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Abstract—We describe a multi-faceted effort to demonstrate
the practical implementation of stochastic unit commitment at
RTO scale. The inputs for the scheduling engine consist of
multiple hourly trajectories of load and variable generation
availability together with probabilities that accurately describe
their likelihood of occurrence given information available on the
day ahead. Preliminary computational results indicate that the
methods have promise.

Index Terms—Stochastic Unit Commitment, Stochastic Fore-
casts

I. INTRODUCTION

HE restructured electric power industry brings new chal-

lenges and concerns for the secured operation of stressed
power systems. As renewable energy resources, distributed
generation, and demand response become significant portions
of overall generation resource mix, smarter or more intelli-
gent resource commitment and system dispatch technology is
needed to cope with new categories of uncertainty associated
with those new energy resources. The need for a new com-
mitment and dispatch system to better handle the uncertainty
introduced by the increasing number of new energy resources
becomes more and more inevitable.

In North America, almost all Regional Transmission Or-
ganizations (RTO) such as PJM, Midwest ISO or ISO New
England, are fundamentally reliant on wholesale market mech-
anisms to optimally commit generating resources and dispatch
energy and ancillary services of generation resources to reli-
ably serve the load in the large geographical region. Tradition-
ally, at the heart of a Market Management System (MMS) is a
mixed integer security-constrained unit commitment (SCUC)
optimization algorithm operating in tandem with a security-
constrained economic dispatch (SCED) optimization algo-
rithm. Together these algorithms determine which generation
resources will service load, hour by hour, considering costs
of start up, shut down, operations, and security constraint
reliability criteria.

The uncertainty of generation requirements for maintaining
system balancing has been growing significantly due to the
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penetration of renewable energy resources such as wind power.
To deal with such uncertainty, RTOs require not only more
accurate point forecasts for demand and variable generation for
longer-term prediction beyond real-time, but also descriptions
of the uncertainty associated with those forecasts. In this
project a new dispatch and commitment engine was proposed
to account for these uncertainties in the commitment and
dispatch processes.

This project has developed a new probabilistic SCUC soft-
ware platform that utilizes probabilistic inputs to account for
inaccurate forecasts in wind, solar, load use, energy storage,
electric vehicles, aggregated demand response or committed
generation that fails to fully deploy. The computational plat-
form — the PySP package for stochastic programming [1] that
is part of the Coopr optimization software package (https:
/Isoftware.sandia.gov/trac/coopr) — in which we implemented
our new probabilistic SCUC formulation is flexible, modular,
and extensible.

Devising solution methods that are scalable to ISO-size,
managing the number of scenarios, and adapting the model to
account for emerging market structures has presented algorith-
mic and computational challenges. In this paper, we describe
some of those challenges and how we have addressed them.

Day-ahead scheduling means that decisions for a day d are
made on day d — 1 based on forecasts of uncertain quantities
such as hourly load and renewables output that, in turn, are
based on forecasts of more fundamental quantities, primarily
weather. Traditional, deterministic unit commitment optimiza-
tion relies on point forecasts or expected-value quantities —
representing a single time series for each forecast quantity.
Uncertainty associated with such forecasts is dealt with in part
by maintaining a significant level of generation reserves, which
enable compensation as inevitable deviations from predicted
quantities occur during day d.

Stochastic unit commitment models (see [2], [3], [4], [5] for
a representative sample), on the other hand, assume the avail-
ability of a number of forecast scenarios, each representing a
distinct time-series. Throughout, we use the term scenario in
a narrow sense, representing a full specification of all random
data required to specify a unit commitment problem, with
associated probability of occurrence. In aggregate, the set of
scenarios should represent the range of possible behaviors on
day d. By explicitly representing forecast uncertainty through
sets of scenarios, it should be possible to significantly decrease
the generation reserve margins and consequently reduce over-
all system operation costs [6]. While previous research has



provided compelling evidence for the promise of cost savings,
it has not addressed some of the practical issues involved in
implementing stochastic unit commitment day-to-day at ISO
scale. This project is aimed at bridging that gap.

II. SIMULATION AT ISO SCALE

Our goal in this project is to estimate the potential for
cost savings if stochastic unit commitment is used at ISO
scale. We are not concerned with market design issues, but
rather with assessing how much money could be saved without
regard to how (e.g., to which participants) the savings is
allocated. To achieve this objective, we simulate — as closely as
possible — the year 2011 as experienced by ISO New England
(ISO-NE). We consider only the so-called reliability unit
commitment problem, in conjunction with hourly economic
dispatch. However, in order to test scalability and to estimate
potential total cost savings, we treat all generators as being
available for commitment.

