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1 Introduction

The modeling of a price process associated with one or more commodities is of fundamen-
tal importance not only in the valuation of a variety of instruments and the derivatives
associated with these commodities but also in the formulation of optimization and equi-
librium models, aimed at finding ‘optimal’ extraction and/or storage strategies, that are
bound to involve these prices as parameters. Although our overall approach is clearly
applicable to a wide range of commodities, in this article we are going to restrict our
attention to copper prices that will allow us to highlight, in a practical instance, the
main features of our methodology. Copper prices are highly volatile and depend on
many external factors: existing copper stocks and contracts, deposits discoveries, the
local and world-wide economic environment and technological innovations, for example.

Figure 1: Historical copper prices from 1980 to 2011

This inherent high volatility renders the modeling particularly challenging. Our ap-
proach departs significantly from earlier efforts in a number of ways. To begin with, we
make a distinction between the short term that can be viewed as the transient process
and the long term that can be considered as the stationary process†. To find appropri-
ate estimates for these processes we rely, as is standard, on historical prices but take
also advantage of market information to build the transient component of the process.
A complete description of the state-of-the market, i.e., involving existing and potential

†Splitting time in short and long term, in the case of copper prices, is in line with the results of
Ulloa [11], who concludes after applying unit root tests to subsets of data of different lengths that shocks
affect only in the short term, because in the long term copper prices should revert to their long term
mean price presenting in the interim a high volatility.
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(under exploration) reserves, accumulated stocks, deliverable and ‘purely financial’ con-
tracts might turn out to be useful, but actually such detailed analysis of the market is
reflected in the futures contracts quoted at various metal exchange markets: COMEX
(New York), LMEX (London) and SHMETX (Shanghai). However, to exploit this infor-
mation, this market information (futures) must be converted into spot prices and how
we proceed is explained in the section dealing with the transient process. The main
reason for making a distinction between the short and the long term comes from the fact
that the high volatility suggests that no drift term can reliably be associated with the
stationary process whereas recent historical prices complemented by market informa-
tion should allow us to identify a drift in the formulation of the transient process‡. Our
model also takes into account inflation which leads us to a multi-dimensional (nonlinear)
system for which we can generate explicit solutions.

The remainder of this article is organized as follows. In §2 and 3 we present the
guiding models for the long and short term processes. The long term,or stationary,
process is analogous to some other commodity models found in the literature that we
review briefly in that section. On the other hand, the short term, or transient, component
of our model departs significantly from standard approaches and allows us to obtain
better predictable behavior. In §4 we present our full model which results in a nonlinear
stochastic differential system is a blending of the short and long term regimes. In §5 we
describe the data used to estimate and test our models and finally, provide an empirical
analysis in §6.

2 The stationary process

In our model, the long term regime will take the attributes of a stationary process which
will be mostly in line with what can be found in the literature for the ‘overall’ process.
Since this is to a large extent familiar territory, we want to get it out of way rather
expediently. The only issue that needs some concern is to decide if the model should be
build with or without mean reversion and there is really no consensus that has emerged
from a rather elaborate analysis.

On one side, basic microeconomics theory says that when prices are high the supply
will increase because higher cost producers will enter the market and that will push down
prices, returning to the market equilibrium price. Conversely, if prices are relatively
low some producers will not be able to enter the market and the supply will decrease,
stimulating a rise in prices. The mean reversion theory, introduced by [19], is supported
by many authors: [3] prove the existence of mean reversion in spot asset prices of a wide
range of commodities using the term structure of future prices; [1] proves the same using
the ability to hedge option contracts as a measure of mean reversion; [17] compare three
models of commodity prices that takes into account mean reversion, and there is many
other authors that use mean reverting processes to model commodity prices.

‡The inclusion or not of a mean reversion term in the stationary process will be taken up in the
section devoted to the stationary process.
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On the other side, results show that in some cases mean reversion is very slow, and
in others the unit root test fails to reject the random walk hypothesis. For example, [6]
apply this test to crude oil and copper prices over the past 120 years, and they reject the
random walk hypothesis, which confirms that these prices are mean reverting. However,
when they perform the unit root test using the data for only the past 30 or 40 years, they
fail to reject the random walk hypothesis. The explanation they give to this result is that
the speed of reversion is very low, so using ’recent’ past data is difficult to statistically
distinguish between a mean-reverting process and a random walk. Then, they conclude
that one should rely more on the theoretical and economical consistency (for example,
intuition concerning the operation of equilibrium mechanisms) than in statistical tests
when deciding which kind of model is better.

Another example is given by [7], where they test many different models to predict
medium term copper prices (from one to five years) and they conclude that the two
models with better performance are the first-order autoregressive process and the random
walk.

This evidence suggest that in the short term (one year) there may be no mean
reversion, which is very logical because a producer can not open suddenly a new plant
if prices are high or close the mine if prices are low. This is again an argument that
supports our approach that disconnects short and the long term effects and will rely to
a large extent on a different data base to build the two main components of our model.

For the long term we set up a stochastic differential equation that is mean reverting
and, which in turn, will determine the drift of the stationary process. We rely on a
variant of geometric brownian motion with mean reversion which is also in tune with
our choice of inflation free ‘money’, cf. §5.

