
SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 1

Toward Scalable Stochastic Unit Commitment -
Part 2: Assessing Solver Performance

Kwok Cheung, Senior Member, IEEE, Dinakar Gade, César Silva Monroy, Member, IEEE, Sarah M.
Ryan, Member, IEEE, Jean-Paul Watson, Member, IEEE, Roger J.-B. Wets, and David L. Woodruff, Member, IEEE

Abstract—In this second portion of a two-part analysis of a
computational approach to scalable stochastic unit commitment,
we transition our focus from approximating accurate stochastic
process models of load to solving the resulting stochastic opti-
mization models in tractable run-times. Our solution technique is
based on Rockafellar and Wets’ progressive hedging algorithm,
a scenario-based decomposition strategy for solving stochastic
programs. To achieve high-quality solutions in tractable run-
times, we describe key customizations of the progressive hedging
algorithm for stochastic unit commitment. Using a variant of
the WECC-240 test case, we demonstrate the ability of our
approach to solve moderate-scale stochastic unit commitment
problems with reasonable numbers of scenarios in less than 30
minutes of wall clock time on a commodity hardware. Further,
we demonstrate that the resulting solutions are high-quality, with
cost typically within 1-2% of optimal. Our optimization model
and associated test cases are publicly available, serving as a
basis for evaluating the relative effectiveness of stochastic unit
commitment solvers.

Index Terms—Unit Commitment, Load Uncertainty, Optimiza-
tion, Stochastic Mixed-Integer Programming.

I. INTRODUCTION

WHile there is a significant body of research on stochas-
tic unit commitment (SUC) in the power systems liter-

ature (see [1], [2], [3], [4] for a representative sample), these
efforts have not yet been successfully transferred to real-world
industrial contexts. This is due in large part to the well-known
computational difficulty of stochastic unit commitment, where
even small cases with a handful of scenarios can take hours to
solve [5]. A survey of prior algorithmic approaches to SUC is
provided in [6]. An analysis of this survey indicates that the
current state-of-the-art for SUC can tackle approximately 50
scenarios on instances with approximately a hundred thermal
generation units, achieving solutions in several hours of run
time. Further, those studies consider short (24-hour) time
horizons, which greatly simplifies the SUC problem relative
to the more typical 48 hour horizons executed in practice.

The primary purpose of this paper is to detail a research
effort dedicated to developing a SUC solver ultimately ca-
pable of achieving solutions in tractable (e.g., less than 30
minute) run-times, given realistic numbers of time periods
(e.g., 48 hour-long periods) on full-scale power systems (e.g.,

Kwok Chueng is with Alstom Grid, in Redmond, Washington. Dinakar
Gade is with Sabre Holdings in Southlake, Texas. Sarah Ryan is with Iowa
State University, in Ames, Iowa. César Silva-Monroy and Jean-Paul Watson
are with Sandia National Laboratories in Albuquerque, New Mexico. Roger
Wets and David Woodruff are with the University of California Davis, in
Davis, California.

Manuscript received November TBD, 2013; revised XXX.

1000 generation units). In this context, a ”solution” refers to
an implementable and non-anticipative generation schedule,
with associated expected cost and optimality bound. We
demonstrate significant progress toward this goal, considering
a variant of the well-known WECC-240 test case [7]. We
leverage modest-scale parallelism to achieve the required run-
times, leveraging commodity computing capabilities that an
ISO / utility either presently possesses or is likely to acquire
in the near future. Fundamentally, our goal is to demonstrate
the viability of SUC in a real-world applications context.

Our computational experiments proceed in the context of
load scenarios generated via the algorithmic process described
in the companion paper [8]. Accurate assessment of stochastic
unit commitment solvers requires accurate load scenarios, as
the latter can potentially impact algorithm performance. We
limit our investigations of solver performance to given, pre-
specified sets of load scenarios. Issues relating to scenario
reduction and sampling, out-of-sample solution validation and,
quantification of cost savings are beyond the scope of the
present contribution. Rather, we focus on the goal of demon-
strating that operational run-times can be achieved for SUC
instances with reasonable numbers of realistic load scenarios
– a key step toward ultimate commercial adoption of both the
underlying uncertainty model and solver.

A secondary goal of this paper is to establish a publicly
available SUC model and sets of corresponding instances.
The availability of such instances – particularly with high-
accuracy scenario sets – is critical to driving SUC solver
research, in order to quickly identify and focus on the most
promising algorithmic alternatives. To date, SUC research has
not been performed in such a context, i.e., direct and accurate
comparisons of solver run-times is absent in the literature.

The remainder of this paper is organized as follows. We
describe the core deterministic and stochastic optimization
models used in our analysis in Section II. Our solution
approach is detailed in Section III. Our case study data, based
on the WECC-240 test case, is described in Section IV. We
describe our computational experiments and associated results
in Section V. We then conclude with a summary of our results
in Section VI.

II. UNIT COMMITMENT MODELS

We now introduce the core optimization models used in
our analysis. We begin by introducing the deterministic UC
optimization model in Section II-A. We then discuss the exten-
sion of this core model to a two-stage stochastic programming
context in Section II-B.

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 2

A. Core Deterministic UC Model

As a basis for our stochastic unit commitment model, we
adopt the deterministic UC model introduced by Carrion and
Arroyo (CA) [9]. The purported benefit of this model relates to
the limited number of binary variables used in the formulation,
relative to the previously standard ”three-binary” deterministic
UC model. While we leverage the CA formulation in this
paper, we note that on large-scale instances we have not
observed significant differences in the solve times between
the CA formulation, the traditional three-binary formulation,
and a more recent three-binary UC formulation [10].

