where G(RWW ) < G(FS) 20.89 25.37 23.88 29.85

% of days where G(RWW ) = G(FS) 73.13 68.65 73.13 65.67

% of days where G(RWW ) > G(FS) 5.97 5.97 2.98 4.47

Table 2: Percentage of days on which the optimality gap obtained using theRWW scenario
generation method is smaller, equal and bigger than the one obtained with the FS scenario
generation method.

Complementing the previous results, in Table 3 we present the average optimality gap
obtained with each method. From this table we can see that for each number of scenarios
the average optimality gap obtained with the RWW scenario generation method is smaller,
which means that the first stage decisions taken with these scenarios are better. The
percentage differences are not large, in part because the two methods share their first
steps. In monetary terms, the differences would be significant even just for the US state
of Connecticut. However, our main goal is to demonstrate that the methods given here
are effective.
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Number of scenarios

4 8 16 32

Average optimality gap with RWW 22.84 22.76 23.27 22.71

Average optimality gap with FS 23.37 24.15 24.43 24.26

Table 3: Optimality gap obtained with each scenario generation method.

6 Conclusions

We have described a method for creating scenarios using leading predictors for multiple
time steps when the historic data is limited. We propose a deterministic approach to
generating scenarios and probability weights that relies on an approximation of the em-
pirical distribution using splines. Our motivating example is the creation of scenarios for
24 hourly electricity demands with regressions and error estimates based on data from
only hundreds of observations.

A key step is the use of a functional regression to obtain a forecast based on leading
indicators. We then make use of epi-splines to fit an error distribution. We partition
the study periods and categorize the errors with each cell of the partition. This enables
fitting regression curves that are conditional on the error category and corresponding error
distributions. In contrast to sampling based methods, when scenarios are needed we use
these distributions to create to create the skeletons of scenarios in a systematic way.

Benchmark studies show that the method works well. We could not benchmark the en-
tire process, but but we able to extend the forward generation method to allow some
comparisons. The methods shared the technology for forecasting and error distribution
estimation. The method of scenario generation given here performed better than forward
generation for the benchmark study that we conducted.

One area for further research is the partition of the time steps. In the electricity demand
example, the study periods had fairly natural partition breakpoints at various hours of the
day but for some applications, the categories might be less obvious. It may be desirable
to form the partitions so as to be the biggest contiguous groups with fewer than some
number of non-conforming errors. Note that for multi-stage formulations, the time steps
are natural boundaries for creating multi-stage scenario trees.

Error categories could also be analyzed in greater depth. In our work each part of the
study period has the same number of categories but we could have more or fewer for some
cells of the partition of the study period by i ∈ I. For example, one could imagine that in
the electricity demand application, perhaps more categories in the afternoon than in the
night would be desirable.

The work we have done creates a benchmark itself. The methods given here enable creation
of scenarios for multiple time steps that incorporate forward predictors. The models can
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be based on relatively small amounts of historic data. This provides an important tool for
applying stochastic programming to problems such as unit commitment where there are
forward predictors, multiple sub periods, but relatively little historic data.
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