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The uniform convergence of empirical processes on certain classes of sets follows from the 
convergence theory for random lower semicontinuous functions studied in the context of 
stochastic optimization. In the process, a richer class of sets for which one can prove this type 
of result is exhibited. 
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1. Introduct ion and problem setting 

Let { X", ~, = 1, 2 . . . .  } be an iid ( independen t  and identical ly dis t r ibuted)  
sequence of r andom variables defined on a probabi l i ty  space (~2, d ,  ~) with 
values in a locally compact ,  separable metric space E and P the d is t r ibut ion  
induced by the X", u = 1 . . . . .  on ~ ,  the Borel field on E. Typical ly,  the X" 
model the observat ion process of a statistical experiment.  

The empirical random measure P": ~ - ~  [0, 1] associated with the first l, ran- 
dom variables X ~ . . . . .  X" is 

lp 

P"(B, ~)=1 E llx,c~)~al(W) ' V B ~ .  
P 

i=l 

with 1 D the indicator  funct ion of the set D. 
In the case the X" are real-valued r andom variables, the classical G l i v e n k o -  

Cantel l i  theorem asserts the/~-almost  sure un i fo rm convergence of the empirical  
d is t r ibut ion  funct ions  P" to P, i.e., 

s u p l P " ( ( - o o ,  a ] ,  . ) - P ( - o o ,  a ] l - - , O  / i - a . s .  
c ~ R  
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Theorems of the Glivenko-Cantelli  type [3,5,10] are concerned with the almost 
sure (a.s.) uniform convergence of the random measures { P", ~,~ N} to the 
distribution P for a given subclass of sets <g of .~. More precisely, they assert 
that for certain classes of sets ~ c  .~, for #-almost all ~0 in s 

sup I P " ( C , ~ o ) - P ( C ) I  ~ 0  a s v ~ o o .  (1.1) 
C~:6" 

An assertion of this type certainly demands that for all C e ~ and c0 ~ ~2\N, 

?"(C,  co) ~ P ( C ) .  (1.2) 

Thus, a "minimal"  requirement, is that the P" a.s. converge narrowly (weakly) to 
P and, that :g is a subset of the continuity set of P, cont P : =  ( B ~  
~ I >(bdry B) = 0}. 

Almost sure uniform convergence has been proved for particular subclasses 
eye cont P by relying mostly on the geometrical properties of the class :g. We are 
going to show that it is possible to obtain these results as special cases of a 
general theorem that is topological in nature, viz., as a consequence of a certain 
compactness of g:. A key step in the derivation is to identify probability measures 
(defined on .~') with their restriction to the space ~,~ of closed subsets of E. We 
know from earlier results [8] that such (restricted) functions are upper sernicon- 
tinuous on : -  with respect to the topology of set-convergence. From this point of 
view, stating a Glivenko-Cantell i  type theorem boils down to finding conditions 
that guarantee that a certain sequence of (random) upper semicontinuous func- 
tions converges uniformly (almost surely). This is elaborated in section 3 and the 
implications for empirical processes are collected in section 4. Section 2 is a 
compilation of facts about set-convergence and the (hypo-) epi-convergence of 
functions. 

2. Preliminaries 

Let . ~ = . ~ ( E )  be the class of closed subsets of E. A sequence (F"~ . . .~ ,  
~, ~/%1) (topologically) converges to the (closed) set F if 

lim sup F" c F c lim inf F", 
p~ oo p~ OdD 

with 

lim inf F" := ( x  ~ E Ix limit point of ( x " ) L 1 ,  
P 

x ~ c F" for all but finitely many 1, }, 

lim sup F" := ( x ~ E Ix cluster point of { x" ),,~1, 
JP 

x ~ ~ F" for infinitely many u }. 