We focus on reliability unit commitment in this paper,
i.e., the process executed by an ISO following the close
of the day-ahead market (DAM). Integration of uncertainty
into the DAM requires modification of core market structure,
which is beyond the present scope. We have implemented our
version of the CA deterministic UC model in the open-source
Pyomo algebraic modeling language [11]. Further, we have
validated our implementation against Alstom’s e-terramarket
UC model, to ensure model correctness.

B. Two-Stage Stochastic UC Model

Following [1] and others, we extend the basic deterministic
UC model into a two-stage stochastic UC model. To construct
the stochastic UC model, the variables in the core deterministic
UC model are partitioned into two stages, mirroring the
structure of the corresponding real-world decision process.
The first-stage variables consist of the thermal generator on/off
state indicator variables, one for each each hour in the planning
horizon. All remaining variables, including thermal generator
dispatch levels, reserve allocations, and cost computations,
are classified as second-stage variables. First-stage variables
are required to be non-anticipative in a two-stage stochastic
program, such that their value does not depend on the scenario
that is ultimately realized. Given a set of S scenarios, in our
case obtained using the procedures described in the companion
paper [8], a two-stage UC model can be constructed by
creating an instance of the deterministic UC model for each
scenario s ∈ S. To enforce non-anticipativity for the first-
stage variables, we then impose equality constraints among
the instances of the corresponding variables in all scenarios.
The resulting model is known as an explicit extensive form of
the corresponding two-stage stochastic program, in which the
first-stage decision variables (for reasons that are discussed
in Section III) are replicated for each scenario instance.
We take minimization of the sum of first stage cost (e.g.,
startup, no-load, and shutdown costs) plus expected second
stage cost (e.g., production cost) as the optimization objective.
However, we note that our solver extends trivially to risk-
oriented optimization metrics such as Conditional Value-at-
Risk (CVaR). For further details regarding the structure and
properties of two-stage stochastic programs, we refer to [12].

Building on the Pyomo implementation of our core de-
terministic UC model, we have implemented our two-stage
stochastic UC model in the open-source PySP package for
stochastic programming [13]. Both Pyomo and PySP are

distributed as part of the Coopr optimization software package
(https://software.sandia.gov/trac/coopr).

As discussed in the companion paper [8], we restrict our
focus to uncertainty in the day-ahead load. Our goal is to
demonstrate scalability of a SUC solver on a realistic test
case, using carefully constructed and accurate scenarios. While
the broader project is developing analogous models for wind
power, simultaneous consideration of stochastic wind power
and load is beyond the scope of the present contribution.

We have chosen to consider two-stage stochastic UC models
in this paper, in contrast to their more complex multi-stage
variants, for three primary reasons. First, our scenario gen-
eration processes are not presently multi-stage, and instead
mirror the structure of two-stage UC models. Second, two-
stage models provide a lower bound on the cost savings
of more general multi-stage models, and for that reason
are typically analyzed first. Third, two-stage solutions are
more straightforward to interpret than multi-stage solutions,
simplifying presentation of results. Despite these limitations,
we observe that the solution algorithms we describe below are
extensible to the multi-stage case. However, the difficulty in
constructing multi-stage scenario trees is a significant barrier
to investigation, let alone adoption.

III. SOLUTION APPROACH

Following a brief survey of prior efforts involving the
solution of stochastic UC models in Section III-A, we describe
our basic solution algorithm in Section III-B. We then discuss
specializations of the core algorithm to two-stage stochastic
UC in Section III-C. Issues related to the deployment and
parallelization of our algorithm are detailed in Section III-D.
Computation of lower bounds on solution quality is briefly
discussed in Section III-E.

A. Background

As we report below in Section V-C, the extensive form of
the two-stage SUC is practically insoluble via direct methods
such as commercially available MIP solvers. Similar findings
are reported throughout the SUC literature [6]. To achieve
tractable run-times for two-stage SUC, decomposition tech-
niques must be leveraged. Two dominant classes of decom-
position techniques for general two-stage stochastic programs
are time stage-based and scenario-based. The exemplar stage-
based technique is the L-shaped method (Benders decomposi-
tion) [14]. Exemplars of scenario-based decomposition include
progressive hedging (PH) [15] and dual decomposition [16].

One advantage of scenario-based decomposition techniques
over their stage-based counterparts is a more uniform distribu-
tion of sub-problem difficulty. In particular, the computational
difficulty of the master problem in the L-shaped method can
grow significantly as the number of iterations increases, while
the sub-problems are typically comparatively easy. Another
advantage is that they are easily implemented in situations
where software for solving the deterministic version of the
problem already exists, and may have been highly customized
for efficient solution – as is the case for unit commitment.

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 3

As discussed in [6, p.17], most prior analyses of stochastic
unit commitment consider direct solution of the extensive
form. Even those studies that use decomposition schemes are
limited in the sizes of the test cases considered – typically no
more than 100 generators, with 24 time periods, and fewer than
50 scenarios. Further, the reported run-times for the largest of
these cases exceeds 30 minutes, and more typically an hour.
Scalability to larger numbers of scenarios and time periods is
thus a major and open concern.