This model was proposed by [6], and it’s also used by [14] to model oil prices§.
So, for the stationary process the following system of stochastic differential equations

provide us with the basis for the modeling process:

dxti = µi
(
υi − xti

)
dt+

(
J∑
j=1

bijdw
t
j

)
xti, i = 1, . . . , n, (1)

xt0i = x0
i , i = 1, . . . , n (2)

where x0
i is the present value of index i (is given), µi and bij are constants that need

to be estimated, xt =
(
xt1, . . . , x

t
n

)
is the state of the system at time t, wj, j = 1, . . . , J

are independent (standard) wiener processes, υi is and index to which xti reverts in the

§In the Pilipovic model, prices are modeled by a system of two stochastic differential equations: the
first one for the spot price, which is assumed to mean-revert toward the equilibrium price level, and the
second for the equilibrium price level, which is supposed to follow a log-gaussian distribution,

dSt = α (Lt − St) dt+ σStdwt

dLt = µLtdt+ Ltξdzt
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log term and µi is the ’speed’ at which xti reverts to υi; our strategy will be that this
mean-reversion drift is very slow and consequently, its influence is quite attenuated.

The solution of this system is: for i = 1, . . . , n,

xti = xt0i exp

[(
µi +

1

2

J∑
j=1

b2
ij

)
(t− t0) +

(
J∑
j=1

bij
(
wtj − w

t0
j

))
(t− t0)

]
+µiυi

∫ t

0

eri(t,s)ds

where,

ri(t, s) = −

[
µi +

1

2

J∑
j=1

b2
ij

]
(t− s) +

J∑
j=1

bij
(
wtj − wsj

)
.

We are going to replace this solution by an approximate one obtained by replacing
the term µiυi

∫ t
0
eri(t,s)ds by its expectation. In the Appendix A, we justify this approxi-

mation. We proceed in this manner since for all practical purposes the error introduced
by this approximation is negligible and that the, eventual estimation of the coefficients
µi, υi and bij would be very onerous, if not practically impossible.

So, we accept as ‘solution’ to the system of stochastic differential equations: for
i = 1, . . . , n,

xti = υi
(
1− e−µit

)
+ x0

i exp

[
−

(
µi +

1

2

J∑
j=1

b2
ij

)
(t− t0) +

J∑
j=1

bij
(
wtj − w

t0
j

)]

and considering t0 = 0 we obtain,

xti = υi
(
1− e−µit

)
+ x0

i exp

[
−

(
µi +

1

2

J∑
j=1

b2
ij

)
t+

J∑
j=1

bijw
t
j

]
(3)

which is also a log-gaussian process. A 1-dimensional version of this process reads,

dxt = µ
(
υ − xt

)
dt+ σxtdwt, xt0 = x0

with solution:

xt = υ
(
1− e−µt

)
+ x0 exp

[(
µ+

1

2
σ2
)
t+ σwt

]
,

Finally, to calculate the mean and the covariance terms of the n-dimensional pro-
cess, we rely again on the properties of gaussian processes. One obtains: for i = 1, . . . , n,

E[xti] = υi +
(
x0
i − υi

)
e−µit (4)

cov{xtk, xtl} = x0
kx

0
l e
−(µk+µl)t

(
exp

[
t

n∑
j=1

bkjblj

]
− 1

)
(5)
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and in particular we have V[xtk] = (x0
ke
−µkt)

2
(
et

∑n
j=1 b

2
kj − 1

)
,

and in the 1-dimensional case,

E[xt] = υ + (x0 − υ) e−µt, V[xt] =
(
x2

0e
−µt)2

(
eσ

2t − 1
)
.

Brief overview of the literature Although there is some overlap between the design
of the stationary component of our model with some earlier work, it’s difficult to make
an orderly comparison since much of the novelty in our approach isn’t featured, as far
as we can tell, in any other proposed model. In order to emphasize, the departure of the
proposed model from the relevant alternatives, we go through a brief review pointing
out their salient features.

In general terms the literature oriented to modeling commodity prices can be clas-
sified in two categories: structural models and reduced form models. The first family
aims to represent how partial equilibriums are reached in these markets. Then, a typical
application considers models for the demand, the supply and the storage, and then an
expression of the equilibrium price is derived from them. The basic equilibrium model
is described by [22], and examples of this approach are presented by [2] and [15].

On the other hand, reduced form models assumes that the stochastic behaviour of
commodity prices can be captured by stochastic differential equations. This approach
is very popular because of its simplicity, and in absence of big changes in the market
structure their predictive accuracy outperforms structural models [7]. However, most of
the work has been oriented to the valuation of contingent claims, where a mean-reverting
spot price model is combined with other factors to obtain a process for the valuation of
different derivatives.

One of the most important examples of this approach is given by [17], who compares
three models for the valuation of commodity contingent claims. In the first model, the
logarithm of the spot price is considered as the unique factor and is assumed to follow
a mean reverting Ornstein-Uhlenbeck process. Then, the spot price is given by:

dS = κ (µ− lnS) dt+ σSdz.

In his second model, [17] provides a variation of the two-factor [8] model whereas the
spot price follows a mean reverting process given by:

dS = (µ− δ)Sdt+ σ1Sdz1.

Finally, in his third model [17] introduces a three factor model that extends the previous
model by including the interest rates as a third stochastic factor. For this purpose,
interest rates are modeled as a mean-reverting process, and the join process is given by:

dS = (r − δ)Sdt+ σ1Sdz1

dδ = (α− δ) dt+ σ2dz2

dr = a (m− r) dt+ σ3dz3

dz1 · dz2 = ρ1, dz2 · dz3 = ρ2, dz1 · dz3 = ρ3
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Extensions of the [17]’s two and three-factor models are presented by [9], [12], [13] and
[15].

On the other hand, there are some multi-factor models that make an implicit dis-
tinction between short and long term. [14] defines a two-factor model by considering
the spot price (S) and the long term equilibrium price (L). The first factor is assumed
to mean-revert toward the equilibrium price level, and the second is assumed to follow
a log-gaussian distribution:

dSt = α (Lt − St) dt+ σStdzt

dLt = µLtdt+ ξLtdwt.

