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1. Introduction

From their inception Statistics and Optimization have been tightly linked. Finding the

‘best’ estimate of a statistical parameter is, of course, an optimization problem of some

type. On the other hand, some of the motivation for the more recent development of

solution procedures for constrained optimization problems came in part from statistical

estimation questions. One can even trace back the development of the simplex method for

linear programs to the work G.B. Dantzig did in his doctoral thesis on the Neyman-Pearson

lemma [5], in particular, by underlining the importance of the ‘column space’ geometry

when dealing with linear systems of equations and inequalities.

More recently, the design of approximation techniques and the need to justify the

use of sampling to solve stochastic programming problems has revealed that besides the

already widely accepted use of optimization techniques to find estimators, there is also a

relationship between Statistics and Optimization at a more fundamental level. In turn,

this has lead us to reappraise how one should formulate and deal with statistical estimation

problems. In this discussion, we shall be mainly concerned with conceptual issues and will

devote our attention to a few instructive examples. In the process, we review some of the

theory that serves as the basis for this more comprehensive view of what is ‘a statistical

estimation problem’.

Most statistical estimation problems always can be formulated as finding the distribu-

tion function F of a random element (variable, vector, function, etc.). They come in two

basic flavors. When prior information singles out a certain class of distribution functions

characterized by a parameter θ ∈ IRN , then estimating F is reduced to finding a best

estimate for this parameter. One refers to an estimation problem of this type as one of

a parametric estimation. This means that the prior information available about the sto-

chastic phenomenon described by the distribution function F is ‘almost’ complete, only the

value to assign to some parameter(s) needs to be pinned down. When no prior information

is available, the problem becomes one of nonparametric estimation, i.e., finding a function

F whose only known property is that it is a distribution function.

These two problem types are in some sense at the opposite ends of what fits under the

statistical estimation umbrella. Usually, some partial information is available about the

unknown distribution, but not quite enough to be able to pinpoint the parametric class to

which F belongs. For example, one might know, or suspect, that F is associated with a

unimodal density function. One might know, or stipulate, bounds on certain quantiles. One

might even know, or suspect that F belongs to a neighborhood of a certain distribution F b

(the Bayesian premise). In the same way that knowledge about the parametric class plays

an important role in the (final) choice of the estimate, whatever information is available

should be exploited in the choice of a ‘best’ estimate. In the formulation of the estimation

problem, ‘available information’ gets translated in ‘constraints’ that restrict the choice of

the estimate to a certain subclass of distribution functions.
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We are going to refer to any (measurable) mapping from data to a space of parameters

that identify distribution functions as an estimator. This space of parameters could be

finite dimensional (parametric estimation) or infinite dimensional (nonparametric estima-

tion). It could be the space of distribution functions itself.

To justify the choice of an estimator, one generally appeals to asymptotic analysis:

one proves consistency [14] and, if possible, one derives a convergence rate that enables us

to approximate the distribution of the error.

The basic example is the use of the sample mean as an estimator for the expected

value of a real-valued random variable X (with finite mean µ and variance σ2): Given

ν samples x1, x2, . . . , xν , the sample mean (x1, x2, . . . , xν) 7→ ν−1
∑ν

k=1 xk is (asymptoti-

cally) consistent by the Law of Large Numbers. And, the Central Limit Theorem tells us

that the distribution of the error (νσ2)1/2
(
ν−1

∑ν
k=1 xk −µ

)
tends to a standard Gaussian

distribution.

Although asymptotic analysis has been the mainstay of Mathematical Statistics, when

dealing with practical applications statisticians have often made use of estimators that

might not (yet) have been subjected to full asymptotic analysis. One of the reasons for this

technological gap between theory and practice is that to carry out the asymptotic analysis,

the estimator should be ‘nice’: simple, smooth, . . .. And practice might suggest or dictate

a choice which doesn’t quite fulfill these requirements. In particular, this is usually the

case when the estimator is the argmax function, i.e., a mapping which associates with a

sample x1, . . . , xν the solution of an optimization problem (based on these observations).

This is exactly the approach that is going to be followed here. The estimation problem

will always be formulated as an optimization problem:

find a distribution function F̂
that maximizes the likelihood of observing x1, . . . , xν

and so that F̂ is consistent with the available information.

Distributions functions F : IRd → [0, 1] must already satisfy the constraints:

- F is nondecreasing, i.e., x ≤ y =⇒ F (x) ≤ F (y);

- limxj→∞ F (x1, . . . , xj, . . . , xd) = 1, limxj→−∞ F (x) = 0 for j = 1, . . . , n;

- F is upper semicontinuous;

- for all rectangles R ⊂ IRd, ∆RF ≥ 0 where ∆RF is the measure assigned by F to R.

We won’t deal here with the problem at this level of generality. In all of the examples

and ensuing discussions, it will be assumed that it is known that the distribution of the

random phenomenon is either discrete (the support is finite or countable) or continuous

(there is a density function that determines the distribution function). But in all cases, the

asymptotic analysis is based on the convergence of the argmax function of an optimization
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problem. In fact, it will be shown that the estimation problem converges to a certain

limit estimation problem whose solution is the ‘true’ value of the parameter we are trying

to estimate. The methodology is that of epi-convergence which is reviewed in the next

section.

The choice of the maximum likelihood as the criterion isn’t conditioned by the limi-

tations of the methodology that’s going to be used to obtain asymptotic justification; any

other reasonable loss function will do equally well. However, one can argue, as already

done by R.A. Fisher [7, 8], that the maximum likelihood is the ‘natural’ choice as criterion

when selecting an estimator.

2. Epi-convergence: a primer

For the purposes of this paper, it will suffice to restrict our attention to functions defined on

a separable Hilbert space (H, | · |). The usual framework in which this theory is presented

[3, 12] is that of ‘minimization’. The estimation problem being one of maximization, we

should actually refer to it as hypo-convergence, see below, however it’s expedient to keep

the ‘standard’ name of ‘epi-convergence’ when refering to the general theory.