B. Progressive Hedging

To describe the PH algorithm, we consider an abstract class
of optimization problems that includes the unit commitment
problem. Uncertainty in future system inputs is captured by
a finite set of scenarios S. Each s ∈ S provides a full
realization of problem data, and has an associated proba-
bility of realization ps. If the future were known with cer-
tainty, the resulting optimization problem could be written as:
min f(x) + gs(x, y) | (x, y) ∈ Qs where x and y represent
vectors of first stage (e.g., unit commitments) and second
stage (e.g., generator output levels) decisions, respectively.
The functions f and gs respectively compute the first (e.g.,
startup) and second stage (e.g., production) costs. The notation
(x, y) ∈ Qs abstractly captures the requirement that any
combination of feasible first and second stage decision vectors
must satisfy all constraints imposed by the laws of physics and
system operating policies under scenario s. In the case of SUC,
each scenario corresponds to the deterministic, day-ahead unit
commitment problem that is presently solved in operations.

Of course, the future cannot be known with certainty, and
we must determine a non-anticipative x and corresponding
scenario-specific ys such that (1) the sum of first stage costs
plus the expected second stage costs is minimized and (2)
(x, ys) ∈ Qs for all s ∈ S . PH achieves this objective by
decomposing the extensive form of a stochastic program by
scenarios, initially relaxing the non-anticipativity constraints
on first-stage decision variables. Non-anticipativity is restored
via an iterative multiplier update scheme, as follows:

1: Initialization: ν ← 0 and wνs ← 0 ,∀s ∈ S
2: Iteration 0: xνs = argminx,yf(x) + gs(x, y)|(x, y) ∈ Qs,
∀s ∈ S

3: Aggregation: xν =
∑
s∈S psx

ν−1
s

4: Iteration Update: ν ← ν + 1
5: Multiplier Update: wνs ← wν−1s + ρ(xν−1s − xν−1),
∀s ∈ S

6: Iteration ν: xνs = argminx,yf(x) + gs(x, y) + wνsx
ν
s +

ρ
2 ||x

ν
s − xν−1||2 | (x, y) ∈ Qs, ∀s ∈ S

7: Convergence Check: if all solutions xνs are identical, halt.
Otherwise, go to Step 3.

In the PH pseudocode, we superscript the multipliers w, the
first-stage scenario solutions x, and the first-stage averages
x by the iteration counter ν; the w and x are additionally
subscripted by the scenario s ∈ S. Following initialization,
PH solves the scenario sub-problems, in order to form an
initial “best guess” at a solution that is non-anticipative. PH
then updates the estimates of the multipliers wνs required to
enforce non-anticipativity, using a penalty parameter ρ. We

observe that while ρ is a scalar in the pseudocode shown
above, in general it can be variable-specific. Following the
multiplier update, PH solves variants of the scenario sub-
problems that are augmented with a linear term in x pro-
portional to the multiplier wνs and a quadratic proximal term
penalizing deviation of xνs from xν−1. These additional terms,
in conjunction with the multiplier updates, are designed to
gradually reduce the differences in xs as PH progresses,
eventually identifying a non-anticipative solution x. PH can
be accelerated by executing the sub-problem solves in Steps 2
and 6 in parallel, with a barrier synchronization immediately
following each step. While the pseudocode provided above
is specific to two-stage stochastic programs, the algorithm
generalizes to multi-stage contexts.

While PH is provably convergent in the case of non-linear
(and therefore linear) stochastic programs, this is not the case
for mixed-integer stochastic programs. In particular, the pres-
ence of integer decision variables can induce cycling behavior.
However, effective techniques for detecting and breaking cy-
cles have been recently introduced [17]. Further, accelerators
are typically necessary to improve PH convergence, in order
to achieve practical run-times: variable fixing (freezing the
values of variables that have converged for the past k PH
iterations) and slamming (forcing early convergence of specific
variables that have minimal impact on the objective). Both of
these techniques are described fully in [17].

C. Specialization to Stochastic UC

Progressive hedging was first applied to the SUC by Takriti
et al. [1], who examined a variant designed to address the
possibility of non-convergence in the mixed-integer case. [18]
also examine SUC, and compare it with alternative heuristics.
While both report promising results, the test case sizes con-
sidered are small, and in the case of [18] no run-times are
reported; no configuration or tuning experiments are reported.

PH performance is known to be critically dependent upon
the value of the ρ parameter. Poor choices can lead to non-
convergence, or extremely slow convergence times. In our PH
configuration, we use variable-specific ρ values for generation
unit on/off variables. For a given thermal generator g, we
compute the production cost pg associated with the average
power output level. We then introduce a global scaling factor
α, and compute generator-specific penalties ρg = αpg . The
penalty factor is clearly independent of the time period. This
strategy for setting ρ is known as “cost-proportional” ρ, shown
to be an effective technique for PH parameterization [17], [13].

Other techniques we use to improve the PH performance
for stochastic UC include the use of approximate solutions
in early PH iterations, and the fixing of variables that have
converged to non-anticipative values. The cost of obtaining
optimal solutions to scenario sub-problems is prohibitive in
early iterations, and is further not needed – precise estimates
of the penalty terms wνs are not necessary. Consequently, for
PH iterations 0 and 1, we set the optimality tolerance (i.e., the
“mipgap”) for scenario sub-problem solves to a value γ01. For
PH iterations ≥ 2, we then linearly scale γ01 as a function of
the current value of PH convergence metric δ (described in

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 4

[17]; as PH converges, the mipgap approaches 0. In practice,
we threshold γ to the default migap tolerance of the solver
employed, e.g., 1e-5 in the case of CPLEX. With variable
fixing, we fix variables that have converged to a consistent
value for the past µ PH iterations. The intuition here is that if
a particular variable has converged for a fixed number of PH
iterations, it is likely to remain fixed in subsequent iterations.
The technique, while heuristic, has the benefit of reducing the
size of the scenario sub-problems, in turn reducing solve times.
We use the implementation of both techniques available in the
”Watson-Woodruff” extensions available in the PySP software.