A similar approach is followed by [18] which proposes a two factor-model which includes
the short-term deviation in prices (χt) and the equilibrium price level (ξt) as factors:

dχt = −κχtdt+ σχdzχ

dξt = µξdt+ σξdzξ

dzχ · dzξ = ρχξdt

Then, from these factors the built the process for the spot price, which is given by
ln (St) = χt + ξt.

3 The transient process

As explained earlier, the drift for the short term prices won’t include a mean reversion
component but the calculation of this drift term will be crucial in setting up a ‘robust’
process, both when working with valuations, especially shorter term valuations, and in
the design of discrete versions of this process that would be appropriate as input in
management models (via reliable scenarios). We again cast our model as a geomet-
ric brownian motion model (for short term copper price or commodities that exhibit
similar properties), precisely because this model allows to capture the drift exploiting
both historical and market information; it also eludes the possibility of negative prices.
The innovative features of our model are mostly in the construction of this transient
process. Our approach is consistent with the fundamental principle that (probabilistic)
estimations should be based on all the information that can be collected rather than just
‘observations’. Taking this into account, the inclusion of market information is crucial
since implicitly it incorporates all the information available to which one could refer as
indexes: market expectations/beliefs, stocks, production costs and other factors that
affect prices.

In addition, we propose a model that incorporates in the volatility component the
role played by these other indexes (variables) that may affect copper prices, such as
inflation, productivity indexes, . . . This leads us to a system of stochastic differential
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equations of the following type:

dxti =

(
µidt+

J∑
j=1

bijdw
t
j

)
xti, i = 1, . . . , n, (6)

xt0i = x0
i , i = 1, . . . , n

where x0
i is the present value of index i (given), µi and bij are constants that need to be

estimated, xt = (xt1, . . . , x
t
n) is the state of the system at time t and wj, j = 1, . . . , J are

independent (standard) wiener processes with solution: for i = 1, . . . , n,

xti = xt0i exp

[(
µi −

1

2

J∑
j=1

b2
ij

)
(t− t0) +

(
J∑
j=1

bij
(
wtj − w

t0
j

))]
(7)

A 1-dimensional version of this process reads,

dxt =
(
µdt+ σdwt

)
xt, xt0 = x0 (8)

with solution,

xt = x0 exp

[(
µ− 1

2
σ2

)
(t− t0) + σ

(
wt − wt0

)
)

]
= x0 exp

[(
µ− 1

2
σ2
)
t+ σε

√
t)

]
,

where ε follows a standard gaussian distribution. Hence, x follows a log-gaussian distri-
bution with parameters

(
(µ− 1

2
σ2)∆t, σ2∆t

)
. It follows,

E[xt] = x0e
µt, V[xt] = x2

0e
2µt
(
eσ

2t − 1
)

and in the multi-dimensional case: for i = 1, . . . , n,

E[xti] = x0
i e
µit, V[xti] =

(
E[xti]

)2
(
e|t|

∑n
j=1 b

2
ij − 1

)
.

Of course, the system’s parameters will be estimated by ‘short term data’ meaning rel-
atively recent historical prices complemented by market information as explained next.

Exploiting market information. Usually the information available about a com-
modity, in our instance copper, is manifold: existing contracts, stocks by producers and
consumers, exploration activity, location of recent discoveries, economic predictions (fu-
ture demand), and so on. In order to take such a wide range of information into account,
one needs a dedicated research division to amalgamate this information so that it can
be included in a model. We suppose that the traders in this commodity, and others that
might affect its value, have actually taking all these factors into account when selling or
buying futures¶ If we accept this as a premise, obtaining market information that can

¶How futures’ prices are determined is not of immediate concern including the role played by any
of the factors mentioned above; one could consult [CrtV13, EkLV13] for an analysis of how they might
depend on stock levels and spot prices associated with contracts involving actual deliveries.
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actually be exploited in our modeling would require transforming the information we can
collect about futures and convert it into appropriate spot prices for the next few months,
say 9-12 months. We shall then rely on the recent (historical) prices in combination with
these future spot prices to build the ‘transient stochastic process’. This conversion relies
mainly on the fact that we can deduce the spot rate curve from futures by relying on the
epi-spline technology [16, 21, 20] which enables us to obtain approximates, of arbitrary
accuracy, of the financial curves associated with the market values for this particular
commodity via finite dimensional optimization problems.

In this instance, it will suffices to consider epi-splines of second order, i.e., twice
differentiable which take the following (particular) form:

z(t) = z0 + v0t+

∫ t

0

∫ τ

0

x(s) ds dτ, t ∈ [0, T ]

where

• x : (0, T )→ IR is an arbitrary piecewise constant function that corresponds to the
2nd derivative of z,

• {v0, z0} are constants that can be viewed as integration constraints.