Let f : H → IR be an extended real-valued function on H. Its hypograph is the set:

hypo f := { (x, α) ∈ H × IR | f(x) ≥ α },

i.e., all the points in H × IR that lie on and below the graph of f ; its epigraph is the set

epi f := { (x, α) ∈ H × IR | f(x) ≤ α }. Observe that f is upper semicontinuous (usc) if and

only if hypo f is closed; recall that a function f : H → IR is upper semicontinuous at x if

lim supx′→x f(x′) ≤ f(x).

Definition. A sequence {f ν : H → IR, ν ∈ IN} hypo-converges to f : H → IR at x, if

lim sup
ν→∞

fν(xν) ≤ f(x), ∀xν → x;

and

∃xν → x such that lim inf
ν→∞

fν(xν) ≥ f(x)

If this holds for all x ∈ H, the functions f ν hypo-converge to f , f is called the hypo-limit

of the fν , and one writes f = hypo-limν→∞ fν or fν →h f . The name ‘hypo-convergence’

is motivated by the fact that this convergence notion is equivalent to the set-convergence

of the hypographs.

Hypo-convergence yields the convergence of maximizers and optimal values, in a sense

that will be made precise below, and it’s all that’s needed in many instances, in particular

when H is finite dimensional. However, in infinite dimensions, it turns out that it is useful

to introduce a somewhat stronger notion, namely Mosco-hypo-convergence which requires

hypo-convergence with respect to both the weak and the strong topologies.
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Definition. A sequence {f ν : H → IR, ν ∈ IN}, with (H, | · |) a Hilbert space, Mosco-hypo-

converges to f : H → IR at x, if

for all xν ⇀
w

x (weak convergence), lim sup
ν→∞

fν(xν) ≤ f(x);

and

∃xν → x (strong convergence) such that lim inf
ν→∞

fν(xν) ≥ f(x).

If this is the case for all x ∈ H, the functions f ν Mosco-hypo-converge to f , and one writes

fν −→M:h f or f = M:hypo-limν→∞ fν .

These two definitions should, more precisely, be qualified as ‘sequential’, but it won’t

be necessary to introduce this distinction here.

Theorem. Suppose { f, fν : H → IR, ν ∈ IN} are such that f ν →h f , then

lim inf
ν→∞

(sup fν) ≥ sup f.

Moreover, if there is a subsequence {νk}k∈IN , such that for all k, xk ∈ argmax fνk and

xk → x̄, then x̄ ∈ argmax f and also sup f νk → sup f .

If the functions fν Mosco-hypo-converge to f , and there is a subsequence {νk}k∈IN ,

such that for all k, xk ∈ argmax fνk and xk ⇀
w

x̄, then x̄ ∈ argmax f and sup f νk → sup f .

Proof. These results are well known. We provide an elementary proof to illustrate the

use made of the conditions in the definitions. The inequality lim infν sup fν ≥ sup f

certainly holds if sup f = −∞. If sup f is finite, then for all ε > 0 there exists xε such

that f(xε) > sup f − ε. Because the functions f ν hypo-converge to f , there exists a

sequence xν → xε such that lim infν fν(xν) ≥ f(xε) > sup f − ε. This implies that

lim infν sup fν > sup f − ε, and since this holds for all ε > 0, it yields the desired equality.

The case when sup f = ∞ can be argued similarly, except that one now starts with the

observation that for all κ there exists xκ such that f(xκ) > κ. The definition yields

a sequence xν → xκ such that lim infν fν(xν) ≥ f(xκ) > κ, which again implies that

lim infν sup fν > κ. Since this holds for all κ, it follows that lim infν sup fν = ∞ = sup f .

Now let {xk, k ∈ IN} be such that xk ∈ argmax fνk for some subsequence {νk}k∈IN ,

and xk → x̄. From the definition follows

lim supk (sup fνk) = lim supk fνk(xk) ≤ f(x̄).

On the other hand,

sup f ≤ lim infk (sup fνk) ≤ lim supk (sup fνk),
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with the first inequality following from the argument above. Hence, f(x̄) = sup f , i.e.,

x̄ ∈ argmax f . Moreover, this implies that the inequalities in the two preceding identities

are actually equalities, and consequently sup f νk → sup f .

In the case of Mosco-hypo-convergence, the argument is the same, except that the xk

converge weakly to x̄ and one appeals to the corresponding condition in the definition of

Mosco-hypo-convergence.

There are other consequences of hypo-convergence that are important in a statistical

setting: for example, those characterizing hypo-convergence in terms of the convergence

of the (super)level sets, or those dealing with convergence rates (metrics). But they won’t

be exploited here. For these results and more about the theory of epi-convergence, consult

[3, 4, 12].

3. The discrete case

Let’s identify the random phenomenon in which we are interested with a (generic) random

variable X with values in IRd. In this section, it will be assumed that this random variable

takes on only a finite number of possible values, i.e., there is a finite collection of points

{ zk ∈ IRd, k ∈ K ⊂ IN } with associated weights { p0(zk) ∈ (0, 1), k ∈ K } such that

prob [ X = zk ] = p0(zk); p0(z) = 0 when z /∈ {zk, k ∈ K}. The distribution function of X

is then

F 0(z) =
∑

zk≤z

p0(zk);

one refers to p0 : IRd → IR+ as the probability mass function of X. Its support, the smallest

closed subset of IRd on which p0 > 0, is the set supp p0 := { zk ∈ IRd, k ∈ K } which is

finite. This means that p0 belongs to the following class of functions:

pmass(IRd; IR) = { p ∈ fcns(IRd; IR) |
∑

z∈supp p

p(z) = 1, p ≥ 0 }.

The estimation problem is: given a sample x1, . . . , xν , obtained from independent obser-

vations, find pν ∈ pmass(IRd; IR) that approximates p0 as well as possible. At this point,

the only information available is the sample, and supp p0 is a finite set. In particular, this

implies that {x1, . . . , xν} ⊂ supp p0.

One usually casts the estimation problem in the following mathematical framework:

Let {Xk}∞

k=1 be iid (independent identically distributed) random variables, all with the

same distribution as X, and for j = 1, . . . , ν, let xj be the observed value of Xj . The joint

probability mass function of X1, . . . , Xν is given by

prob
[
X1 = z1, X2 = z2, . . . , Xν = zν

]
= p0(z1)p0(z2) · · · p0(zν).

