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Abstract—Unit commitment decisions made in the day-ahead
market and during resource adequacy assessment are critically
based on forecasts of load. Traditional, deterministic unit com-
mitment is based on point or expectation-based load forecasts.
In contrast, stochastic unit commitment relies on multiple load
scenarios, with associated probabilities, that in aggregate capture
the range of likely load time-series. The shift from point-based
to scenario-based forecasting necessitates a shift in forecasting
technologies, to provide accurate inputs to stochastic unit com-
mitment processes. In this paper, we discuss a novel scenario
generation methodology for load forecasting in stochastic unit
commitment, with application to real data associated with ISO-
NE. The accuracy of our methodology is consistent with that of
point forecasting methods. The resulting sets of realistic scenarios
serve as input to rigorously test the scalability of stochastic unit
commitment solvers, as described in a companion paper.

Index Terms—Demand forecasting, load modeling, stochastic
processes, scenario generation, stochastic unit commitment.

I. INTRODUCTION

CONSTRAINTS on thermal generation unit operation
requires them to be committed well in advance of when

they may be needed to provide power. Typically, scheduling
decisions for a day d are made on day d−1 based on forecasts
of uncertain quantities such as hourly load and renewables
output; such quantities are generally aggregated across the
buses in a load zone. In the context of traditional deterministic
unit commitment procedures, such forecasts take the form of
point or expected-value quantities – representing a single time
series for each forecasted quantity. Uncertainty associated with
such forecasts is addressed by maintaining a non-trivial level
of generation reserves, which compensate for deviations from
the predicted quantities as day d operations proceed.

In contrast, stochastic unit commitment procedures [1], [2]
assume the availability of a number of forecast scenarios, each
representing a distinct time-series of the forecasted quantities.
Throughout, we use the term scenario in a narrow sense, repre-
senting a full specification of all random data required to spec-
ify a unit commitment problem, with associated probability of
occurrence. In aggregate, the set of scenarios should represent
the range of possible behaviors on day d. By explicitly repre-
senting forecast uncertainty through sets of scenarios, it should
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be possible to significantly decrease the generation reserve
margins and consequently reduce overall system operation
costs [3]. However, the need for multiple scenarios imposes
fundamentally novel requirements on forecasting technologies,
which have yet to be adequately addressed.

Our goal in this paper is to present approaches and data
sources for generating quantifiably accurate and realistic load
scenarios for use in stochastic unit commitment. We focus on
load, as opposed to renewables production, to tractably scope
our study. The procedures described below extend to wind
and solar plant production, which we will address in a future
contribution. We demonstrate the ability of RTO and other
operator entities to generate accurate load scenarios for use
with stochastic unit commitment procedures, using data that
is readily available. Our experiments proceed in the context of
publicly available data from ISO-NE. The resulting scenarios
are then used in the companion to the present paper [4] in
order to rigorously test the scalability of a stochastic unit
commitment solver.

The remainder of this paper is organized as follows. Our
methodology for data transformation and fitting of load re-
gression models is detailed in Section II. We then describe
our procedures for generating load scenarios in Section III.
Comprehensive experimental results are then presented for
data associated with ISO-NE in Section IV. We conclude with
a summary of our results in Section V.

II. A NOVEL LOAD FORECASTING METHODOLOGY

When forecasting load, the information available to opera-
tors on day d−1 includes weather forecasts for day d, historical
records of previous weather forecasts, and historical actual
system loads. Historical system load data exhibit temporal
patterns that vary according to season of the year, day of the
week, and hour of the day. While some temporal load patterns
are predictable based on knowledge of business hours and
diurnal light patterns, the portion of load derived from heating
and cooling (both industrial and residential) depends strongly
on weather. And while numerical weather prediction models
have become increasingly accurate over the past few decades,
there remains significant uncertainty associated with day-
ahead weather forecasts. The challenge for system operators
is to form an accurate and comprehensive picture of the day-
ahead load, which not only includes point forecasts of the
load in each hour, but also acknowledges the precision (or
lack thereof) associated with those forecasts. To address this
challenge, we introduce a novel optimization-based method to
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develop a stochastic model for the load on day d based on the
weather forecast available on day d− 1.

A. Background

Common methods for short-term load forecasting can be
categorized as either based on artificial intelligence or statis-
tical techniques [5]. Methods from artificial intelligence, such
as neural networks, are widely used but do not provide prob-
abilistic information that could be used to generate multiple
probability-weighted scenarios. Among statistical approaches,
which can provide the required probabilistic information, the
most prevalent methods are time series and regression models.
Due to limited space, we do not provide a complete review but
refer the reader to recent surveys such as [6]. Instead, we now
highlight samples of statistical approaches for load forecasting
from the recent literature, focusing on achieved accuracy and
limitations for purposes of scenario generation.