Our construction is similar, at least in purport, to that in [21]: split the interval [0, T ]
into N sub-intervals of length δ = T/N and let the function x, the second derivative of
z, be constant on each one of these intervals, say,

x(t) = xk, t ∈ (tk−1, tk] , k = 1, . . . , N

where t0, t1, . . . , tL are the end points of the N sub-intervals. The curve z ∈ [0, T ] is
completely determined by the choice of

z0, v0 and x1, . . . , xN ,

i.e., by the choice of a finite number (N + 2) of parameters. Then, for t ∈ (tk−1, tk] one
has,

z(t) = z0 +

∫ t

0

z′(s)ds = z0 +
k−1∑
j=1

∫ tj

tj−1

z′(s) ds+

∫ t

tk−1

z′(s ds)

= z0 + v0t+ δ

k−1∑
j=1

(
t− tj +

δ

2

)
xj +

1

2
(t− tk−1)2 xk;

such a function belongs to C1,pl, i.e., it’s continuously differentiable with piece-wise linear
derivative. In our particular case, we want to generate a spot curve for the commodity
prices by minimizing the deviations from the available data, i.e.,

find z ∈ C1,pl ([0, T ] , N) such that ‖~s− z(~t)‖p is minimized (9)
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where by two vector: ~s = (s1, . . . , sL) which corresponds to the value of the assets
considered and ~t = (t1, . . . , tL) which are the dates when the assets generate the ‘cash-
flow’ of the ‘deliveries’.

To model commodity prices, here copper, we actually derive the corresponding dis-
count factor curve df , which will be used to generate the spot prices. It’s a function
with the following properties:

• it should be nonnegative, decreasing and with df(0) = 1;

• the net present value of the ‘cash-flows’ must be as close as possible to zero,

• all the associated, forward-rates and spot, curves should be smooth.

Our problem can thus be reformulated as

find df ∈ C1,pl ([0, T ] , N) so that ‖v‖p is minimized

with I our collection of instruments and ~v =
(
v1, . . . , v|I|

)
is the corresponding vector of

net present values, i.e.,

vi =

Li∑
t=1

df(til)sil, ∀i ∈ I.

For t ∈
(
δ(k − 1), δk

]
, δ = T/N , df ∈ C1,pl ([0, T ] , N) can be expressed as:

df(t) = 1 + v0t+ δ
k−1∑
j=1

(
t− tj +

δ

2

)
xj +

1

2
(t− tk−1)2 xk where τ = t− δ(k−1) (10)

where v0 and x1, . . . , xN are the parameters that need to be estimated. It’s noteworthy
that df is linear in those parameters! As criterion, we rely on minimizing maximum error,
i.e., p =∞, the problem then takes the following form, with df as defined above,

min maxi∈I,l=1,...,Li
|df(til| df ′(t) ≥ 0, ∀t ∈ [0, T ]

df(T ) ≥ 0,

v0 ≤ 0, xk ∈ IR, k = 1, · · · , N ;

note that since df(0) = 1, the two first constraints will imply that df ≥ 0 on [0, T ].
Finding a discount factor curve is fundamentally an infinite dimensional optimization
problem but the use of the epi-spline representation reduces it to a finite dimensional
one that can exploit the well-tested standard optimization routines. How this is actually
carried out is explained in [20, §6.2].

Spot rates, drift and initial conditions. Given the discount curve df , the spot prices
curve is immediately available since

sp(t) = df(t)−1/t − 1 for t ∈ [0, T ].
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We have thus at our disposal recent historical prices, say for the last 9-12 months,
today’s price and the market prices for the next 9-12 months. It’s this information that
will be used, as explained in the next section to build the drift of the transient process.
Again, we rely on an epi-spline fit to these prices to determine the ’drift’ of the transient
process. Combining this prices-information (short term past and relatively short term
market spot-prices) to obtain the drift of the process, i.e., we ‘fit’ as well as possible
our drift curve to these spot prices. The drift fit is obtain by solving the following
optimization problem: find z0, v0 and xj, j = 1, . . . , N such that

‖(sp(t)− z(t)), t = −9, . . . t = 9‖� where

z(t) = z0 + v0t+ δ
k−1∑
j=1

(t− tj + 0.5δ)xj +
τ 2

2
xk, ∀t ∈ [0, T ] .

where the interval [−9, 9], the time span we want to take into account, has been sub-
divided in a 18/N mesh and sp(t) for t = −9, . . . , 0 are the observed historical prices
and sp(t) are the calculated market spot-prices. The drift of the transient process will
then be taken to be the optimal solution of this optimization program z∗(t) for t ≥ 0.
A noteworthy consequence of this approach is that he initial condition of our process
will be z∗(0) and not today observed price sp(0). One justification for proceeding in this
fashion is that one should view today’s (observed) spot price as the ‘actual’ spot price
perturbed by some noise; our empirical calculation confirm that choosing z∗(0) as the
initial point for the transient process yields better results.

4 Blending transient and stationary processes

There remain only to pass from the short term (transient) process to the long term
(stationary) process to end up with a ‘global’ process. How to do this is still very much
an open question that was only dealt with experimentally and via data analysis, and
consequently, only in the context of copper prices. Extensive experimentation suggest
that the transient process ’reign’ is relatively short, the market reverts rather rapidly to
its natural state. So, let’s denote by XT the transient process and by XS the stationary
process, and assume that the general process X is a blending of the transient and the
stationary processes, i.e.,

Xt = λtX
T
t + (1− λt)XS

t , (11)

with Xt0 = X0 the initial state vector derived for the transient process and λt is a
(decreasing) function of time. It’s natural to think that in the short term λt = 1, i.e.,
the process is purely transient, and for the long term λt = 0, which means that there is
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no influence of the transient behavior. In the case of copper prices, we set

λt =


1 t ∈ [0, T1],
γT1−t t ∈ [T1, T2],
0 t ∈ [T2,∞)

with: T1, T2 and γ are parameters to be estimated. The estimation of these parameters
is a serious challenge because no such study is available at this time for copper prices or
any other commodity. However, we relied on our data analysis; one could also rely on
experts’ advice.