The probability of observing x1, . . . , xν is then

p0(x1)p0(x2) · · ·p0(xν) =
ν∏

l=1

p0(xl).
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An estimate pν that maximizes the likelihood of observing x1, . . . , xν is obtained as follows:

pν ∈ argmax
{ ν∏

l=1

p(xl)
∣∣∣ p ∈ pmass(IRd; IR)

}
.

After replacing the criterion function by its logarithm and setting ln 0 = −∞, the estima-

tion problem can be reformulated as follows: find

pν ∈ argmax
{ ν∑

l=1

ln p(xl)
∣∣∣ p ∈ pmass(IRd; IR)

}
.

Let’s observe that only the values of p at x1, . . . , xν play any role in the criterion function

that is being maximized, consequently it never will pay off to choose a function p that

assigns positive mass to any other points than x1, . . . , xν . Thus the problem of finding

pν comes down to finding the values to assign to pν(x1), . . . , pν(xν). Consequently, the

estimation problem is equivalent to a finite dimensional optimization problem that we set

up next.

Let {z1, . . . , zn} be the distinct observations and ri the number of times zi has been

observed. Let (wν
1 , . . . , wν

n) be the optimal solution of the following problem:

max
w∈IRn

Lν
c (w) :=

{
ν−1

∑n
i=1 ri ln(wi) if wi > 0, i = 1, . . . , n,

−∞ otherwise,

so that

n∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n.

It’s the maximization of a continuous, strictly concave function on a nonempty compact

subset of IRn (determined by linear constraints). This means that there is a unique optimal

solution. The optimality conditions, cf. [12] for example, are

(wν
1 , . . . , wν

n) is optimal if and only if ∃ a multiplier θν ∈ IR such that

(a)
∑n

i=1 wν
i = 1, wν

i ≥ 0, i = 1, . . . , n,

(b) (wν
1 , . . . , wν

n) ∈ argmax
w≥0

[ ν−1
∑n

i=1 ri ln(wi) − θν(
∑n

i=1 wi − 1)].

Setting the partial derivatives equal to 0 yields the (unique) solution:

wν
1 =

r1

ν
, wν

2 =
r2

ν
, . . . , wν

n =
rn

ν
, θν = 1.

The optimal estimate pν is then

pν(z) =

{
ν−1ri if z = zi,
0 otherwise.
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This is the the empirical probability mass function; the probability mass assigned to each

point z ∈ IRd is proportional to the number of times this point has been observed. The

corresponding distribution function is the empirical distribution function F ν with F ν(z) =∑
zk≤z pν(zk). The support supp pν of the empirical probability mass function consists of

the points z1, . . . , zn, observed so far. Thus,

processing (all) the statistical information available, i.e. the information

provided by the sample, yields the empirical distribution as best estimate

No refinement of the estimate is possible unless additional information is

available about F 0 or modeling assumptions are made about F 0.

This simply confirms our intuition! In the process it also provides support for the choice of

the maximum likelihood as the criterion function. One implication is that we can formulate

the estimation problem as one of maximizing an expectation functional:

max
p∈pmass(IRd;IR)

Lν(p) =

∫
l(z, p) F ν(dz), l(z, p) =

{
ln p(z) when p(z) > 0,
−∞ otherwise.

It’s convenient, although not literally correct, to refer to Lν as the maximum likelihood

criterion. The estimator is the argmax mapping:

F ν 7→ pν = argmax
p∈pmass(IRd;IR)

Lν(p);

the mapping which associates with the empirical measure F ν the solution of the preceding

optimization problem. In terms of our mathematical model, F ν is a random distribution

function since it depends on the values assumed by the random variables X1, . . . , Xν.

In turn, this means that pν must also be viewed as a random variable. The asymptotic

analysis of the argmax estimator has to do with the limiting properties of this random

variable.

In this particular situation, because the empirical probability mass function is the

optimal solution of the estimation problem, the Strong Law of Large Numbers —assuming

E{|Xi|} < ∞— tells us that the pν converge almost surely to p0, the ‘true’ probability mass

function. Equivalently, the distribution functions F ν converge almost surely to F 0. This

shows that for the problem at hand, the argmax estimator is asymptotically consistent.

Let’s however proceed somewhat differently and derive consistency by appealing to the

theorem in §2.

Let’s begin by identifying the limit estimation problem:

max
p∈pmass(IRd;IR)

L0(p) =

∫
l(z, p) F 0(dz), l(z, p) =

{
ln p(z) when p(z) > 0,
−∞ otherwise,
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where the expectation is now with respect to the true distribution function F 0. One might

be tempted to justify the selection of this problem as the limit problem by appealing to

the Kullback-Leibler measure of discrepancy, or even more simply by arguing that it’s a

natural choice since F 0 is the limit (in distribution) of the F ν . However, in view of §2,

to claim that this problem is the limit problem of the estimation problems, one needs to

show that almost surely

L0 = hypo-limν→∞ Lν on pmass(IRd; IR)

Note that p0 is the optimal solution of this limit ‘estimation’ problem. Indeed, one

can associate with this limit problem, the following optimization problem formulated in

terms of the weights to assign to the points in the support of p0:

max
w∈IR|K|

L0
a(w) :=

{∑
k∈K p0(zk) ln(wk) if

∑
k∈K wk = 1, wk > 0, k ∈ K,

−∞ otherwise,

recall that supp p0 = { zk ∈ IRd, k ∈ K ⊂ IN }, |K| is the cardinality of K. The optimality

conditions yield the following optimal solution: w0
k = p0(zk), k ∈ K, and this means that

p0 itself is the solution of the limit problem.

Instead of actually proving that almost surely Lν →h L0 on pmass(IRd; IR), let’s show

that the following functions hypo-converge almost surely

Lν
a(w) :=

{∑
k∈K pν(zk) ln(wk) if

∑
k∈K wk = 1, wk > 0, k ∈ K,

−∞ otherwise,

to L0
a where all these functions are defined on IR|K|. Operationally, in particular when

actually computing the solution of the estimation problem, the functions Lν
c defined earlier

are used instead of Lν
a; Lν

c is just the restriction of Lν
a to those points in supp p0 that are

included in the sample x1, . . . , xν.