D. Parallelization and Deployment

Parallelization of PH is conceptually straightforward – the
sub-problem solves at Steps 2 and 6 are independent, and can
execute on distinct processing elements. In a parallel PH en-
vironment, a client process is responsible for initiating the re-
quest for sub-problem solves, computing the solution averages
xν , and updating the multipliers wνs . Relative to sub-problem
solves, these actions consume a fraction of the overall run time.
Parallel efficiency is limited by the difference between the av-
erage and maximum sub-problem solve time, which in practice
can be significant. Because our performance metric is wall
clock time, we ignore issues relating to parallel efficiency in
our experiments. We use the parallel PH execution capabilities
in the PySP library [13], which are in turn built on the Python
Remote Objects library (http://pypi.python.org/pypi/Pyro. Pyro
provides for parallel execution on distributed memory clusters
and multi-core workstations.

E. Computation of Lower Bounds

Mirroring the case for deterministic unit commitment, a
goal of stochastic unit commitment solvers is to provide
both an implementable solution and some quantification of
its optimality. Recently, [19] showed that a valid lower bound
in the stochastic mixed-integer case can be obtained in any
iteration µ of PH, simply by solving the optimization problems
of the form min f(x)+gs(x, y)+wνxs for each scenario s ∈ S
and forming the probability-weighted average of the resulting
costs. We report these bounds in our computational experi-
ments, considering only the bound associated with the final
PH iteration. Mirroring the case of the basic PH algorithm,
the lower bound computation is straightforward to parallelize.

IV. WECC-240 CASE STUDY

As a basis for a test case, we choose the WECC-240
instance introduced in [7], which provides a simplified descrip-
tion of the western US interconnection. This instance consists
of 85 thermal generators. Because it was originally introduced
to assess market design alternatives, we have modified this
instance to capture characteristics more relevant to reliability
assessment, which were absent or incomplete in the original
case. These include startup, shutdown, and nominal ramping
limits, startup cost curves, and minimum up and down times. A
full description of the modifications, and the case itself, can be
obtained by contacting the authors. Our choice of WECC-240

was driven by the desire to develop a publicly releasable test
case; at present, our ISO-NE test case (corresponding to the
load scenario generation process described in the companion
[8]) contains proprietary data.

We consider three SUC test instances in our experiments,
constructed by scaling ISO-NE load to match WECC-240
system characteristics. Additional cases, one for each day
in 2011, are available from the authors. Scenarios in the
base case, denoted WECC-240-r1, are generated by randomly
perturbing load from the original WECC-240 case (for a
chosen day) by +- 10%. The base case is used for tuning PH
parameters. Out-of-sample testing is then performed on two
cases using scenarios constructed via the process described
in the companion paper. These cases are denoted WECC-240-
r2 and WECC-240-r3, and respectively represent low-variance
and high-variance scenario sets for ISO-NE (corresponding to
Figures 6 and 7 in [8]). For each case, we consider instances
with 3, 5, 10, 25, 50, and 100 scenarios.

V. EMPIRICAL RESULTS

We now analyze the performance of our PH algorithm for
two-stage SUC. We initially consider the WECC-240-r1 case,
performing parameter tuning and analysis. We then fix PH
configuration and examine performance on the out-of-sample
and more realistic WECC-240-r2 and WECC-240-r3 cases.

A. Computational Platforms

Our experiments are executed on two distinct platforms. The
first represents a commodity high-end workstation, and con-
sists of eight 8-core AMD Opteron 6278 2.4GHz processors
with 512GB of RAM. Such a workstation is representative of
the type of resource that is likely to be currently available or
available in the near term to typical utilities and ISOs, and can
be purchased for less than $20K USD. The platform allows
for modest-scale parallelism. The second platform, used exclu-
sively for the larger 100-scenario instances, is Sandia National
Laboratories Red Sky cluster, whose individual blades consist
of two quad-core 2.3GHz Intel X5570 processors and 12GB of
RAM. We observe that the dependency of our results on this
particular architecture is negligible, in that a small-scale cluster
with similar processors could achieve identical performance.

All parallel PH jobs are allocated a number of processes
equal to the number of scenarios, plus additional processes
for executing the PH master algorithm and coordinating com-
munication among the sub-problem solution processes. We use
CPLEX 12.5 as our extensive form and scenario sub-problem
solver, with default parameter settings unless otherwise noted.

B. Individual Scenario Sub-Problem Difficulty

The overall run-time of PH is strongly a function of the
difficulty of individual scenarios, both with and without the
augmented objective terms. Thus, we begin our empirical
analysis of PH performance considering CPLEX run-times
on scenario sub-problems. Specifically, we consider our 100-
scenario WECC-240-r1 instance, executing PH in serial for
one iteration using a ρ scaling factor equal to 1 and no variable

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 5

TABLE I
SOLVE TIME AND SOLUTION QUALITY STATISTICS FOR WECC-240-r1

SCENARIO SUB-PROBLEMS, 100-SCENARIO INSTANCE.

MIP Gap Solve Time (Avg. / Max.)
PH Iteration 0 PH Iteration 1

0.03 34.44 / 53.81 5.12 / 7.70
0.025 61.99 / 123.53 6.11 / 9.87
0.02 205.75 / 604.86 9.42 / 25.74

fixing. Warm-starting between iterations 0 and 1 is enabled,
to reflect the actual PH configuration used in subsequent
experiments. We vary the mipgap termination threshold γ from
0.02 to 0.03 in increments of 0.005. As the results below
indicate, solution times with smaller γ are prohibitive in the
context of PH. For each invocation of CPLEX, we allocate 2
threads; larger thread counts are not realistic in operational
environments, where the number of scenarios is likely to
exceed the number of available compute cores.