It is well know that this convergence induces a topology 5" on 5 .  With ~,  the 
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class of open subsets of E, and ~'~, the class of compact subsets of E,  and for any 
D e E ,  

~ ~  } 

and 

~o:= { F~,W" IFAD4=~}, 

the sets 

{ ~ X n ~ .  n . . .  No~< [ K ~ O F ,  G , ~ ,  / = 1  . . . .  , s ,  s finite} 

determine a base fo r  the topology Y .  The topological space ( J ,  o y-) is separated 
(Hausdorf0,  has a countable base and is compact, and consequently metrizable, 
e.g., see [1,21. 

A sequence of functions {f" :  E--+-~, v ~ N }  hypo-converges to f :  E + - ~ ,  
I1" 

f"--+ f ,  if for every x 

f ( x )  <_ lim inf f"(x") for some x" + x, 

f ( x )  >_ lira sup f " ( x " )  for all x ~ -~x .  
p - - + ~  

The functions f" hypo-converge to f on C c E if the f "  hypo-converge relative to 
C. Hypo-convergence of the functions f "  to f implies and is implied by the 
identities: 

lira suphypo f " =  hypo f - -  lim infhypo f " ,  

with hypo g = {(x, ~) [a <f(x),  x ~ E )  c E X N, the hypograph of the function 
g. 

Hypo-convergence provides a "minimal"  framework that guarantees the con- 
vergence of the suprema. It is easy to verify that if C c E is compact, then 

h 

f ~ - ~  f ~  sup f~(x) - -*  sup f .  (2.1) 
x ~ C  x ~ C  

The next proposition encapsulates the flavor of our approach. 

PROPOSITION 2.1 
A sequence of extended real-valued functions ( f " ,  v ~ N) defined on a metric 

space E converge uniformly to a function f on a compact C c E if and only if 
the sequence of functions ( I f  " -  f I, v E 1%1} hypo-converges on C to the func- 
tion that is identically 0 on C. 

Proof 
It is immediate that the uniform convergence of the sequence { f " ,  v ~ I%1} to a 

function f on a compact subset C c  E, i.e., sup.,.~clf(x ) - f " ( x ) ]  ---, 0 implies 
the hypo-convergence on C of the sequence { I f - f " ] ,  v ~ N} to the function 
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h 

that is identically 0 on C. For  the converse, observe that I f - f " l  --* 0 on C. 
means that for all x ~ C and ~ > 0, there exists V,.,, a ne ighborhood  of  x, and 
~,,(x) such that for all x '  E Vx, ̀ and all u > l,,(x), I f " ( x ' )  - f ( x ' )  I < ~. With x 
varying over C, the V,.., determine an open cover of  C. Since C is compact ,  this 
open cover admits  a finite open cover, say { K~,.,, k ~ K, K finite}. Let ~,, = 
maxk~,,(xk). It follows that for all x ~ C and all ~, > ~,,, I f " ( x )  - f ( x )  ] _< ~. [] 

When E is a locally compact  separable metric space hypo-convergence  induces 
a topology, the hypo-topologv, on the space of  upper  semicont inuous  (usc) 
functions [1,2]. This provides the " func t iona l"  f ramework for the s tudy of  
statistical processes with usc realizations, in part icular  for processes whose 
realizations are empirical distributions. Indeed,  a stochastic process { g(x,  . ), x 

E} defined on a complete probabi l i ty  space (~2. d ,  ~) with usc realizations 
g( - .  ,~) and measurable (i.e., (x,  w) ,--, g (x ,  ~)  is .~ |162 is an upper 
semicontinuous random function, i.e., a r andom function that is usc with respect to 
x and hypo-measurable (measurable with respect to the Borel field generated by 
the hypo- topology  on the space of  usc functions) [8, 9, theorem 6.1]. 

Ahnost sure hypo-conoergence of the stochastic processes {(g"(x ,  �9 ), x ~ E), 
h 

I%1} to the process {g (x ,  .), x ~ E) ,  denoted g" ~ g a.s., means that there 
exists a p,-null set N such that 

g"(. ,  ~)  ~ g ( . ,  co) V w ~ 2 \ N .  