By the Glivenko-Cantelli Theorem, pν converges uniformly to p0 almost surely. And

in turn, this implies that

Lν
a converge uniformly to L0

a almost surely;

uniform convergence for extended real-valued functions being defined as follows: For a

function f : IRn → IR and ρ ∈ (0,∞), let

f∧ρ(x) =





−ρ if f(x) ∈ (−∞,−ρ),
f(x) if f(x) ∈ [−ρ, ρ],
ρ if f(x) ∈ (ρ,∞).

A sequence of functions fν will be said to converge uniformly to f on a set X ⊂ IRn if, for

every ρ > 0, their truncations f ν
∧ρ converge uniformly to f∧ρ on X in the usual sense.
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It remains only to observe that the almost sure uniform convergence of the upper semi-

continuous functions Lν
a to L0

a imply their almost sure hypo-convergence [12, Proposition

7.15].

Now, let wν = argmax Lν
a; recall that the strict concavity implies that the solution is

unique. Since for all ν, wν ∈ {w ∈ IR
|K|
+ |

∑
k∈K wk = 1 }, a compact set, the sequence

{wν}ν∈IN has at least one cluster point. And by the theorem in §2, every cluster point

of this sequence must be the solution of the limit problem: max L0
a. The solution of this

limit problem is also unique, viz., for k ∈ K, w0
k = p0(zk). It follows that wν → w0 almost

surely. Translating this in terms of the corresponding probability mass functions yields

pν → p0 almost surely.

At this point one may wonder why this roundabout way of proving the consistency

of the argmax-estimator! After all, a direct appeal to the Strong Law of Large Number

already yielded the desired consistency. Moreover, the proof sketched out here does anyway

appeal to the Law of Large Numbers via the Glivenko-Cantelli Theorem. There are two

reasons for proceeding in this fashion. First, it’s to set up the pattern that will be followed

in other situations where it won’t be possible to identify the estimate obtained any further

than ‘it’s the solution of this optimization problem.’ Second, it’s to suggest that it’s not just

the estimates themselves but the entire estimation problems that converge, more precisely

hypo-converge. Although it will not be possible to go into this in this short presentation,

it allows for the study of the convergence of confidence regions and robustness properties

as well.

But, let’s now proceed to situations when more information is available about the

distribution F , in which case the estimate generated by the argmax-estimator isn’t in

general the empirical distribution function.

p0 monotone: Suppose the probability mass function p0 is known to be nondecreasing, by

which one means that p0(zi) ≤ p0(zj) whenever zi ≤ zj ∈ supp p0 ⊂ IR. Our estimation

problem should then be formulated as follows:

max Eν
{

ln p(z)
}

so that

{ ∑
z p(z) = 1, p(z) ≥ 0,

for all z, z′ ∈ supp p, p(z) ≤ p(z′) whenever z ≤ z′

This is again a convex optimization problem. Because the solution will only assigns proba-

bility mass to the points z1, . . . , zn that have been observed, the problem can be recast as

follows: Rearranging the observations so that z1 ≤ z2 ≤ · · · ≤ zn, with ri be the number

of times zi has been observed and wi the probability mass p(zi) to be assigned to zi,

(wν
1 , . . . , wν

n) ∈ argmax{
n∑

i=1

ri

ν
ln wi | 0 ≤ w1 ≤ w2 · · · ≤ wn,

n∑

i=1

wi = 1 }.

The optimality conditions read: (wν
1 , . . . , wν

n) is an optimal solution if and only if there
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are (multipliers) θν , πν
1 , . . . , πν

n−1 such that

n∑

i=1

wν
i = 1, 0 ≤ wν

1 ≤ · · · ≤ wν
n,

πν
i ≥ 0, πν

i (wν
i − wν

i+1) = 0, i = 1, . . . , n − 1,

(wν
1 , . . . , wν

n) ∈ argmax
{ n∑

i=1

ri

ν
ln wi − θν(

n∑

i=1

wi − 1) −
n−1∑

i=1

πν
i (wi − wi+1)

}
.

From these conditions it follows that (wν
1 , . . . , wν

n) is the projection of the empirical weights

(r1/ν, . . . , rn/ν) on the convex polyhedral cone

M := { (w1, . . . , wn) ∈ IRn
+ | 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn }.

The solution can be obtained recursively: set

q1
i = ri/ν, i = 1, . . . , n,
{

for all i, set q2
i = q1

i if q1
2 ≥ q1

1,

else q2
2 = q2

1 = 1
2(q1

1 + q1
2), set q2

i = q1
i , for i > 2




for all i, set q3
i = q2

i if q2
3 ≥ q2

2,

else if 1
2(q2

3 + q2
2) ≥ q2

1, set q3
3 = q3

2 = 1
2 (q2

3 + q2
2), for i 6= 2, 3, q3

i = q2
i ,

else q3
3 = q3

2 = q3
1 = (1/3)(q2

3 + q2
2 + q2

1) and set q3
i = q2

i for i > 3,

. . . and so on

and finally, (wν
1 , . . . , wν

n) = (qn
1 , . . . , qn

n).

To prove the consistency of this estimator a simple appeal to the Law of Large Number

won’t do. But the second argument based on the convergence of the argmax function goes

through unchanged, except that the set of feasible probability weights is restricted to

{w ∈ IRn
+ |
∑

wk = 1 } ∩ M !

Clearly, a similar approach will work if the probability mass function is nonincreas-

ing (on its support). The same recursive assignments will yield the optimal estimate

(wν
1 , . . . , wν

n), except that one has to proceed in the reverse index order when projecting

the empirical probability mass function onto the convex polyhedral cone

M ′ := { (w1, . . . , wn) ∈ IRn
+ |w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 }.