The weather variable most commonly used to predict load
is temperature, due to its influence on heating and cooling
requirements. Other variables considered include humidity
and cloud cover, although their impacts on load are much
smaller than that of temperature. Humidity increases load in
the summer, again due to cooling requirements. In contrast,
cloud cover increases load in the winter (due to increased
lighting requirements) and reduces load in the summer.

Liu et al. [7] analyze the nonlinear relationship between
temperature and load, using estimates derived from a nonpara-
metric regression method. They fit a time series model to the
residuals of the load-temperature regression and considered
lags of 1, 24, and 168 hours in their day-ahead forecasting
model. Using actual historical temperature and load data
obtained from a US utility, they demonstrate an out-of-sample
mean absolute percent error (MAPE) of 1.2% for their 24-
hour-ahead forecasts. Hong et al. [5] develop a multiple linear
regression model of load that considers temperature, hour,
type of day, and month as independent variables; the model
additionally contains a linear term trend, and terms to capture
interactions among the independent variables. Using actual
weather data to predict hourly loads for a US utility over a
one-year time period, they obtain an out-of-sample MAPE of
4.6%. Black [8] also uses a multiple linear regression model
to examine the influence of weather on load, but instead
focuses on summer weekdays in the region served by ISO-NE.
Time-of-day effects are captured through a separate regression
model for each hour of the day, each considering temperature,
humidity, solar and radiation as independent variables. The
out-of-sample MAPEs yielded by these models averaged 2-3%
for the whole New England region and 3-4% for individual
subregions such as Connecticut and Southeast Massachusetts.

While “hind-casting” studies of the type above (which use
actual historical weather data as input) are useful for identi-
fying factors that influence hourly loads, they do not possess
the accuracy or precision of load forecasts available in practice
– which necessarily rely on day-ahead weather forecasts, as
opposed to actual quantities. In terms of scenario generation,
a drawback of time series-based methods is that when used
to forecast more than one step ahead, uncertainty propagates

through the lagged terms. This resorts in significant distortions
in forecast variability for future time periods, rendering them
unsuitable for building stochastic process models for day-
ahead load forecasts.

An alternative approach to short-term load forecasting is
to identify similar days within a historical database, where
the similarity is based on weather, day of the week and time
of year. For example, ISO-New England identifies up to five
similar days drawn from the same season with the same day-
type according to similarity of their actual temperatures to the
forecast temperature of the given day as well as similarity of
forecast loads in the last hour of the previous day [5]. Our
method has some commonality with this approach, in that
we create segments of days that are similar in some sense.
Then, within each segment we employ a functional regression
method to approximate the probability distribution of load in
each hour of the day ahead.

B. Methodology Overview

We use a multi-step procedure to control for season and
type of day, and then approximate the relationships between
weather forecast data and the distribution of hourly load
sequences within segments of similar days. Starting from a
historical database of day-ahead hourly weather forecasts and
corresponding actual loads, our load forecasting methodology
proceeds as follows:

1) Identify date ranges, or “seasons,” in which the re-
lationship between weather and load – disregarding
day-of-week effects – is likely to be similar. This ad
hoc characterization qualitatively accounts for diurnal
light patterns, heating vs. air conditioning impacts, and
sociological factors such as whether school is in session.

2) Within each date range, transform the data to account
for day-of-the-week and zonal differences within the
system. Then, segment the data into bands based on
forecast temperature. Data segmentation can in principle
proceed using multiple forecast quantities (e.g., humid-
ity). However, our experiments indicates these additional
factors do not significantly improve forecast accuracy.

3) Within each segment, approximate the relationship be-
tween weather and load via a regression function.
Additionally, approximate the distribution of residuals
associated with the resulting regression model.

Following completion of the segmentation and approxima-
tion steps, the procedure for generating load scenarios for a
given day d (with associated weather forecast generated on
day d− 1) is given as follows:

1) Identify the date range DR to which day d belongs.
Within DR, identify the temperature segment to which
the weather forecast for day d belongs.

2) Apply the regression function associated with the iden-
tified segment to the weather forecast for day d.

3) Generate forecasted load scenarios for day d using
distributions of the forecast errors.

4) As necessary, perform inverse transformations of the
load sequences to match the day of the week and the
zone.
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The segmentation and approximation steps are fully de-
scribed in the remainder of this section. Details of the load
scenario generation process are described subsequently in
Section III.