The next proposi t ion provides a character izat ion of  a.s. hypo-convergence  in 
terms of the convergence of the suprema. An  earlier proof,  given in [6], was based 
Oll a characterizat ion of  the a.s. convergence of measurable  set-valued mappings,  
a more direct proof  follows. 

P R O P O S I T I O N  2.2 [6] 

Let { g; g", 1, ~ ~}  be a family of  hypo-measurab le  stochastic processes with 
usc realizations and values in E a separable metric space. Let ~ be a base of 
open sets for the topology on E. Then, the g" a.s. hypo-converge  to g if and only 
if for all open sets B in ~ and all a E ~ there exists a subset N(B,  a) of ~2 with 
~t( N( B, a)) = 0 such that 

(i) 
E Bi  .x G B 

x'~: ct B x ~ c l  B 

where cl B is the closure of B in E and "a .a ."  s tands for almost always and 
means that the inequality is satisfied for all but  a finite number  of  e 's .  

Proof 
Suppose that 

h 
g"( . ,  w) - - - ,g ( . ,  w) V w e ~ 2 \ N ,  / ~ ( N ) = 0 .  
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Let B be an open ball and a ~ I~. Let ~ be such that sup., .~sg(x, ~ ) >  a. 
Then, there exists ~ ~ B such that g(2,  ~)  > a. By hypo-convergence (see above) 
with co = 3 there exists x" ~ Y with g(.~, 3 )  _< lim inf,,g"(x", 5).  Moreover,  for ~, 
sufficiently large, x"~  B since B is open. Thus, for all ~, sufficiently large, we 
have that sup.,.~_eg"(x, ~) >_g"(x", ~) > a and this yields (i). 

To show (ii) let ~ be such that sup.,.ar ~) < a. Because E is a separable 
metric space, we can always find a countable base of E of relatively compact  
open balls. Arguing by contradiction, passing to a subsequence if necessary, 
assume that supx~lBg"(X, 5 ) > ~  for all v (in the subsequence). Since clB is 
compact  and g"(., 3) is usc, this yields a sequence { x"},, c clB with g"(x", ga) = 
sup . , .~g"(x ,  3 ) > a .  Since all {x"},, belong to clB, they cluster at some point 
.V ~ cl B. From hypo-convergence we have 

a > sup g(x,  7~) >_ g(x,  -~) > lim sup g"(x", ~) >__ a; 
x E c l B  v ~ o  

this is a contradiction. And thus (ii) must hold. 
To show the " i f"-par t ,  let N(B~, ~/) be the sets of null /x-measure that appear  

in (i) and (ii) with B~ varying over a countable base (for E)  of open balls and the 
a/ in a countable dense subset A of IR. Set N = u~.jN(B~, a/). Note  that 
/ , (N)  = 0. We show that if (i) and (ii) are satisfied, then for all co ~ a2 \N ,  g"(., w) 

h 
--, g(- ,  ~). 

Let ~ ~ ~2 \N and .~ ~ E. Let { B,.(.~), s -- 1 . . . .  } be a countable fundamental  
system of neighborhoods of Y and let {a~}:~ be a sequence in A converging to 
g(Y,-~) with as<g(Y ,  ga) for all s. For each s, g(~, 5 ) >  a~ implies 
sup,.EBg"(X, 3) > a~ for v sufficiently large, say v >  v~.. Hence, for all ~,> v~. 

. t ,  p there exists x, ~ B~. with g,,(x~, ~) > a~.. Choosing u.,. 1"oo as s T ~ ,  we can 
generate a sequence {x"} such that 

x"~B~, and g, (x" ,~a)>a s f o r v ~ . < v < u , +  1. 