Bounds on moments. If bounds are known for the kth moment of X, say ak ≤ E{Xk} ≤ bk,

one includes a linear constraint in the formulation of the estimation problem. Again, with

ri the number of times zi has been observed and wi the probability mass to be assigned
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to zi, our estimate (wν
1 , . . . , wν

n) is the solution of the following optimization problem:

max
n∑

i=1

ri

ν
ln wi

so that ak ≤
n∑

i=1

zk
i wi ≤ bk

n∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n.

Just as in the earlier cases, one can write down the optimality conditions, but they don’t

lead to a simple expression for the estimate. However, consistency can be argued exactly

as earlier, except that this time the probability weights must also satisfy the constraint on

the k-moment.

Bounds on the variance. Whereas bounds on the second moment lead to linear constraints,

bounds on the variance might result in nonlinear constraints that are difficult to deal with.

Indeed, if vl ≤ var(X) ≤ vu, the constraints to be included in the estimation problem are:

vl ≤
n∑

i=1

wi(zi)
2 −

( n∑

i=1

wizi

)2

≤ vu.

The lower bound constraint determines a convex region since the function

(w1, . . . , wn) 7→
n∑

i=1

wi(zi)
2 −

( n∑

i=1

wizi

)2

is concave.

But, the apparently more ‘natural’ constraint which comes from fixing an upper bound

on the variance, leads to a nonconvex region. The implication being that the convex

combination of two probability mass functions that both satisfy this constraint might very

well not be acceptable. This should never be accepted without raising some questions

about the formulation itself. Of course, the seasoned statistician might suggest that an

upper bound on the variance should involve a dependence on the expectation and then the

constraint would be of a different type. But, regardless of the convexity or of the lack of

convexity resulting from this constraint, the consistency of the resulting argmax estimator

is again guaranteed by the same argument as the one used in all the previous cases.

The examples considered are meant to illustrate both the general applicability of the

consistency argument based on invoking hypo-convergence, but also the flexibility one has

in the formulation of the estimation problem. It should be clear that one isn’t limited to

including just one additional constraint in the formulation of the estimation problem; for

example, the case when the probability mass function is monotone involved a number of

(linear) constraints.
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It should also be pointed out that the constraints that have been introduced in the

formulation of the estimation problem might play a significant role in determining the

optimal estimate when the sample is relatively small. On the other hand, in a well-

formulated estimation problem, these constraints should become inactive when the sample

is quite large.

4. The parametric case

Again, let’s identify the random phenomenon in which we are interested with a (generic)

random variable X with values in IR. The case to be considered in this section is when

the distribution of this random variable is known except for the value to assign to a

finite number of parameters. We don’t make a distinction between the cases when the

distribution is discretely or continuously distributed.

Let x1, . . . , xν be a sample coming from independent observations. The information

available about X is this sample and the fact that the distribution function belong to a

certain parametric class. The mathematical set up is the same as in §3: {Xk}∞

k=1 are iid

(independent identically distributed) random variables all with the same distribution as

X and for j = 1, . . . , ν, xj is then the observed value of Xj. As in §3, let {z1, . . . , zn} be

the collection of distinct observations from the sample {x1, . . . , xν} and ri the number of

times zi has been observed and the empirical measure assigns probability mass ri/ν to zi;

expectation with respect to the empirical measure is denoted by Eν{ · }.

Our estimator is again the argmax mapping and the criterion is the maximization

of the likelihood function; a brief justification for the use of the maximum likelihood as

criterion was provided in §3 for the discrete case and §5 will deal with the continuous case.

X is Poisson : The probability mass function is

prob [ X = k ] = p(k) = e−λ λk

k!
, k = 0, 1, . . . .

Only the parameter λ needs to be determined. Adjusting the notation so that rk denotes

the number of times k has been observed, the estimation problem reads:

max
λ>0

∞∑

k=0

rk

ν
ln p(k) =

∞∑

k=0

rk

ν
ln
(
e−λ λk

k!

)
;

no other constraints are needed here because λ > 0 implies pν(k) = e−λν (λν )k

k! ≥ 0 and∑∞
k=0 pν(k) = 1. λν is the estimate obtained by solving the optimization problem and pν

is the resulting probability mass function.

Straightforward differentiation of the criterion function and setting the derivative

equal to 0 yields

λν =
∞∑

k=0

k
rk

ν
,
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i.e., the sample mean. To obtain the consistency of this estimator one could appeal directly

to the Law of Large Numbers: the sample mean converges to the expectation of X. But

one could also use the same argument as that used in all the examples in §3.

The same approach yields the well-known optimal estimates for the parameters of the

binomial, Bernoulli, geometric, . . ., probability mass functions, always under the assump-

tion that no information is available beyond the parametric class and the sample. Also,

the classical parametric estimators when X has a continuous distribution can be derived

similarly. Let’s go through a couple of examples.

X exponentially distributed: So, the density function of X is

f(x) =

{
0 if x < 0,
λe−λx if x ≥ 0.

Only the parameter λ needs to be determined. Because there are only a finite number

of points in our sample, with probability one they are all distinct, so let’s assume this to

be the case: (z1, . . . , zν) = (x1, . . . , xν), ri = 1 for i = 1, . . . , ν. The formulation of the

estimation problem is then

max
λ≥0

ν∑

i=1

1

ν
ln
(
λe−λzi)

.

Also here there is no need to impose any further constraints since every λ > 0 corresponds

to an exponential density (that is nonnegative and sums up to 1). Differentiating yields

(λν)−1 =
∑n

i=1(1/ν)zi, i.e., the sample mean, and the corresponding (exponential) density

is

fν(x) =

{
0 if x < 0,
λνe−λν x if x ≥ 0.

X normally distributed: The density function of X is

f(x) = (σ22π)−1/2e−(x−µ)2/2σ2

, −∞ < x < ∞.

Again, let’s assume that the observations are distinct points. The estimation problem

reads:

max
µ,σ≥0

ν∑

i=1

1

ν
ln
(
e−[ ln σ+ln

√
2π+

1
2σ−2(zi−µ)2 ]

)
,

or equivalently,

max
µ,σ≥0

− ln σ − σ−2

2ν

ν∑

i=1

(zi − µ)2.