In preliminary experimentation, we observed that CPLEX
12.5 performance is significantly improved on a range of
deterministic UC instances when the following two options
are employed, as we do in all subsequent experiments. First,
we enable the relaxation induced neighborhood search (RINS)
heuristic [20], to be applied every 100 nodes in the branch-
and-cut tree. Second, we set the search emphasis to “moving
best bound” (option 3). Lacking either of these options, the
run-times reported below are significantly inflated.

Statistics for the scenario sub-problem solve times (in
seconds) are reported in Table I. We report average and
maximum statistics, particularly as the latter is a key driver
in parallel PH performance. The results immediately highlight
the absolute difficulty of the deterministic single-scenario
instances associated with the WECC-240-r1 case, which is
consistent with results reported for similarly sized instances
[9], [10]. Given target run-times on the order of 30 minutes
for SUC solvers to be viable in deployment contexts, it is clear
that γ ≤ 0.02 can not be considered; individual scenario solve
times necessarily bound the time of individual PH iterations.
In auxiliary experimentation, we observe the allocation of
additional threads does not drop the solve times appreciably,
such that the additional cores can be allocated to disparate
scenario sub-problem solves.

Based on the results presented above, we limit scenario
solves times in any PH iteration to 2 minutes in all experiments
described below, and focus on cases when γ equals either
0.025 or 0.03. Values of γ significantly larger than 0.03 –
even in early PH iterations – yield very poor PH behavior, for
the following reason. In the WECC-240-r1 instance, feasible
solutions are quickly found – leveraging the characteristic that
the majority of generators can be on for all time periods,
while maintaining a low power output level. Taken across all
scenarios, this can result in premature convergence of PH, to
this trivial and highly sub-optimal solution.

Finally, we note that the use of the CPLEX RINS and
moving-best-bound options empirically result in rapid reduc-
tions in the upper bound, relative to the default settings
that more rapidly increase the lower bound. This difference

is key, in that it moves us away from the trivial solutions
described above. There are two non-exclusive strategies for
achieving a target γ, and we have focused on those that
reduce the optimality gap through identification of high-quality
incumbent solutions.

C. Solving the Extensive Form

Next, we analyze the computational difficulty of the ex-
tensive form of the WECC-240-r1 instance, as a function of
the number of scenarios considered. The results serve as a
performance baseline for the PH algorithm, and additionally
provide an indication of absolute instance difficulty.

We execute all experiments associated with extensive form
solves on our 64-core workstation, allocating the maximum
possible number of (64) threads to each CPLEX run. Mirroring
the case for individual scenario solves, enabling the RINS
heuristic and moving best-bound emphasis yields significant
improvements in solution quality relative to the default pa-
rameter settings. Consequently, we employ identical settings
to those described in Section V-B. For each scenario count,
we perform runs with a limit of 2 and 4 hours of wall clock
time. For each run, we record the optimality gap reported
at termination, the incumbent solution cost, the final lower
bound, and the observed wall clock time. The latter can differ
from the allocated time limit due to the granularity with which
CPLEX checks the overall run time against the allocated limit.
The results are reported in Table II.

We immediately observe the absolute difficulty of the
WECC-240-r1 extensive forms. In no case was an optimality
gap less than 0.75% observed, and for the larger instances -
despite the overall run-time - the gaps are significant. For the
50 and 100 scenario instances, processing had not progressed
beyond the root node of the branch-and-cut tree, and the root
relaxation (LP solve) time consumed a significant proportion
of the run-time (e.g., 6084 seconds in the 100-scenario case).
We highlight such behavior to illustrate that parallelism oppor-
tunities for a direct solve of the stochastic UC extensive form
are limited, given current mixed-integer solver technology.
As reported for individual scenario instances, identification
of a feasible solution is relatively straightforward in the case
of WECC-240-r1, specifically a trivial solution in which the
majority of generators are on at low output levels for all time
periods. Improvement of this trivial solution often does not
occur until beyond an hour of wall clock time, particularly for
instances with 25 or greater scenarios. Clearly, the difficulty of
the root linear programming relaxation solve alone precludes
direct solution of the stochastic UC in an operational context.
However, the results do provide a performance baseline.

D. Parameter Tuning for PH

As discussed in Section III, there are three key parameters
underlying our PH algorithm for stochastic UC: the scale
factor ρ used to compute the ρ values, the choice of initial
sub-problem mipgap γ, and the discrete variable fix lag µ.
We now analyze the performance of our PH algorithm for
various choices of these parameters, to illustrate their influence
on performance in terms of both final solution quality and

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 6

TABLE II
SOLVE TIME AND SOLUTION QUALITY STATISTICS FOR THE EXTENSIVE FORM OF THE WECC-240-r1 INSTANCE

Two Hour Time Limit Four Hour Time Limit
Scenarios Solution Cost Lower Bound Gap % Run Time (s) Solution Cost Lower Bound Gap % Run Time (s)
3 64279.18 63708.67 0.89 7291 64278.203 63797.72 0.75 14491
5 62857.52 62052.75 1.26 7309 62740.667 62180.86 0.89 14723
10 61873.01 60769.78 1.77 7444 61563.097 60835.45 1.18 14630
25 61496.24 59900.40 2.59 7739 61455.551 59963.78 2.36 14960
50 61911.74 59432.08 4.01 8279 61911.740 59540.87 3.83 15480
100 62388.85 3500.70 94.39 9379 62388.851 59548.23 4.51 16562

overall run-time. For brevity, we do not perform a fully crossed
experiment, but rather explore a subset of parameter settings
based on our experience with tuning PH in other domains and
the sub-problem solve time statistics reported in Section V-B.