It follows that x" ---, Y and tim inf,,g,(x", ~)  >_ lim.~u~ = g(~,  ~).  We have just 
proved that for each co ~ ~2 \N the lim inf-condition for hypo-convergence is 
satisfied. 

We obtain the lira sup-condition for hypo-convergence from (ii). Let 3 ~ f~ \  
N, . ' ~ E ,  x"--+x. Let {a,}.~ be a sequence in A converging to g(Y, ~a) with 
a, > g(.~, ~)  for all s. For each s, since g ( . ,  ~)  is usc at Y there exists clB~ such 
that sup.,.~dB, g(x, 5) < a,.. By (ii) we also have that s u p , . ~ g " ( x ,  3 )  < a~ for 
sufficiently large, say v >  v.,. Also, g"(x",  ga)< a~. for ~ sufficiently large, say 
v > ~5. It follows that lira sup, g"(x", 3)  _< a,.. The argument  repeated for every s 
yields lim sup,,g"(x ~, ~)  < lim.~a~ = g(~,  5 )  and completes the proof. [] 

3. Uniform convergence of probability measures and a.s. uniform convergence of 
random measures 

For a probabil i ty measure P on ,~, the restriction D on , ~ -  with D ( F )  = P(F)  
for all F ~ Y -  is an usc function on the topological space (,~',  Y')  [7]. Moreover,  
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for the family of probability measures (P ;  P", u~t~l} narrow convergence 
P" -~ P is equivalent to the hypo-convergence of the (usc-)restrictions (D;  D", 
v E ~ )  [71, 

n h 
P" D" ---, P if and only if ~ D. 

The uniform convergence of the probabili ty measures P" to P on a subset qr of .~- 
can thus be expressed in terms of the convergence of suprema, namely, 

sup I D " ( C )  - D ( C ) I  ~ 0. 
CE~6" 

In view of proposition 2.1, a necessary and sufficient condition for this to hold, is 
that the function I D " - D I  hypo-converges on ~ to the null function. Because 
] D " - D {  >__ 0, from the definition of hypo-convergence, it follows that this is 
equivalent to demanding that for all C ~ ~,  and every sequence C" Y--converging 
to C 

lira sup I D" (C  ") - D ( C " )  [ = 0. (3.1) 

Hypo-convergence of the D" to D is not enough to guarantee (3.1), but it will 
do if the set cg is a "b icompac t"  subset of the continuity set, cont D = cont P 
J ,  of D; note that cont D = { F ~ , ~  D(bdry F )  = 0 } .  

D E F I N I T I O N  3.1 

A subset W of 5 is bicompact if it ~s compact  with respect to J -  and if for any 
set C ~  ~ and any sequence {C", ~ , ~ }  with the C" Y--converging to C, the 
complements of the interior of the C" also ~'-converge to the complement  of the 
interior of C, i.e., cpl(int C") ~ cpl(int C). 

We call such a set (.YZ)bicompact because the second condition corresponds to 
the compactness of g '  = {int C, C ~ qr with respect to the topology J - '  on the 
open subsets of E induced by the ~'-convergence of their complements.  Classes of 
sets that are bicompact  have been identified in [4]. They include, for example, 
convex sets (assuming E is a linear space), and any collection of sets that can be 
obtained as the (lower) level sets lev,,f:= {x I f (x)  < a} of a continuous function. 

P R O P O S I T I O N  3.2 
tl h 

D. Then I - D  I ~ 0 o n C ~ .  Suppose Cr cont D is bicompact  and D ~ D" 

Pl'oof 
From D" ~ D, it follows that for any F and sequence F"  --* F, lim s u p v D " ( F ' )  

< D(F). In turn, this implies that for any open set G and any sequence G" of 
open sets such that cpl G" --* cpl G, 

P(G) < lim inf P"(G"). 
I, E N  
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Because ~ is bicompact,  for the closed sets F and F ", and with G =  int F, 
G" = int F", we have that cpl G" --* cpl G, and thus 

P(int  F ) <  lim inf P"(int  F"). (3.2) 

By (a) upper semicontinuity of D at cpl(int F) ,  (b) cpl(int F")  ~ cpl(int F) ,  and 
(c) P c  cont D, we have 

lira sup D(F")  < D ( F )  = P(int  F )  = 1 - P(cpl( in t  F ) )  

= 1 - D(cpl(int  F ) )  < 1 - lim sup D(cpl( int  F" ) )  
t , ~  OG 

< lira inf P( in t  F") < lim inf D(F") .  