Taking partial derivatives with respect to µ and σ obtains:

µν =
1

ν

ν∑

i=1

zi, σν =

(
1

ν

ν∑

i=1

(zi − µν)2

) 1
2

.
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The argmax estimator for the pair (µ, σ) is, as expected, the vector made up of the sample

mean and the sample’s standard deviation.

The situation changes, for example, when there is an upper bound on the variance,

say κ2 (κ > 0). The estimation problem reads:

max
µ,σ

− ln σ − σ−2

2ν

ν∑

i=1

(zi − µ)2 so that 0 ≤ σ ≤ κ.

From the optimality conditions for this optimization problem, it’s immediate that µν is

still the sample mean but

σν = max [ κ,
( 1

ν

ν∑

i=1

(zi − µν)2
) 1

2 ].

X with known marginals: Let’s now consider the case in which X = (X1, X2) is a 2-

dimensional discrete random variable with known marginal for X1, say

p1(zi) = αi, i = 1, . . . , n1.

The estimation problem can be formulated as follows:

max

n1∑

i=1

n2∑

i=2

rij

ν
ln wij

so that

n2∑

j=1

wij = αi, i = 1, . . . , n1,

wij ≥ 0, i = 1, . . . , n1, j = 1, . . . , n2;

rij is the number of times the pair (zi, zj) has been observed. It isn’t necessary to in-

clude the constraint
∑n1

i=1

∑n2

i=2 wij = 1, it would be redundant since
∑n1

i=1 αi = 1. The

optimality conditions for this problem are: for i = 1, . . . , n1, j = 1, . . . , n2,

(o) wν
ij determine the best estimate if there are (multipliers) πν

j , j = 1, . . . , n1 such that

(i)
∑n2

j=1 wν
ij = αi, i = 1, . . . , n1, and wν

ij ≥ 0.

(ii) wν ∈ argmax
{ ∑n1

i=1

∑n2

i=2
rij

ν ln wij +
∑n1

i=1 πν
i

(∑n2

j=1 wij − αi

) }

And this yields

πν
i =

∑n2

j=1 rij

ναi
, wν

ij =
rijαi∑n2

j=1 rij
.

The vector of probability weights wν determine the probability mass function pν , as in

§3. As for all the preceding cases, consistency follows from the convergence of the argmax

function under hypo-convergence; cf. the Theorem in §2 and the arguments used in the

preceding examples, the only change is the definition of the region that identifies acceptable

estimates.
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As a last example in this section, let’s consider the case when both X1 and X2 are

binomial random variables but with unknown parameters θ1 and θ2 that need to be esti-

mated. The argmax estimate is found by solving the following problem:

max

n1∑

i=1

n2∑

i=2

rij

ν
ln wij

so that

n1∑

i=1

wij =

(
k
n1

)
(θ1)k(1 − θ1)n1−k, k = 0, . . . , n1,

n2∑

j=1

wij =

(
k
n2

)
(θ2)k(1 − θ2)n2−k, k = 0, . . . , n2,

θ1 > 0, θ2 > 0, wij ≥ 0, i = 1, . . . , n1, j = 1, . . . , n2.

It’s not possible to obtain a closed form solution for this problem. For fixed (θ1, θ2), the

problem has the structure of a so-called transportation problem and there is an efficient

solution procedure for this class of problems. A decomposition procedure might actually

work well here: the master problem concentrating on the search for the optimal (θ1, θ2)

and the subproblem, which then has the structure of a transportation problem, being used

to adjust the variables wij as needed.

Although the examples have remained relatively simple, they have once more demon-

strated the flexibility of our approach in accommodating various levels of information with

in all cases, hypo-convergence, the appropriate tool to deliver consistency.

5. The continuous case

The random phenomenon in which we are interested is still to be identified with a random

variable X with values in IRd. Here it’s assumed that F 0, the distribution function of X,

is continuous. Let h0 : IRd → IR+ be the associated density function. Again, x1, . . . , xν is

a sample coming from independent observations. And at the outset, this sample and the

fact that the distribution function is continuous is the total information available about

X. The problem is to find a ‘best’ estimate for h0.

The mathematical framework is the same as in §3: the sample is viewed as coming from

observing iid random variables {Xk}∞

k=1 that have the same distribution as X. Because

now any one point in the sample space has probability 0 of being observed, let’s proceed

with the assumption that all points observed are distinct. In particular this means that

the empirical measure assigns probability mass ν−1 to each one of the points x1, . . . , xν in

the sample.

Our estimator is again the argmax mapping and the criterion is the maximization of

the likelihood function. A brief justification could go as follows: Since X1, . . . , Xν are iid

with density h0,

prob
[
X1 ∈ IB∞(x1, δ), . . . , Xν ∈ IB∞(xν , δ) ] =

ν∏

l=1

∫

IB∞(xl,δ)

h0(s) ds,
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where IB∞(x, δ) ⊂ IRd is the `∞-ball centered at x of radius δ, i.e., a hypercube whose

edges are of length 2δ. The likelihood of observing x1, . . . , xν , or more precisely points in

their immediate neighborhoods, can be measured in the following terms:

lim
δ ↓ 0

1

(2δ)d

ν∏

l=1

∫

IB∞(xl,δ)

h0(s) ds =

ν∏

l=1

h0(xl).

The estimation problem can thus be formulated as:

find hν ∈ argmax
{ ν∏

l=1

h(xl)
∣∣∣
∫

IRd

h(s) ds = 1, h ≥ 0
}
,

or equivalently, after taking the logarithm of the criterion function: find

hν ∈ argmax
{

ν−1
ν∑

l=1

ln h(xl)
∣∣∣
∫

IRd

h(s) ds = 1, h ≥ 0
}
,

or still,

hν ∈ argmax
h∈H

{
Eν{ln h(X)} =

∫
ln h(x) P ν(dx)

∣∣∣
∫

IRd

h(s) ds = 1, h ≥ 0
}
,

where P ν is the empirical measure and Eν indicates that the expectation is with respect

to the empirical measure P ν . H is a function space, typically a subspace of L2(IRd; IR)

with prescribed characteristics.