Our initial experiments consist of the following PH config-
uration: α = 1.0, µ = 3 for PH iterations ≥ 1, immediate
fixing of variables at PH iteration 0 with converged value
equal to 0, and an initial mipgap γ = 0.03. We limit the total
number of PH iterations to 30, and record the terminating
value of the convergence metric, the final expected solution
cost, the total number of variables fixed, and the overall
wall clock time. All runs with fewer than 100 scenarios are
performed on our 64-core workstation, while 100 scenario
runs are performed on the Red Sky cluster. Note that unless
full convergence is achieved, the solution costs correspond
to a (partially) anticipative solution. Our objective in this
experiment is to examine the overall nature of PH convergence
on stochastic UC. Convergence acceleration mechanisms are
discussed subsequently in Section V-E.

The results of this first experiment are reported in Table III.
We observe that in four of the instances, PH converges to a
non-anticipative solution in at most PH iterations and no longer
than approximately 16 minutes of wall clock time. In cases
where PH did not converge within the 30 iterations allocated,
the value of the convergence metric is very small, and only
a small fraction of variables remain free of the total 4080.
All run times are within the range required for operational
deployment. With the exception of the smaller 3 and 5-scenario
instances, the PH solutions are significantly better than the
EF solutions reported in Table II after 4 hours of wall clock
time. Further, the lower bounds are competitive, matching
those of the extensive form on the larger instances. While
the comparison in the case of anticipative PH solutions is not
strictly fair, the small number of non-converged variables and
the value of the convergence metric is strongly suggestive of
ultimate PH performance, as demonstrated subsequently.

Next, in an effort to improve solution quality, we replicate
the prior experiment with two exceptions. First, we decrease
the ρ scale factor from α = 1.0 to α = 0.5. As reported in
[17], lower values of ρ can improve solution quality, albeit
possibly at the expense of increased run-times. Second, we
increase the limit on the number of PH iterations from 30 to
80; decreased values of ρ are generally known to delay the
rate of PH convergence. The results are shown in Table IV.
Relative to the results obtained using α = 1.0, we achieve fully
non-anticipative solutions in an equal number of instances,
in approximately the same run-times. In cases where non-

anticipative solutions are achieved with both α = 1.0 and
α = 0.5, lower cost solutions are obtained with α = 0.5. The
relative consistency of wall clock times despite the increased
number of PH iterations is due to the fact that lower α values
yield smaller iteration-to-iteration perturbations to the scenario
sub-problems, which in turn increase the effectiveness of
warm-start solutions and consequently reduce the sub-problem
solve times. In contrast, larger values of α can induce large
sub-problem perturbations, such that sub-problem solve times
can often significantly exceed (if a limit were not imposed)
the values reported in Table I.

In our next experiment, we reduce γ from 0.03 to 0.025.
Lower γ results in improved sub-problem solutions, albeit at
increased run-time costs. We also increase the limit on the
number of PH iterations to 100. Intuitively, we also expect
increases in PH run-times, but with generally improved solu-
tions. The results, shown in Table V, confirm this expectation.
We observe that PH converges naturally, with no acceleration
techniques beyond variable fixing, in all instances. Despite
the increases in run time, the absolute values do not exceed
approximately 25 minutes. Further, the lower bounds indicate
that the achieved solutions are within 1-2% of optimality in all
cases. We conjecture reduced γ also yields more stable sub-
problem solutions, which in turn accelerates PH convergence.
SUC is known to be highly degenerate, in that there are
numerous high-quality sub-optimal solutions within a gap γ.
Reducing γ reduces the degeneracy, which in turns improves
PH stability by improving the likelihood that sub-problem
solves from iteration to iteration yield structurally more similar
solutions.

Finally, we replicate the previous experiment, with the
exception that we increase the PH variable iteration fix lag µ
from 3 to 6. Increased fix lags should lead to better solutions,
as aggressive fixing runs the risk of premature convergence
of particular generator commitments. The results, reported in
Table VI, confirm our intuition: µ = 6 results in consistently
improved solutions and lower bounds, at the expense of slight
increases in solve times (which still remain ≤ 30 minutes).

E. Convergence Accelerators for PH
Our results demonstrate that careful tuning of PH configura-

tion can yield “natural” convergence to a fully non-anticipative
solution. However, in general, additional mechanisms may be
employed in cases where this does not occur. One example,
variable slamming – discussed in Section III-B, forces non-
anticipativity for non-converged variables if the convergence
metric associated with PH stops decreasing. Another option

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 7

TABLE III
SOLVE AND SOLUTION QUALITY STATISTICS FOR PH EXECUTING ON THE WECC-240-r1 INSTANCE, WITH α = 1.0, µ = 3, AND γ = 0.03

Scenarios Convergence Metric Solution Cost Lower Bound # Variables Fixed Run Time
3 0.0016 64396.589 62579.50 4070 640
5 0.0 (in 17 iters) 63068.793 61611.26 4078 295
10 0.0 (in 18 iters) 61449.576 60257.18 4080 427
25 0.0001 (in 27 iters) 61024.444 59811.41 4079 676
50 0.0005 60721.109 59426.69 4065 1251
100 0.0 (in 30 iters) 61202.06 59925.20 4080 1067

TABLE IV
SOLVE AND SOLUTION QUALITY STATISTICS FOR PH EXECUTING ON THE WECC-240-r1 INSTANCE, WITH α = 0.5, µ = 3, AND γ = 0.03