Once the parameters T1, T2 and γ have been defined we can build the blended process;
cf. the implementation in the follow up sections. To do this, we have to recall that XS

and XT can be approximated (locally) by multivariate gaussian distributions, so the
convex combination of these processes will also be (locally) gaussian. In particular, if
XT ∼ N (µT ,ΣT ) and XS ∼ N (µS,ΣS), hence

Xt = λtX
T
t + (1− λt)XS

t ∼ N (λtµT + (1− λt)µS, λ2
tΣT + (1− λt)2 ΣS).

5 Data

The data used to estimate and test the models described above consist of monthly average
observations of the LME spot copper price, from 01/1980 to 11/2012. Having a good
amount of data is particularly important to estimate the stationary process, because one
of our goals is to test how much historical data is better to consider in order to obtain
better predictions for the long term copper price.

In particular, for our experiments with all the information available and the station-
ary process we proceeded to deflect prices by the US CPI, in order to avoid inflation
effects. This wasn’t done for the transient process experiments because market data
comes in nominal terms, and also because in the short term prices do not change con-
siderably due to inflation.

In addition to this, in order to include market information in the estimation of the
transient process we used the first twelve LME copper future contracts. Then, for each
month from 01/2005 to 10/2012 we used the average future price for each contract,
and we combine this information with the short term historical spot prices to get an
estimation of the parameters involved in each short term model.

Finally, as a first approach we consider just two factors to estimate the short and
long term multivariate process: the spot copper price and the exchange rate between US
dollars and UF‖. For this purpose, we consider monthly average data for the exchange
rate, from 01/1984 to 10/2012. The used of the exchange rate in our copper price model
is based on the work of Chen et al.[4], where is shown that ”the Chilean exchange rate
has strong predictive power for future copper prices”. Furthermore, the inclusion of

‖UF is a Chilean monetary unit adjusted for inflation.
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this factor allow us to incorporate a measure of the Chilean inflation, which might be
also important in modeling copper prices. As [17] proposes in his three factor model, a
third factor that could be included to our model is the interest rate. However, to keep
simplicity we just consider two factors in this first approach.

Unit root tests As we discussed above, there is not a consensus if whether com-
modity prices exhibit mean reversion, and copper prices are not an exception. So,
we proceeded to apply the best known unit root tests - Augmented Dickey-Fuller,
Kwiatkowski–Phillips–Schmidt–Shin and Variance Ratio test - to the data we use in
our experiments∗∗.

ADF test KPSS test VRatio test

LME spot copper prices 1980 - 2012
0.337 5.405 2.693

(0.775) (0.010) (0.007)

LME deflected spot copper prices 1980 - 2012
-0.756 4.949 2.737
(0.374) (0.010) (0.006)

LME spot copper prices 2005 - 2012
0.284 0.471 2.445

(0.752) (0.010) (0.010)

Table 1: Unit root tests applied to the data used in our experiments.

The results in Table 1 allow to conclude that the ADF test fails to reject the existence
of a unit root in every set of data considered. In the same line, the null hypothesis of
the KPSS test is rejected in all cases, so it confirms the results obtained with the ADF
test. However, the results of the Variance Ratio test it follows that we can reject their
null hypothesis at a confidence level of 95% in every case, which allow to conclude that
the time series considered do not follow a random walk. This result contradicts those
obtained with the other tests, and confirms the difficulty of determining the existence
of unit roots in times series by using those tests.

6 Results

In this section we present the results obtained for the models presented above. In
particular, we estimate them using the techniques described in Appendix B for the
transient process and the generalized method of moments for our stationary process,
and then we proceed to evaluate them in terms of their in-sample accuracy and their
power of forecast out-of-sample.

∗∗We also implemented the Phillips-Perron test but the results obtained were the same as for the
ADF test.
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In our first experiment we proceed to estimate the one-dimensional model for the
transient process considering just the spot copper price, and we evaluate the different
ways to estimate the parameters and the effect of including market information.

Next we present the results related to the use of epi-splines, to incorporate a dynamic
drift term, and then we show the results of our first approach to the multivariate transient
process.

Finally, the results of the stationary process are shown, and an example of how to
blend both processes is presented.

In order to compare the results obtained with the different approaches we examined
the estimation results considering several criteria:

• In and out-of sample mean absolute error (MAD)

• In and out-of sample mean absolute percentage error (MAPE)

• In and out-of sample mean squared error (MSE)

• In and out-of sample weighted average error (WAE), weighted by 1/ti, where ti is
the period considered.

• In and out-of-sample maximum absolute error (MAE)

• In and out-of-sample root mean square error (RMSE)

6.1 Transient process

Incorporating market information One of the main questions around the transient
process is the effect of incorporating market information in the estimation of the drift
term. For this reason, for each period t we proceeded to estimate the parameters of
our model considering just the recent historical information, xt−1, . . . , xt−12, and also
considering market prices, f 1

t , . . . , f
12
t .

Then we calculated the expected value of our process for each case with the expression

E
[
xt
]

= θeµt

for our novel approach, and
E
[
xt
]

= p0e
µt

for the classical method, and then we calculated the errors of each approach.
The results are shown in Table 2. The first two columns show the errors related

to both estimation methods considering just the historical information, the next two
columns considers both historical and market information, and the last column considers
the estimation with the stationary model.
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Historical Hist + Market

Novel Classic Novel Classic

In
-

sa
m

p
le

MAD 0.618 0.515 0.412 0.539
MAPE 0.172 0.195 0.145 0.204
MSE 0.733 0.463 0.263 0.525
WAE 0.825 0.452 0.437 0.454
MAE 2.299 2.085 1.765 2.257
RMSE 0.856 0.680 0.512 0.724

O
u
t-

of
-

sa
m

p
le

MAD 0.692 0.935 0.700 0.763
MAPE 0.181 0.317 0.249 0.267
MSE 0.907 1.457 0.814 1.006
WAE 0.478 0.821 0.426 0.542
MAE 2.490 3.024 2.472 2.730
RMSE 0.952 1.207 0.902 1.003

Table 2: Comparison of the different approaches in estimating the short term drift.