C. Estimating regression curves

The main idea to build the regression curve is to consider
the weather forecast from day d − 1 to day d and with this
information build a regression function. For this we use 2nd
order epi-splines [9] that minimize the deviations from the
observed load at the day d. For each day d in a given segment
it’s assumed that the following information is available: the
hourly load, ldh, and the weather prediction for day d made
on day d − 1. We use the temperature for all months and in
summer, we also add dew point.

We split the 24 hours of day d in NR sub-intervals
(hk−1, hk] of length δ = 24/NR, and this determines the total
number of coefficients that need to be estimated, 2 · (NR+2).
In the summer, our regression curves will be built by relying
on two epi-splines of order 2, one associated with temperature,
and a second one associated with dew point. Implicitly, our
construction also assumes that the curves against which we are
fitting are twice differentiable (not necessary C2). In addition
to the parameter NR there is a curvature parameter, κ. The
impact of the paramters is explored in Section IV-B.

Further, we assume that the load can be represented as the
sum of two components:
• a non-weather component, ie, a component which doesn’t

depend on the weather forecast and which is related to
the normal behaviour of the people at each segment,

• a weather component which depends on the weather
forecast.

It’s natural to think that the non-weather component depends
on the segment considered: independently of the weather,
people in winter use a different amount of energy than in the
summer. So, for each segment we estimate the baseline load,
which is the average load for each hour in the segment.

Full details of regression using epi-splines for predicting
demand based are provided in [10]. We represent the regres-
sion function from the weather for day d to R24, which was
fit using data from an some set of days D̂ as

r(d; D̂).

We use d when is the weather forecast and do when the
observed weather is used to estimate transformation functions.
A more formal statement would inclue the regression control
parameters, but we omit these in the interest of clarity.

D. Data Transformation

Within a date range, we use transformations to combine
data from disparate day types and zones, prior to construct-
ing regression and error distribution models. Without such
transformations, there is typically insufficient historical data to
yield accurate forecasts. Inverse transformations are performed
to create load forecasts for particular day types and zones.

Suppose we are given observed load profiles ld =
(ld1 , ..., l

d
24) ∈ R24 for a range of dates d ∈ D. A portion of the

the load is dependent upon weather factors, but load profiles
also depend on the type of the day, e.g., load patterns differ
between weekends and weekdays. In our analysis, we consider
six day types: one for each weekday and one representing
weekend days and holidays. We denote the set of day types
as T . The set of all dates belonging to a day type T ∈ T is
denoted by DT . Clearly, each date maps to a unique day type,
such that

⋃
T∈T DT = D and DT ∩ DT ′ = ∅ if T 6= T ′.

While a regression model could be developed for each day
type, this would decrease the amount of data available for
fitting significantly. Instead, we compute a transformation for
each day type to a standard reference day, which we arbitrarily
select as Wednesday. The transformation is easily inverted, so
that observed loads can be transformed to “Wednesday” and
forecast loads can be transformed back to the original day type.
In our analysis, we consider linear transformations to allow
for straightforward forward and inverse computation. We use
observed weather to find a linear transformation from each day
type to Wednesday, but the transformation itself is not based
on observed weather so load forecasts and scenario generation
can be based entirely on data that is available in advance.

For each d ∈ DT , let wd = (wd1 , ..., w
d
24) denote the

expected loads for our reference day type (Wednesday) cor-
responding to the native day type loads ld = (ld1 , ..., l

d
24). We

assume that for ∀T ∈ T , DT 6= ∅. For each d ∈ DT of day
type T , wd is computed as a regression ro(do;Dwed), where
do denotes the observed weather for day d.

Our goal is then to find a 24× 24 matrix AT such that

AT l
d ≈ wd ∀d ∈ DT . (1)

We formally characterize Equation 1 as an optimization prob-
lem in which the coefficients of AT appear as variables:

min
AT

∑
d∈DT

||AT ld − wd||. (2)

Note that this (very small) optimization problem might be
linear or non-linear, depending on the choice of norm.

Depending on the relative size of the available dataset
{ld |d ∈ DT } and the number of coefficients in AT , it may be
necessary to introduce additional constraints and regularization
terms to formulation (2). Another potential with issue is that
the resulting AT may be ill conditioned, causing difficulties
in the calculation A−1T . Finally, nonsingularity needs to be
enforced in (2), which can be easily achieved by requiring all
coefficients above and below the diagonal of AT equal zero;
we use this simple approach in the experiments reported below.