Scenarios Convergence Metric Solution Cost Lower Bound # Variables Fixed Run Time
3 0.0 (in 32 iters) 64390.298 63075.85 4080 382
5 0.0016 62913.423 61492.04 4076 855
10 0.0 (in 38 iters) 61447.679 60293.42 4077 527
25 0.0 (in 31 iters) 60986.051 59838.03 4080 544
50 0.0060 60729.513 59401.30 4048 1367
100 0.0 (in 27 iters) 61200.52 60053.06 4079 1095

TABLE V
SOLVE AND SOLUTION QUALITY STATISTICS FOR PH EXECUTING ON THE WECC-240-r1 INSTANCE, WITH α = 0.5, µ = 3, AND γ = 0.025

Scenarios Convergence Metric Solution Cost Lower bound # Variables Fixed Run Time
3 0.0 (in 39 iters) 64236.26 63080.57 4078 578
5 0.0 (in 20 iters) 62686.50 61687.98 4080 485
10 0.0 (in 60 iters) 61463.57 60367.25 4075 701
25 0.0 (in 55 iters) 61035.12 59873.22 4075 881
50 0.0 (in 74 iters) 60726.20 59477.17 4080 1511
100 0.0 (in 12 iters) 61201.48 60059.46 4069 870

TABLE VI
SOLVE AND SOLUTION QUALITY STATISTICS FOR PH EXECUTING ON THE WECC-240-r1 INSTANCE, WITH α = 0.5, µ = 6, AND γ = 0.025

Scenarios Convergence Metric Solution Cost Lower Bound Variables Fixed Run Time
3 0.0 (15 iters) 64215.98 63168.71 4060 774
5 0.0 (in 7 iters) 62672.15 61723.03 3868 673
10 0.0 (in 23 iters) 61395.66 60414.61 4066 885
25 0.0 (in 18 iters) 60934.60 59932.87 4066 957
50 0.0 (in 72 iters) 60623.67 59512.28 4058 1826
100 0.0 (in 18 iters) 61200.63 60053.41 4025 1671

is to terminate PH once a sufficient number of first-stage
variables have been fixed, and solve a restricted extensive form
with the remaining variables free. While detailed discussion
of these accelerators is beyond the present scope, we note
that we do use these accelerators in more extensive testing
environments than those reported above.

F. Out-of-Sample Testing

To demonstrate that our PH performance is not due to
specialized tuning on the specific WECC-240-r1 case, we now
fix the configuration with α = 0.5, ν = 3, and γ = 0.025,
and execute the resulting algorithm on the WECC-240-r2 and
WECC-240-r2 cases. With one key exception noted below,
the performance reported above is sustained - convergence
is achieved in less than 30 minutes of wall clock time in
the 100-scenario case, on the Red Sky cluster. Similarly, the
lower bound quality is maintained, indicating PH is obtaining
solutions within 1-2% of optimal. The noted exception in these
experiments relates to modifications of the PH configuration.

Specifically, it was necessary establish the initial mipgap
γ dynamically, based on the average gap associated with
solutions obtained after 2 minutes of wall clock time following
the iteration 0 solves. In practice, the mipgap is sensitive to
the scenario set, such that a priori fixed values can lead to
either very poor initial solutions.

VI. CONCLUSIONS

Driven by the desire to directly incorporate representations
of uncertainty in load and renewables output, researchers
have conducted a significant amount of research into the
development of algorithms for solving the stochastic unit com-
mitment problem. Yet, these advances have not yet impacted
practice, primarily due to the computational challenge of the
problem. In this paper, we propose a decomposition-based
strategy for solving the stochastic unit commitment problem,
based on the progressive hedging algorithm of Rockafellar and
Wets. Leveraging various advances over the past decade in
the configuration, tuning, and lower bounding of progressive

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, NOVEMBER 2013. 8

hedging in the mixed-integer case, we demonstrate tractable
(≤ 30 minute) solve times on the WECC-240 test case with
a reasonable number of scenarios. This performance can
be achieved with both small-scale multi-core workstations
and commodity distributed memory clusters. Both platforms
represent computing capabilities either currently deployed at
ISOs and utilities, or are likely to be deployed in the near
future. We are presently engaged in efforts to increase the
scalability of our approach, focusing on larger-scale ISO test
cases and scenarios concurrently considering uncertainty in
load and renewables output.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under Contract DE-AC04-94-AL85000. This work was
funded by the Department of Energy’s Advanced Research
Projects Agency - Energy, under the Green Energy Network
Integration (GENI) project portfolio, and by Sandia’s Labora-
tory Directed Research and Development program.

An earlier version of some of the work presented here
appeared in [21].

REFERENCES

[1] S. Takriti, J. Birge, and E. Long, “A stochastic model for the unit
commitment problem,” IEEE Transactions on Power Systems, vol. 11,
no. 3, pp. 1497–1508, 1996.

[2] Q. Zheng, J. Wang, P. Pardalos, and Y. Guan, “A decomposition
approach to the two-stage stochastic unit commitment problem,” Annals
of Operations Research, To Appear.

[3] P. Ruiz, C. Philbrick, and P. Sauer, “Modeling approaches for computa-
tional cost reduction in stochastic unit commitment formulations,” IEEE
Transactions on Power Systems, vol. 25, no. 1, pp. 588–589, 2010.

[4] A. Papavasiliou and S. Oren, “A stochastic unit commitment model for
integrating renewable supply and demand response,” in Proceedings of
the 2012 IEEE Power and Energy Society Meeting, 2012.

[5] P. Ruiz, R. Philbrick, E. Zack, K. Cheung, and P. Sauer, “Uncertainty
management in the unit commitment problem,” IEEE Transactions on
Power Systems, vol. 24, no. 2, pp. 642–651, 2009.