From Table 2 we can see that considering market information improves considerably
the performance out-of-sample of our model, reducing significantly almost the errors
measured. In addition to this, the accuracy obtained by our novel approach is remarkably
better, which proves that estimating a representative initial point is very important to
get good predictions.

Another way to compare the predictive power of the different approaches is to built
a confidence interval around the expected value estimated in each case. For doing this,
we first estimate the variance at each point t in the future, which is given by

V
[
xt
]

=
(
E
[
xt
])2
(
eσ

2t − 1
)
.

Then, for each time t we compute the upper and the lower value by the expressions

xt = E
[
xt
]

+ V
[
xt
] 1

2 , xt = E
[
xt
]
− V

[
xt
] 1

2

and with these values we have a confidence interval for each t given by [xt, xt]. Figure
6.1 shows examples of confidence intervals obtained for the model without and with
incorporating market information respectively.
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Figure 2: Example of confidence interval obtained for our model. The left plot is obtained
estimating the parameters only with historical data, and the right plot is the one obtained
considering historical and market information.

6.2 Multivariate transient process

In section 3 we have shown that the solution of the system of stochastic differential
equations (6) is given by:

xti = x0
i exp

[(
µi −

1

2

J∑
j=1

b2
ij

)
t+

(
J∑
j=1

bijw
t
j

)]

As wtj are standard and independent Wiener processes, we know that the term

zti =

(
µi −

1

2

J∑
j=1

b2
ij

)
t+

(
J∑
j=1

bijw
t
j

)

15



is normally distributed with mean
(
µi − 1

2

∑J
j=1 b

2
ij

)
t and variance

(∑J
j=1 b

2
ij

)
t. Then,

the variable xti = x0
i e
zti is log-normally distributed, and the joint processX t = [xt1, . . . , x

t
J ]

is a multivariate log-gaussian process with mean and covariance matrix,

mt =

 x0
1e
µ1t

...
x0
Je

µJ t

 (12)

Σt =


(x0

1e
µ1t)

2
(
e|t|

∑J
j=1 b

2
1j − 1

)
· · · x0

1x
0
Je

(µ1+µJ )t
(
e|t|

∑J
j=1 b1jbJj − 1

)
...

. . .
...

x0
1x

0
Je

µ1t
(
e|t|

∑J
j=1 b1jbJj − 1

)
· · · (x0

Je
µJ t)

2
(
e|t|

∑J
j=1 b

2
Jj − 1

)
 , (13)

As we discussed above, in our first approach we just considered two equations (n = 2)
to model the evolution of copper prices: one for the copper price in US dollars, and other
for the exchange rate between US dollars and UF. In addition, we considered the copper
price and the inflation (exchange rate US dollar - UF) as factors, i.e., J = 2, which
means that the system is closed and no other factors affect the evolution on the indexes
considered.

As we have seen before, µi, bij, i, j ∈ {p, r} are parameters that need to be estimated.
For doing this, we use the recent historical information (for the last year)

x−12
i , x−11

i , . . . , x0
i , i ∈ {p, r} ,

and market information (futures) for copper prices,

x1
p, . . . , x

12
p .

Having this data, we estimated the parameters using the methods described in Ap-
pendix B and we obtained the cumulative probability and the probability density func-
tions of the multivariate process for the next period (month). Figure 3 shows an example
of the curves obtained considering the data of 10/2011.
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Figure 3: CDF and PDF of the transient process estimated for 10/2011

6.3 Stationary process

In order to compare the performance of this approach in the short term against the mod-
els presented above we first estimate our stationary model considering recent historical
data and then we estimate the expected value of our process for the next twelve months.

Then, we proceed to estimate our stationary model for the long term considering all
the historical information available. Nevertheless, the are some parameters - the number
of periods to predict and the amount of data to be considered - that need to be defined
before doing the estimations. For this purpose, we first estimate the one dimensional
model for the spot copper price considering a variable amount of historical data, in
order to determine how much data is better to calibrate the model. Finally, we show
the results obtained for our first approach in the multivariate stationary process.

Comparing the transient and the stationary processes To compare the tran-
sient and the stationary processes we proceed to estimate the parameters associated to
the stationary process following the methodology used for the epi-splines, and then we
calculated the expected value of the process for the next t months using the expression

E
[
xt
]

= υ
(
1− e−µt

)
+ x0e−µt.

In Table 3 we show the errors obtained with this approach (out of sample) using a
variable amount of historical data.
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Out-of-sample

k = 12 k = 15 k = 18 k = 21 k = 24

MAD 1.115 0.881 0.825 0.984 0.798
MAPE 1.127 0.560 0.506 0.854 0.630
MSE 14.181 1.662 1.375 5.259 1.027
WAE 0.610 0.543 0.463 0.5996 0.648
MAE 65.166 8.764 8.913 31.585 4.193
RMSE 3.765 1.289 1.172 2.293 1.013

Table 3: Errors out-of-sample of the stationary process obtained considering different
amount of historical data for the short term.

Comparing these results with the ones in Table 2 we can check that our transient
approach outperform the stationary model in the short term. From Table 3 we can also
see that as we include more historical data in the parameter estimation we obtain fewer
errors, so the amount of historical data is an important issue to check in this model.

Amount of data to calibrate the stationary process An important issue of the
stationary process is how much historical information we have to consider to estimate
the parameters. Table 4 shows the MAPE obtained by estimating the parameters with
a varying amount of historical data, k, and considering a variable amount of years to
predict.