Even so, this problem isn’t well defined. Indeed, it doesn’t have a solution that would

be considered to be a probability density function: hν turns out to be the summation

of Dirac functions that assigns equal mass to each sample point, the counterpart of the

empirical measure.

Especially in this situation, when we are dealing with the search of a function, an

element of an infinite dimensional space, any ‘prior’ information, including modeling as-

sumptions, that might be available will be extremely valuable when the samples at hand

are too few to reach the asymptotic range, as is almost always the case when d ≥ 1. Indeed,

this ‘prior’ information constitutes a larger share of the total information available when

only a small number of samples have been collected. In terms of the estimation problem,

this means that the constraints that describe the prior information will, as they should,

play a more significant role in determining the optimal estimate. For example, one might

know, or suspect, that the density function h0 is smooth, consequently, it would be natural

to restrict the choice to a space of functions with prescribed smoothness properties. Or

h0 might be known to be unimodal and the search for an estimate might be restricted to

functions of that type.
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Smoothness. Let X be real-valued whose density function h0 is ‘smooth’. If the search

for an estimate is restricted to differentiable functions, the following constraint could be

included in the formulation of the estimation problem:

∫
h′(x)2

h(x)
dx ≤ β.

The term on the left is called the Fisher information.

Bounds on moments. Suppose X is real-valued and there is some (prior) information about

the expectation and the second moment of X, namely,

0 ≤ µl ≤ E{X} ≤ µu, σ2
l + µ2

u ≤ E{X2} ≤ σ2
u + µ2

l ,

where we must have σ2
u ≥ σ2

l + (µ2
u − µ2

l ). This leads to introducing the constraints:

µl ≤
∫

xh(x) dx ≤ µu, σ2
l + µ2

u ≤
∫

x2h(x) dx ≤ σ2
u + µ2

l

that imply that the sample variance must belong to [σ2
l , σ2

u]. By the way, observe that the

set determined by this pair of constraints is convex.

Shape. Usually to include shape information an infinite number of constraints will be

required. Assume h0 : IRd → IR+ is continuous and strongly unimodal, i.e., h0(x) = e−Q(x)

for some convex function Q. Assuming that Q is C2, the constraints take the form

〈z,∇2Q(x)z〉 ≥ 0, ∀ z ∈ IRd, ∀x ∈ IRd

where ∇2Q(x) is the Hessian of Q at x. Here is another simple example of this ilk: consider

the case when h0 : IR → IR+ is known to be smooth and monotone decreasing. Then, the

constraint h′(x) ≤ 0, for all x ∈ IR should be included in the formulation of the estimation

problem, cf. the numerical example at the end of this section.

Let A be the set of functions that satisfy the constraints generated by the ‘prior’

information. The consistency of the argmax estimator will be obtained, as in the previous

sections, as a consequence of the consistency of the estimation problems:

hν ∈ argmax
h∈A⊂H

{
Eν{ln h(X)} =

∫
ln h(x) P ν(dx)

∣∣∣
∫

IRd

h(s) ds = 1, h ≥ 0
}
,

with a limit problem whose solution is the true density function. Since the empirical

measure P ν can be viewed as approximating the probability distribution P of X, one

might surmise (correctly) that this limit problem is:

max
h∈A⊂H

{
E{ln h(X)} =

∫
ln h(x) P (dx)

∣∣∣
∫

IRd

h(s) ds = 1, h ≥ 0
}
,
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where P is the probability measure associated with our random phenomena.

To conform to the framework of the hypo-convergence results in §2, let’s identify the

estimation problem with the function EνL : H → IR defined by

EνL(h) =

∫

IRd

L(x, h) P ν(dx),

and the limit optimization problem with the function EL : H → IR defined by

EL(h) =

∫

IRd

L(x, h) P 0(dx),

where

L(x, h) =

{
ln h(x) if h ∈ A ∩ {h ≥ 0 |

∫
IRd h(x) = 1 };

−∞ otherwise.

From the theorem in §2, the (Mosco-)hypo-convergence of the functions EνL to EL would

follow the convergence of the estimates hν to h0.

When dealing with consistency, however, one must take into account every possible

sequence of samples, i.e., the EνL are actually random functions since they depend on the

empirical measure P ν that in turn depends on the observations of ν iid random variables

X1, . . . , Xν. These random functions EνL are said to be (strongly) hypo-consistent with

EL if they hypo-converge almost surely to EL. This is precisely what the Law of Large

Numbers for random lsc functions guarantees.

As far as applications are concerned not much is lost if one picks H to be a separable

reproducing kernel Hilbert space, typically H is one of the Sobolev spaces Hp(IRd) or

Hp
0 (IRd). So, let’s proceed under this assumption.

Definition. A function f : IRd × H → IR is a random lower semicontinuous (random lsc)

function if

(i) for all x ∈ IRd, the function h 7→ f(x, h) is lower semicontinuous,

(ii) (x, h) 7→ f(x, h) is Bd ⊗ BH -measurable, Bd,BH are the Borel fields on IRd and H.

Law of Large Numbers [2, 1, 11]. Let H be a separable Hilbert space, {Xν , ν ∈ IN} a

sequence of iid random variables with common distribution P on Bd, and P ν the (random)

empirical measure induced by X1, . . . , Xν, and P∞ the product measure on B∞

d . Let

f : IRd × H → IR be a random lsc function and suppose that
∫

suph f(x, h) P (dx) > −∞.

With Eνf :=
∫
Ξ

f(x, ·) P ν(dx) the (random) expectation of f with respect to P ν , one has

P∞-almost surely: hypo-lim
ν→∞

Eνf = Ef where Ef(h) =

∫

IRd

f(x, h) P 0(dx).

Moreover, if P 0-almost surely, f(x, ·) ≤ α0| · −h′|2 + α1(x) for some h′ ∈ H, α0 ∈ IR+,

α1 ∈ L1
(
(IRd,Bd, P

0); IR
)
, and

∫
f(x, v(x)) P 0(dx) > −∞ for some v ∈ L2(IRd; H). Then

P∞-almost surely: Mosco-hypo-lim
ν→∞

Eνf = Ef.