Before executing the simulation, our software computes
parameters for load forecast models as a function of forecasted
weather variables and the errors associated with load forecasts,
using data from 2009 and 2010. As the simulation through
2011 proceeds, our load forecast models are updated using
data from days in 2011 that have already been simulated, i.e.,
days that are now historical. For each day, we make use of
weather forecasts for the next day to compute (1) a forecast
expected load for the next day and (2) a set of scenarios with
associated probabilities representing possible load time-series
for the next day. The former is used as input to a deterministic
UC model, while the latter are used as input to a stochastic
UC model. The actual loads observed by ISO-NE in 2011
are used as the simulated scenario, and costs are computed
as a function of reliability unit commitment fixed costs and
actual production costs as computed by iteratively solving an
economic dispatch given the observed load time-series.

Because our goal is to estimate cost savings, and not to
produce an operational forecasting and scenario generation
methodology to be directly applied at an ISO, we begin our
simulation on January 2, 2011 and end on November 20, 2011.
Excellent methods exist for dealing with the holiday season
in the US [7], but their use is beyond the present scope.
Additionally, we also omit August 28-30, 2011, due to the
impact of a hurricane.

Load scenario generation is performed using methods de-
scribed in [8], which extends an earlier version presented in [9]
and is a specific implementation of general methods described
in [10].

Optimization is performed using a baseline deterministic
model that is an extension of the Carrion and Arroyo unit
commitment model [11], which has been validated against
an Alstom Grid test case. For baseline simulation, we simply
solve the unit commitment model using forecasted load and
wind quantities, with additional static reserve requirements. In
simulations involving stochastic unit commitment, a two-stage
stochastic programming model based on our deterministic unit
commitment model is solved, using generated load and wind
scenarios as input. As we discuss subsequently in Section III,

solution of large-scale stochastic unit commitment problems
presents a serious computational challenge. We have addressed
this challenge using an implementation of Rockafellar and
Wets’ progressive hedging algorithm [12], to achieve solutions
to stochastic unit commitment problems with reasonable num-
bers of scenarios in tractable run-times. Our solution methods
are fully described in [13], which extends earlier work reported
in [14].

Using publicly available data and engineering knowledge
about the physical characteristics of thermal generators, we
constructed data that approximates a description of the gener-
ator fleet at ISO-NE including heat-rates, ramping characteris-
tics, minimum up/down time requirements, and startup costs.
Our instance consists of 326 thermal generators.

Wind power must be simulated in a different way. In the
case of load we have access to sufficient data to construct our
own forecast technology based on weather forecasts and we
have the data to use it in a simulation of 2011. Furthermore,
there was not significant wind power in the ISO-NE region in
2011, so we must use some other source of stochastic wind
power data.

The Bonneville Power Administration provides some
data at bpa.gov that we make use of.. We used data
from ”Wind Power Forecasting Data” /www.bpa.gov/Projects/
Initiatives/Wind/Pages/Wind-Power-Forecasting-Data.aspx as
forecast data. For actuals we used the "Data for BPA Bal-
ancing Authority Total Load, Wind Gen, Wind Forecast,
Hydro, Thermal, and Net Interchange” transmission.bpa.gov/
Business/Operations/Wind/default.aspx. We “pretend” that this
wind power was generated in the ISO-NE region in 2011. We
scale it up or down depending on how much wind penetration
we seek to simulate.

For this work, a subset of the load forecasting methodology
is used. We are given forecasts 7, 4 of total wind power for
each hour h of each day d as well as actual, observed total
wind power wy, 4. When generating load scenarios we are able
to create forecasts conditional on the error category, but in the
case of wind, we are not able to create our own forecasts from
forecasts of fundamental weather data.

Let H be the set of hours that define a partition of the hours
in a day, specified as follows:

H = {Hl}‘zi“l ,Hl = 17H|H\ =24, H; < Hi+1~

The elements H; represent the partition end-points, e.g., the -
th part of the day is given by the set of hours {H;, - , H;11}.
For each partition boundary H;, we compute the error ob-
served regression error €¢ for each day d € D as:

d
€ = WH;,d —TH;,d

We estimate the distribution of these errors, f¢, (+), by fitting an
exponential epi-spline [15], [16]. Figure 1 provides a stylized
illustration.

The error densities f,(-) serve as the primary input to the
scenario generation process. Scenario generation begins with
the specification of a set of distribution cutting points C' =
{cz}‘zczll, subject to ¢; = 0.0 and ¢|¢| = 1.0. For each partition
1 we then calculate the expected value of the error in each
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Fig. 1. Tllustrative Forecasts and Error Distributions with Hour Partition H =
{1,12,24}.

interval defined by a pair of adjacent cutting points:
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so & is the expected error for cutting point z at hour 7. The
number of cutting points can vary per hour

Given forecasts (7¢,) for each hour, day, and partition
boundary, we compute wind power at the partition boundaries
via:

wi[’f =7, + &0

For each hour H;, this step yields |C| forecast load sam-
ples. The final step in our scenario generation process is to
connect these samples in order to construct a set of paths
that approximates the stochastic process representing load for
the full day. This is simply done by calculating the scenario
loads at time h € [H;, H;11) by assuming that the deviation
from the forecast varies between the deviation at hour H; and
hour H;;. This process is illustrated in Figure 2. Under this
methodology, the number of paths (i.e., scenarios) generated
is equal to

(o] ==,

such that the number of scenarios is dictated by the values
of the referenced parameters. Further, the generation process
is deterministic, given a fixed set of historical input data.
The product of the cutting points gives the probability of the
scenario.