Amount of data

k = 12 k = 24 k = 48 k = 60 k = 120

P
er

io
d
s

N = 12 0.165 0.164 0.175 0.182 0.200
N = 24 0.248 0.246 0.266 0.278 0.296
N = 48 0.345 0.367 0.403 0.410 0.403
N = 60 0.402 0.426 0.462 0.466 0.460
N = 120 0.533 0.510 0.493 0.480 0.459

Table 4: MAPE out-of-sample of the stationary process obtained considering different
amount of historical data and a variable number of periods to predict.

As we expected, when we increase the number of periods to be predicted the error
also increase. However, the amount of historical data to be considered is not clear. We
can see that when we want to forecast fewer amount of periods, considering a short
amount of data allow us to obtain better results. In contrast, when we want to predict
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a larger number of periods we need more historical data in order to obtain good results.
Then, a possible rule could be to consider an amount of data similar to the number of
periods we want to predict.

6.4 Multivariate stationary process

From section 2 we know that the solution of our multivariate stationary process is given
by: for each j ∈ {1, . . . , J}

xti = υi
(
1− e−µit

)
+ x0

i exp

[
−

(
µi +

1

2

J∑
j=1

b2
ij

)
t+

J∑
j=1

bijw
t
j

]

As wtj, j ∈ {1, . . . , J} are standard and independent Wiener processes, we know that
the term

zti = −

(
µi +

1

2

J∑
j=1

b2
ij

)
t+

J∑
j=1

bijw
t
j,

is normally distributed with mean −
(
µi + 1

2

∑J
j=1 b

2
ij

)
t and variance

∑J
j=1 b

2
ijt. Then,

the variable yti = x0
i e
zti is log-normally distributed and the joint process Y t = [yt1, . . . , y

t
J ]

is a multivariate log-gaussian distributed with parameters ρt,Σt
Y

ρt =


−
(
µ1 + 1

2

∑J
j=1 b

2
ij

)
t

...

−
(
µJ + 1

2

∑J
j=1 b

2
Jj

)
t


Σt
Y =


∑J

j=1 b
2
1j · · ·

∑J
j=1 b1jbJj

...
. . .

...∑J
j=1 b1jbJj · · ·

∑J
j=1 b

2
Jj

 ,
and the original process xt is shifted multivariate log-normally distributed with mean
and variance

mt =

 υ1 (1− e−µ1t) + x0
1e
−µ1

...
υJ (1− e−µJ t) + x0

Je
−µJ



Σt =


(x0

1e
−µ1t)

2
(
e|t|

∑J
j=1 b

2
1j − 1

)
· · · x0

1x
0
Je
−(µ1+µJ )t

(
e|t|

∑J
j=1 b1jbJj − 1

)
...

. . .
...

x0
1x

0
Je
−µ1t

(
e|t|

∑J
j=1 b1jbJj − 1

)
· · · (x0

Je
−µJ t)

2
(
e|t|

∑J
j=1 b

2
Jj − 1

)
 ,
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It can be proved that when

sij
mimj

=
x0
ix

0
je
−(µi+µj)t

(
e|t|

∑J
j=1 b1jbJj − 1

)
υi (1− e−µit) + x0

i e
−µiυj (1− e−µjt) + x0

je
−µj

, ∀i, j ∈ {1, . . . , J}

is sufficiently small, the process xt = {xt1, . . . , xtJ} can be closely approximated to a
multivariate gaussian distribution with mean mt and covariance matrix Σt.

As for the transient process, in our first approach we considered a closed system with
2 factors: spot copper price in US dollars and the exchange rate between US dollars
and UF. Then, using the historical data we can obtain the cumulative density and the
probability density functions. In Figure 4 we show the results obtained considering the
data from 01/1984 to 10/2011.

Figure 4: CDF and PDF of the stationary process estimated for 10/2011

Finally, as it’s explained in section 4 the transient and the stationary processes can
be blend to estimate copper prices in the mid term. In our case, as an example we
proceeded to blend the process estimated in sections 6.2 and 6.4, considering γ = 2,
T1 = 1 and T2 = 4. Figure 5 shows the results obtained.
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Figure 5: CDF and PDF of the blended process estimated for 10/2011

Appendix

A Approximation of the solution of the stationary

process

The solution of the stationary process is given by,

xti = x0
i exp

[
−

(
µi +

1

2

J∑
j=1

b2
ij

)
(t− t0) +

J∑
j=1

bij
(
wtj − w

t0
j

)]
+ µiυi

∫ t

0

eri(t,s)ds

where ri(t, s) = −
[
µi + 1

2

∑J
j=1 b

2
ij

]
(t − s) +

∑J
j=1 bij

(
wtj − wsj

)
. We are going to ap-

proximate this solution replacing the term µiυi
∫ t

0
eri(t,s)ds by its expectation. Then,

E
(
µiυi

∫ t

0

eri(t,s)ds
)

= µiυi

∫ t

0

e−(µi+ 1
2

∑J
j=1 b

2
ij)(t−s)E

(
exp

[
J∑
j=1

bij
(
wtj − wsj

)])
ds

= µiυi

∫ t

0

e−(µi+ 1
2

∑J
j=1 b

2
ij)(t−s)E

(
J∏
j=1

exp
[
bij
(
wtj − wsj

)])
ds

= µiυi

∫ t

0

e−(µi+ 1
2

∑J
j=1 b

2
ij)(t−s)

J∏
j=1

E
(
exp

[
bij
(
wtj − wsj

)])
ds
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But noting that
(
wtj − wsj