This Law of Large Numbers is the keystone to:
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Hypo-consistency [10, 6]. Let H be a separable reproducing kernel Hilbert space and

X1, X2, . . ., a sequence of iid IRd-valued random variables. Suppose that

S = {h ∈ A ⊂ H |
∫

h(x) dx = 1, h ≥ 0 }

is closed. Then, the random lsc functions EνL hypo-converge P ∞-almost surely to EL

with EνL and EL defined above, i.e., they are P ∞-a.s. hypo-consistent.

Under the additional conditions that S is convex, x 7→ suph∈S h(x) is summable and

EL(h∗) > −∞ for some h∗ such that h
1/2
∗ ∈ H, the random lsc functions EνL Mosco-

hypo-converge P ∞-almost surely to EL.

There remains only to appeal to the theorem in §2 to obtain:

Consistency [6]. Assuming that h0 ∈ A and under the same hypotheses as those yielding

hypo-convergence, the estimates hν converge P ∞-almost surely to h0. Under the additional

assumptions that yield Mosco-hypo-convergence, for any weak-cluster point h∞ of the

sequence of estimates {hν , ν ∈ IN } one has that h∞ = h0 P∞-almost surely.

The condition h0 ∈ A means that the constraints introduced in the formulation of the

estimation problem do not exclude the ‘true’ density function. If h0 doesn’t belong to A,

the estimates will converge to a density in A that is as close as possible, with respect to

the Kullback-Leibler discrepancy measure, to h0

A simple example will serve to illustrate the implementation of the overall strategy

and, in particular, the role played by additional information. Let x1, x2, . . . , xν be the

sample generated from X, an exponentially distributed random variable with E{X} = 1.

The information available: the sample, h0 is smooth and decreasing.

To obtain the argmax-estimate hν one has to solve the infinite dimensional optimiza-

tion problem:

max
h∈A⊂H

ν∑

`=1

ln h(x`) so that

∫

IR

h(x) dx = 1, h ≥ 0.

Such problems don’t have a closed form solution. One has to resort to numerical techniques

based on finite dimensional approximations. In [6], the approximation was built as follows:

the Fourier series √
1/θ,

√
2/θ cos

(kπx

θ

)
, k = 1, 2, . . . ,

is an orthonormal base for H =  L2([0, θ]; IR). Instead of h ∈ H, we consider only those

functions in H obtained as a linear combination of the first q basis functions, viz.,

hq(x, u) = u0

√
1/θ +

q∑

k=1

uk

√
2/θ cos

(kπx

θ

)
,
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that depends only on the values assigned to the vector u = (u0, u1, . . . , uq). When the

only information available about h0 is the sample, the resulting nonlinear (semi-infinite)

optimization problem becomes:

max
1

ν

ν∑

`=1

ln
[ 1√

θ
u0 +

√
2√
θ

q∑

k=1

cos
(kπx`

θ

)
uk

]

so that u0 +
√

2

q∑

k=1

sin(kπ)

kπ
uk = 1/

√
θ,

u0 +
√

2

q∑

k=1

cos
(kπx

θ

)
≥ 0, ∀x ∈ [0, θ],

uk ∈ IR, k = 0, . . . , q.

(UE)

Alternative formulations of this problems can be found in the monograph [13] of Thompson

and Tapia on ‘Nonparametric Function Estimation, Modeling and Simulation’.

If it’s known that the density is a decreasing, more precisely nonincreasing, function

on [0, θ], we need to include the constraints: hq(x) ≥ hq(x′) whenever x ≤ x′, and the

estimation problem reads:

max
1

ν

ν∑

`=1

ln
[ 1√

θ
u0 +

√
2√
θ

q∑

k=1

cos
(kπx`

θ

)
uk

]

so that u0 +
√

2

q∑

k=1

sin(kπ)

kπ
uk = 1/

√
θ,

u0 +
√

2

q∑

k=1

cos
(kπx

θ

)
uk ≥ 0, ∀x ∈ IR,

q∑

k=1

[
cos
(kπx

θ

)
− cos

(kπx′

θ

)]
uk ≥ 0, 0 ≤ x ≤ x′ ≤ θ,

uk ∈ IR, k = 0, . . . , q.

(CE)

The difference between the estimates obtained via these two problems is illustrated

by the following (typical) example: The sample size is 20 (= ν), selected small on purpose.

Any proposed nonparametric estimation method should work relatively well when the

sample size is relatively large, but might fail to come up with believable results when the

sample size is small. Kernel estimation techniques, for example, perform poorly when ν is

small.

The solution of (UE) is graphed in Figure 1. The argmin-estimator was computed

with θ = 4.1 (substantially larger than any of the samples x1, . . . , x20) and q = 3, i.e., with

four base functions; the mean square error was 0.02339. The use of a richer approximating
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1

1 2 3

20h

16, 15, 10

Fig. 1. argmin-estimator given 20 samples of an exponentially distributed random variable.

basis, i.e., with q > 3, yields estimates that oscillate in the tail and have slightly larger

mean square errors.

The solution of (CE), that insists on densities that are nonincreasing, is graphed in

Figure 2. Again with θ = 4.1, but now q = 5, one obtains an estimate with mean square

error of just 0.008743. Because more information is available in this case, one can reliably

calculate the coefficients of a larger number of elements in the basis.

1

1 2 3

20h

16, 15, 10

Fig. 2. argmin-estimator with monotonicity constraint.

It’s informative to compare this approach via the argmax estimator to that followed

by Groeneboom [9]. He suggested the following method for dealing with the estimation

of nonincreasing density functions: Replace the empirical distribution function F ν by Gν

that differs from it only on the interval I where F ν ∈ (0, 1), and on I, Gν is the smallest

concave function that majorizes F ν . The resulting density function is a nonincreasing step

function. One can prove consistency for this estimator which means that when the sample

is increasing, the estimated density will eventually be arbitrarily close to h0. However,

whatever be the sample size one can never claim that the estimated density function is

‘best’ in any sense. In Groeneboom’s approach, the use of the available information enters

in the form of an afterthought, here it an intrinsic part of the calculation of the estimate.
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