For any e > 0 and v sufficiently large, it follows that 

D"( F") - D( F") = D"( F") - D( F)  + D( F)  - D( F") < c. 

Moreover, because D is usc at F, relation (3.2) and F ~  ~ c o n t  D, for v 
sufficiently large we have 

D"( F") - D( F") > P"(int  F") - D( F)  - ( / 2  

> P ( i n t  F ) -  D ( F ) - E - -  - ( .  

The last two strings of inequalities hold for every e >  0, they imply that 
lira sup,, I D"(F") - D(F")I  = 0  and this completes the proof. [] 

By relying on the correspondence between P ' s  and D ' s  ([7]), we can rephrase 
this result in terms of the probabili ty measures P". 

PROPOSITION 3.3 
Let {P; P", v ~  N} be a family of probabil i ty measures defined on ..~. 

Suppose that the P" converge narrowly to P. Then the P" converge uniformly to 
P on any bicompact  subset of o~cq cont P. 

The extension of this result to the a.s.-convergence of random probabili ty 
measures is immediate. Given a probabili ty space (t?, zar /x), the stochastic 
process (P"(B,  �9 ), B c N'} whose realizations are probabil i ty measures defined 
on ~ ,  is called a random probabi#o, measure. Because every random probabil i ty 
measure P is uniquely defined by its restriction to the closed sets (again [7]), we 
can identify such a stochastic process with one that involves the corresponding 
(usc) functions: { D(F, �9 ), F ~ } .  We note that in view of our earlier observa- 
tions, this is a measurable process with usc realizations. 

For a family { P; P", v ~ NI} of random probabil i ty measures, almost sure 
narrow convergence means that there exists a set N of/~-measure 0 such that for 
all ~0 ~ t 2 \ N :  

I1 

p"(. P ( , o )  
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or, equivalently 

D"(., ~) h D ( . ,  r ' q k o ~ \ U .  

We now rely on proposition 3.3 to conclude that if P" ( . ,  w) ~ P ( . ,  w) a.s. they 
also a.s. converge uniformly on every bicompact subset c# of ,~  that is contained 
in cont P. 

PROPOSITION 3.4 
Let {P", v ~  N} be a sequence of random probability measures, and P a 

I1 

probability measure, all defined on ~'. Suppose that P"(., o~) ~ P(.) a.s. Then, 
they converge a.s. uniformly on every bicompact subset of Y n  cont P. 

4. Glivenko-Cantelli  D'pe results 

In the statistical framework described in section 1, it follows from the strong 
law of large numbers that for iid observations { X", v ~ ~} ,  the sequence of 
random empirical measures ( P ' ,  v ~ t~} converge narrowly to the distribution P, 
i.e., 

P " ( B , . ) ~ P ( B ) ,  V B ~ ,  (4.1) 

i.e., for ever5, B ~ ~ there exists a /z-null subset of (2, say N~ such that 

P"(B, ~ o ) ~ P ( B ) ,  V ~ Q \ U  B. 

For the corresponding random usc functions, the restrictions of the P" to .~,  we 
have that 

D"(F, w)- -*D(F) ,  V w ~ \ N F , ' C F ~ ,  ~ .  

We thus have a.s.-"pointwise" convergence of the stochastic processes D" (index- 
ed by F)  to the "constant"  valued stochastic processes { D(F, . ), F ~ - ~ }  with 
D(F, o~) = D ( F )  for all w ~ Q .  