)
is a gaussian process with mean 0 and variance (t − s) we

know that,

= µiυi

∫ t

0

e−(µi+ 1
2

∑J
j=1 b

2
ij)(t−s)

J∏
j=1

exp

[
1

2
b2
ij(t− s)

]
ds

= µiυi

∫ t

0

e−(µi+ 1
2

∑J
j=1 b

2
ij)(t−s) exp

[
1

2

J∑
j=1

b2
ij(t− s)

]
ds

= µiυi

∫ t

0

e−(µi)(t−s)ds

= µiυie
−µit

∫ t

0

eµisds

= υie
−µit

(
eµit − 1

)
= υi

(
1− e−µit

)
Finally, we can approximate the solution of the stationary process to,

xti = υi
(
1− e−µit

)
+ x0

i exp

[
−

(
µi +

1

2

J∑
j=1

b2
ij

)
(t− t0) +

J∑
j=1

bij
(
wtj − w

t0
j

)]

B Parameter estimation of the transient process

The SDE (6) can be re-written as,

dSti =

(
µi −

1

2

J∑
j=1

b2
ij

)
dt+

J∑
j=1

bijdw
t
j

where Sti = lnxti. Then, we know that the dSti follows a gaussian distribution with the
following properties (see Dixit [5] and Hull [10]):

E
[
dSti
]

=

(
µi −

1

2

J∑
j=1

b2
ij

)
dt

V
[
dSti
]

=
J∑
j=1

b2
ijdt

cov
[
dSti , dS

t
k

]
=

J∑
j=1

bijbkjdt
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Considering the discrete case we have,

E
[
St+∆t
i − Sti

]
=

(
µi −

1

2

J∑
j=1

b2
ij

)
∆t

V
[
St+∆t
i − Sti

]
=

J∑
j=1

b2
ij∆t

cov
[
St+∆t
i − Sti , St+∆t

k − Stk
]

=
J∑
j=1

bijbkj∆t

Then, the easiest method to estimate the parameters of this model is using the fact that
Sti = lnxti and historical prices in such a way that,

µi = E
[

1

∆t
ln

(
xt+∆t
i

xti

)]
+

1

2

J∑
j=1

b2
ij

J∑
j=1

b2
ij = V

[
1√
∆t

ln

(
xt+∆t
i

xti

)]
J∑
j=1

bijbkj = cov

[
1√
∆t

ln

(
xt+∆t
i

xti

)
,

1√
∆t

ln

(
xt+∆t
k

xtk

)]
Another way to estimate these parameters is recalling that, for i ∈ {p, r}

E[xti] = x0
i e
µit,

where µi is the drift and x0
i the initial value of index i.

Then, we estimate µi, i ∈ {p, r} and the initial state denoted by θi, i ∈ {p, r}.
Estimating the initial state is very important because in most applications is used the
actual spot price as initial condition, forgetting that this also has noise as it is a random
variable.

Finally, assuming that the errors in the observations (xti) come from white noise
around the drift term µit, one has

xti = θie
µit+ε

t
i , t ∈ T

The main idea of this approach is to minimize the error associated to the estimation.
For doing so, we are going to minimize

∑
t∈T |εti|2, i.e.,(

θ̂i, µ̂i

)
∈ argmin (θi, µi)

∑
t

∣∣∣∣µit− ln

(
xti
θi

)∣∣∣∣2
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Differentiating with respect to θi and µi we get,

dυi
dθi

= 2
∑
t

(
ln

(
xti
θi

)
− µit

)
1

θi

dυi
dµi

= 2
∑
t

(
ln

(
xti
θi

)
− µit

)
t

Setting these derivatives equal to 0 we obtain,

dυi
dθi

= 0⇒ µi =

∑
t∈T ln

(
xti
θi

)
t∑

t∈T t
2

,
dυi
dθi

= 0⇒ µi =

∑
t∈T ln

(
xti
θi

)
∑

t∈T t
.

Solving the system and denoting a =
∑

t∈T t and b =
∑

t∈T t
2 we obtain, for i ∈ {p, r}

θ̂i = exp

((
a2 − bη

)−1
∑
t

(at− b) ln(xti)

)

µ̂i = b−1

(∑
t∈T

t ln

(
xti

θ̂i

))

where η is the number of observation, i.e., if we consider just the historical information
of the last 12 months η = 13.

Covariance matrix To estimate the covariance matrix with this method we know
that,

cov{xti, xtj} = x0
ix

0
je

(µi+µj)t

[
exp

(
t

J∑
k=1

bikbjk

)
− 1

]
Assuming that observations are corrupted by a white noise εtkl that affects |t|

∑
j∈{p,r} bkjblj

and recalling that x̂tk = θ̂ke
µ̂k|t|, i.e., for t = −12, . . . , 0,

(
xtk − x̂tk

) (
xtl − x̂tl

)
= θ̂kθ̂le

(µk+µl)t

exp

|t| ∑
j∈{p,r}

bkjblj + εtkl


Then, seeking estimates that minimize

∑
t |εtkl|2, one obtains the estimate β̂kl for

∑
j∈{p,r} bkjblj:

β̂kl =

∑
t |t| ln

[
1 +

(xtk−x̂tk)(xtl−x̂tl)
x̂tkx̂

t
l

]
∑

t t
2
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Thus, the estimate for cov
(
xtp, x

t
r

)
is,

σ̂tpr = θ̂pθ̂re
(µp+µr)|t|

(
eβ̂pr|t| − 1

)
and the variance, for k ∈ {p, r},

σ̂tkk = θ̂2
k

(
eβ̂kk|t| − 1

)
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