The processes described above allow the user to generate
any specified number of load and variable generation sce-
narios, to approximate the underlying stochastic processes as
closely as desired. The resulting set of scenarios may include
some redundancies when viewed from the perspective of the
unit commitment problem. Because the computational effort
for solving the unit commitment problem is almost directly
proportional to the number of scenarios considered, we have
developed a custom scenario reduction method that selects a
representative subset of scenarios based on their impact on the
unit commitment decisions and resulting dispatch costs [17].

Hours

Fig. 2. Illustrative Scenario Paths.

III. PRELIMINARY RESULTS

Our experiments are executed on a commodity high-end
workstation, consisting of eight 8-core AMD Opteron 6278
2.4GHz processors with 512GB of RAM. Such a workstation
is representative of the type of resource that is likely to be cur-
rently available or available in the near term to typical utilities
and ISOs, and can be purchased for less than $20K USD. The
platform allows for modest-scale parallelism, specifically in
the executing of our PH solution algorithm. Our deterministic
unit commitment model is coded in the Pyomo [18] algebraic
modeling library. Our stochastic unit commitment models are
expressed in PySP [1], which also provides the base PH
implementation used in our studies.

We first report on solve times associated with the PH
algorithm on stochastic UC instances associated with our ISO-
NE test case. Mirroring the results we previously reported
for the simpler WECC-240 test case (with ~ 100 thermal
generators) [13], we are able to obtain solutions to our ISO-
NE test case in less than 30 minutes of wall clock time in
most cases. The exceptional cases involve larger than expected
numbers of PH iterations, which can be mitigated by various
techniques [19]. Our tests involve 50 or 100 scenarios for each
stochastic UC solve. Run-times and general PH behavior are
largely independent of scenario features such as variability.
Bounds are obtained using a novel extension of the PH
algorithm, as reported in [20]. Mirroring our prior results on
WECC-240, the optimality gaps on PH solutions to our ISO-
NE test cases do not exceed 2%.

We have performed limited simulations of the ISO-NE
system for May and June of 2011, focusing strictly on stochas-
tic load. As indicated above, we consider 50 load scenarios
for each day-ahead data set. Empirical evidence indicates
this quantity is sufficient to ensure out-of-sample stability
of the solution, largely due to our ability to approximate —
as opposed to sample — the underlying stochastic process.
Relative to the simulation considering deterministic reliability
unit commitment, we observe approximately 1.2% savings in
terms of energy production costs when using stochastic unit
commitment. This quantity increases to over 2.3% when forced



outages (sampled based on their empirical forced outage rates)
are considered in the load scenarios. These results, while
preliminary, are consistent with those previously reported by
[6] on smaller test cases, with significantly smaller numbers
of scenarios.

More extensive investigation, particularly during peak sum-
mer months, is required before comprehensive conclusions can
be drawn. However, the preliminary evidence is promising,
indicating that stochastic unit commitment — when coupled
with solvers that achieve tractable run-times — can achieve
significant cost savings in practice. Further, we observe that we
are not factoring in the cost of ancillary services, which will
further inflate the cost savings associated with stochastic unit
commitment — due to the reductions in reserve requirements
afforded by the approach.

Our experiments concerning cost savings with wind scenar-
ios are more limited, due to increased difficulty of creating
stochastic process models of wind power. Our preliminary
experiments have focused on the use of the BPA wind power
scenarios previously described in Section II, which we scale to
represent various hypothesized penetration levels at ISO-NE.
For cases representing approximately 20% penetration levels,
we are observing 3% cost savings relative to the deterministic
approach for stochastic unit commitment. However, these
savings are computed on a pair of weeks in the summer of
2011, and therefore represent a biased and incomplete sample.
We are in the process of more comprehensive explorations,
including extended time periods and variable penetration
levels. Finally, we note that we have presently focused on
load and wind power uncertainty independently, and will
ultimately investigate “crossed” scenarios when the univariate
simulations are complete.

IV. CONCLUSION AND IN-PROGRESS RESEARCH

We have described a multi-faceted effort to demonstrate
the practical implementation of stochastic unit commitment
at RTO scale. The inputs for the scheduling engine consist
of multiple hourly trajectories of load and variable generation
availability together with probabilities that accurately describe
their likelihood of occurrence given information available on
the day ahead. A custom scenario reduction method identifies
a minimal set of trajectories to consider in the scheduling
process. The engine efficiently exploits parallel processors
to quickly identify a near-optimal schedule, together with a
bound on its deviation from optimality. The cost savings have
been rigorously assessed by simulating this process over a
year of operation and comparing the cost performance of
the daily commitment schedules obtained by stochastic unit
commitment with the corresponding schedules obtained from
the usual deterministic optimization with fixed reserves.
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