However, as pointed out in section 1, to obtain a.s. uniform convergence, a 
minimal requirement is the a.s. convergence of the empirical random probability 
measure, or equivalently, the a.s. hypo-convergence of the corresponding random 
usc functions D" to D. In general, for measurable stochastic processes with usc 
realizations, the a.s. convergence (as stochastic processes) and the a.s. hypo-con- 
vergence are not equivalent, neither implies the other [8, section 3]. But for 
random probability measure, their specific properties (monotonicity) allow us to 
show that in fact, a.s. convergence (in the classical sense of stochastic processes) 
is enough to ensure a.s. hypo-convergence. 

Before we get to this, let us identify maximal elements for the sets in the 
(countable) base 

5":= {Y 'v  n~-a, n - - - n S c ,  I K~ . .U ,  G,~fY,  l= 1 . . . . .  s, s finite} 
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for the topology ~ ' ;  recall that ,)U and fY consist of the compact  and open subsets 
of E. Let Jr be a nonempty subset of .Y with c l J~  its ~-:-closure; note that av{ is 
nonempty if for l = 1 . . . . .  s, G~ ff K. We are going to show that cl(cpl K )  =: F '  is 
a maximal element with respect to inclusion in clJr ~ i.e., F ' ~  c l J~  and F c  F '  
for all F~cl ,Y( ' .  Pick e > 0  such that for 1 = 1  . . . . .  s, G I ~ K . : =  {x 
Eld is t (x ,  K ) < e } .  Now choose E"$0 such that for all v, e , < e  and let F " =  
cpl K~,.. It is obvious that the F" ~ J { '  and that F"  ---, F ' .  Thus F '  E c l J{ .  Now, 
for every F ~ J f ,  we have that F(~ K = g  and consequently, F c  cl(cpl K)  = F ' .  
Moreover, for every F ~  cl3g' there exist F"- - ,  F with F" ~ J g '  so that for all v, 
F" c F ' .  It follows that F = lim,,F" c F ' .  

THEOREM 4.1 
Suppose { D; D", v ~ l~l} is a family of random usc functions defined on .~  

obtained by restricting probabili ty measures { P; P", 1, ~ ~} (defined on o~) to 
.Y. If 

D"(F, .)---,D(F, .) a.s., V F ~ Y ,  

then there exists a set N of / , -measure  0 such that 

D"(.,w) I ~ D ( - , w ) ,  V~oCg2\N.  

Proof 
In view of proposition 2.2, it suffices to check if the inclusions (i) and (ii) of 

proposition 2.2 are satisfied for every open set ~ in the base 

* Y : = [ ' y K n y ~ ; ,  n ' ' ' n y '  a, IK~"U,G,~fg, 1=1,'.., s, s f in i t e} ;  

for the topology Y (on 5 ) ,  and all u ~ IIR. More precisely, we have to show that 
there exists a set N(,)F, a) of/x-measure null such that 

(i '  {~,,IsupD(F, co)>c~}c{~olsupD"(F, co)>aa.a.}tON(JC, a), 
/-" E .,,"d" FE,)~(" 

( i i ' )  {~o] sup D(F, oa)<a}c{w[ sup D"(F, oo)<aa.a.}UN(,)g,a), 
F ~ cl .~U / : ' ~  cl J ( '  

where a.a. stands, as in proposition 2.2, for "a lmos t  always". 
Let Foe be a maximal element in cl,Y{' with respect to inclusion ( c ). Because D 

and the D" are usc on Y ,  they attain their maximum on every closed subset of 
the compact  space ~-, and thus 