[6] A. Papavasiliou, “Coupling renewable energy supply with deferrable
demand,” Ph.D. dissertation, University of California Berkeley, 2011.

[7] J. Price, “Reduced network modeling of WECC as a market design
prototype,” in Proceedings of the 2011 IEEE Power and Energy Society
General Meeting, 2011.

[8] Y. Feng, I. Rios, S. M. Ryan, K. Spurkel, J.-P. Watson, R. J.-B. Wets,
and D. L. Woodruff, “Scalable stochastic unit commitment, part 1: Load
scenario generation,” Submitted to IEEE Transactions on Power Systems.

[9] M. Carrion and J. Arroyo, “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,” IEEE
Transactions on Power Systems, vol. 21, no. 3, 2006.

[10] J. Ostrowski, M. Anjos, and A. Vanneli, “Tight mixed integer linear
programming formulations for the unit commitment problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, 2012.

[11] W. Hart, J. Watson, and D. Woodruff, “Pyomo: Modeling and solving
mathematical programs in python,” Mathematical Programming Com-
puation, vol. 3, no. 3, 2011.

[12] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic
Programming: Modeling and Theory. Society for Industrial and Applied
Mathematics (SIAM), 2009.

[13] J.-P. Watson, D. Woodruff, and W. Hart, “Pysp: Modeling and solving
stochastic programs in python,” Mathematical Programming Computa-
tion, vol. 4, no. 2, 2012.

[14] R. V. Slyke and R. Wets, “L-shaped linear programs with applications to
optimal control and stochastic programming,” SIAM Journal of Applied
Mathematics, vol. 17, 1969.

[15] R. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation in
optimization under uncertainty,” Mathematics of Operations Research,
pp. 119–147, 1991.

[16] C. Caroe and R. Schultz, “Dual decomposition in stochastic integer
programming,” Operations Research Letters, vol. 24, no. 1–2, 1999.

[17] J. Watson and D. Woodruff, “Progressive hedging innovations for a class
of stochastic mixed-in teger resource allocation problems,” Computa-
tional Management Science, vol. 8, no. 4, 2011.

[18] J.Goez, J. Luedtke, D. Rajan, and J. Kalagnanam, “Stochastic unit
commitment problem,” IBM, Tech. Rep., 2008.

[19] D. Gade, G. Hackebeil, S. Ryan, J. Watson, R. Wets, and D. Woodruff,
“Obtaining lower bounds from the progressive hedging algorithm for
stochastic mixed-integer programs,” Under Review, 2013.

[20] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation induced
neighborhoods to improve mip solutions,” Mathematical Programming,
vol. 102, no. 1, pp. 71–90, 2005.

[21] S. Ryan, R. Wets, D. Woodruff, C. Silva-Monroy, and J. Watson,
“Toward scalable, parallel progressive hedging for stochastic unit com-
mitment,” in Proceedings of the 2013 IEEE Power and Energy Society
General Meeting, 2013.

Kwok Cheung (S87-M91-SM98) received his Ph.D. in electrical engineer-
ing from Rensselaer Polytechnic Institute, Troy, NY in 1991. He joined
Alstom Grid Inc. (formerly ESCA) in 1991. He is currently the Director
of R&D worldwide market management systems at Alstom. His interests
include deregulation applications and power system stability. Dr. Cheung is a
registered Professional Engineer of the State of Washington since 1994.

Dinakar Gade received the B.E.(Hons) degree in mechanical engineering
from BITS, Pilani, India in 2005, the M.S. degree in industrial engineering
from the University of Arkansas in 2007 and the PhD degree in industrial and
systems engineering from The Ohio State University in 2012. He is currently
an Operations Research Contributor at Sabre Holdings in Southlake, TX.

César Silva-Monroy (M’05) works for Sandia National Laboratories in the
electric power systems research group in Albuquerque, NM. He obtained
his BS in electrical engineering from Universidad Industrial de Santander
in Colombia, and his MS and PhD in electrical engineering from the
University of Washington in Seattle. His research interests include power
system operations, energy storage systems and renewable energy integration.

Sarah M. Ryan (M09) received her BS in systems engineering from the
University of Virginia, and MSE and Ph.D. degrees in industrial and operations
engineering from the University of Michigan. She is currently Professor in
the Department of Industrial and Manufacturing Systems Engineering at Iowa
State University. Her research applies stochastic modeling and optimization
to the planning and operation of energy and manufacturing systems.

Jean-Paul Watson (M’10) received his Ph.D. in computer science from
Colorado State University. He is currently a Principal Member of Technical
Staff in the Discrete Math and Complex Systems Department at Sandia
National Laboratories, in Albuquerque, New Mexico. He leads projects involv-
ing optimization under uncertainty and general analytics for US government
agencies, including the Department of Energy and Defense.

Roger J.-B. Wets is a Distinguished Research Professor of Mathematics at
the University of California, Davis. His research interests include stochastic
optimization, variational analysis, equilibrium problems in stochastic environ-
ments, and the fusion of hard and soft information in statistical estimation.
His awards include Guggenheim and Erskine Fellowships, the SIAM-MPS
Dantzig Prize, and the INFORMS Lanchester prize.

David L. Woodruff is Professor at the Graduate School of Management at
the University of California at Davis. He received his PhD in industrial engi-
neering from Northwestern University. His research concerns computational
aspects of multi-stage optimization under uncertainty, which includes solution
algorithms, problem representation and modeling language support. He has
worked on applications in a variety of areas and has been involved recently
in a number of applications in power systems.