D ( F ~ ,  ~o)= sup D(F, ~o) 
F ~  cl.-,'g' 

and 

D"(Foe, ~0)= sup D"(F, w), 
F ~  cl,,,'U 

so that ( i i ' )  follows from the pointwise a.s. convergence of the D" to D at Foe. 
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Let .,-r C~o~C, n �9 �9 �9 ~ g <  be a nonempty element of the countable base 
5 ~ In the remarks that precede this theorem, we noted that ~~ implies the 
existence of a sequence of strictly positive numbers { ~, l ~ IN} monotonically 
decreasing to 0 such that for all l, the set 

~ = ~ K + " B  n S <  n .. .  n~-< 

is nonempty. The sequence of sets { ,XF/, / ~ IN) is contained in J{' and ~o= u/JYt. 
Since for all l, s u p ,  D"(-, ~o) is always larger than supmD"(-, r we have 

{~o I s u p D ( F ,  ~ o ) > a } = { c o [ s u p D ( F ,  w ) > a ,  supD"(F ,  r 
F ~,., 'f F ~../g" F ~ a ' U  

U{w[ sup D(F ,  w ) >  a, sup D"(F, r 

u{co] sup D(F, ~o)>a ,  sup D'(F, co)<a}. 
F ~ , ~  F ~  

Because (~,~, J - )  is a compact space and the functions D" are usc, thus suE< 
D"(-, r suppleD"(-, w) and this last supremum is attained at A~:= cl cpl(K 
+ e~B); see the remarks that precede the theorem. Thus 

{col s u p D ( F  o a ) > a } c { c o [  supD"(F ,  o a ) > a }  
F ~.Yg" F ~ , ~  

U{r s u p D ( F ,  o 0 ) > a ,  D"(A,, to) < a}. 
F ~ , . ~  

Because this holds for every v, it follows that 

{oa I sup D(F ,  r a} c {o01 sup D"(F,  o~) > a a.a.} 
FE,)g" F ~..,'U 

U{co[ sup D ( F ,  ~o)> a, D"(A,, r < a a.a.}. 
F E , ~  

But this last set can only be a set of measure zero. Indeed, let 

N(J t  ~ a ) =  tO,(co[D"(Ai, ~)-~ D(A,, w)). 

This set is of /z-measure null; that follows from pointwise convergence and the 
fact that there are only countably many sets A# If aa does not belong to N(off', a) 
and s u p ,  D(. ,  o0) > a that means that there exists F ~ J d '  such that D(F, r > a. 
For 1 sufficiently large, F c A~ and from pointwise convergence, and the exclu- 
sion of N(Jd', a), it follows that aa cannot belong to 

{wl s u p D ( F ,  co)> a, D"(A,, w) < a a.a.}. 
F~,)ff" 
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And  hence 

F E . 2 U  F ~ . ) ' U  

which completes the proof  of  (i ' ) .  [] 

We can now apply this result in the "G l i venko -Can t e l l i "  framework.  

THEOREM 4.2 

For any sequence of iid r andom variables { X", ~ ~ I%1} defined on a probabil-  
ity space (/2, J~r p,) with values in E, the empirical random measures, 

I' 

P"(B, ,,,)= ! 
/., 

i= l  

a.s. converge narrowly to the c o m m o n  distribution P of these r andom variables. 
Moreover,  they a.s. converge uniformly on every class of closed sets conta ined in 
cont  P that is ,YZbicompact. 

Proof 
An immediate consequence of the preceding theorem and proposi t ion  3.4. [] 

The approach  that we followed directs our  at tention to the fact that  to obtain 
the a.s. uniform convergence of  empirical measures there are two basic ingredi- 
ents that enter into play. First, a condi t ion is needed to ensure the a.s. narrow 
convergence. This role is played here by the iid condit ion.  A second condi t ion is 
needed to guarantee the passage from a.s. narrow convergence to uni form 
convergence. This is a condit ion that must  guarantee that the class of  sets under  
scrutiny has a certain property.  We have seen here that b icompactness  (with 
respect to the topology of set convergence) is a " n a t u r a l "  requirement.  
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