In practice, a balancing region is typically divided into
zones, for which loads are forecast and reported. In order to
increase the data available for regression and error distribution
estimation, we additionally combine data from disparate zones
in a fashion analogous to that described above, for converting
data associated with different day types to a reference day
type.

E. Segmentation

For each date range, we partition the weather data for
the composite dates into distinct segments. The idea is to
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limit regression and error distribution inaccuracy by only
considering data with similar response characteristics. We
segment based on the forecast temperature, as inclusion of
additional weather variables (e.g., via k-means clustering)
failed to improve prediction accuracy in our experiments. For
each date range, we form a temperature distribution over which
we introduce cutting points that define the segments.

Let td∗ be a scalar representation of the hourly forecast
temperatures for day d ∈ D, where D is the set of days in the
date range. In our experiments, we define td∗ = td12, although
alternative metrics such as average hourly temperature can
be substituted. We require scalar representations of hourly
temperature vectors to prevent data for a given day to be
mapped to multiple error categories (see Section III).

We estimate the probability density function ft∗(·) of
the temperature scalar td∗ by fitting an exponential epi-
spline [11], [12]. We denote the corresponding cumulative
distribution function by Ft∗(·). To obtain NS segments of
equal size, we introduce the break points {b1, . . . , bNS+1} =
{0, 1/NS , . . . , (NS − 1)/NS , 1} for Fth(·) and then calculate
the limit temperatures for each segment Si as

(ti, t̄i) = (F−1t∗ (bi),F−1t∗ (bi+1)), i = 1, . . . , NS .

Finally, considering the limit temperatures of each segment
Si, i = 1, . . . , NS , we group the days in the date range
according to the rule:

d ∈ Si ⇔ td∗ ∈ [ti, t̄i).

III. SCENARIO GENERATION

To capture the notion that both the mean load response
and error distribution vary during the day, we split the day
into parts and then categorize each portion according to the
relative error. A regression model is constructed for each of the
resulting day parts and associated error categories. Scenarios
are then constructed by sampling from paths constructed by
selecting a specific error category for each day part. This
process is a specific instantiation of the general scenario
generation methodology detailed in [10].

Let H be the set of hours that define a partition of the hours
in a day, specified as follows:

H = {Hi}|H|i=1 , H1 = 1, H|H| = 24, Hi < Hi+1.

The elements Hi represent the partition end-points, e.g., the i-
th part of the day is given by the set of hours {Hi, · · · , Hi+1}.
For each partition boundary Hi, we compute the error ob-
served regression error εdi for each day d ∈ D as:

εdi = ldHi
− rHi(d;D).

We estimate the distribution of these errors by fitting an
exponential epi-spline [11], [12]. This process is graphically
illustrated in Figure 1.

For each partition hour i, we denote the corresponding error
probability density function by fεi(·). Categories within fεi(·)
can then be defined through identification of break points of
the associated cumulative distribution function Fεi(·), as was
performed for temperature segmentation. Specifically, to gen-
erate NK equally sized categories, we select the break points

Fig. 1. Illustrative Load Regression Model and Error Distributions with Hour
Partition H = {1, 12, 24}.

{k1, . . . , kNK+1} = {0, 1/NK , 2/NK , . . . , (NK − 1)/NK , 1}
in order to obtain equally weighted categories for each parti-
tion of the day. The resulting categories Cki are then defined
as Cki = [F−1εi (ki),F−1εi (ki+1)), where i ∈ {1, . . . , |H| − 1}
denotes the day partition and k ∈ {1, . . . , NK} denotes the
category.

Given an hour partition H and associated error categories
Cki , we sub-segment the days d ∈ D according to the
observed regression model error at the corresponding partition
i. Specifically, let Dki denote the set of days in the segment
for hour i and error category k, defined as follows:

d ∈ Dki ⇔ εdi ∈ Cki .

For each sub-segment Dki , we fit a regression model r(d;Dki ),
from which a vector of predicted hourly loads r̂d,k are ex-
tracted for each day d ∈ Dki . Each sub-segment has a different
regression and hence, for all middle day part boundaries, there
could be two points. We avoid discontinuities deriving a single
regression curve per category, r̂d,k, by merging the regressions
obtained at the limit hours. In particular, for h ∈ [Hi, Hi+1],

r̂d,kh = (
Hi+1 − h
Hi+1 −Hi

) · r̂d,kh,i + (
h−Hi

Hi+1 −Hi
) · r̂d,kh,i+1.

This process is illustrated in Figure 2.
Given regression models for each category Cki , the observed

load forecast errors are computed as

εkh,d = ldh − r̂
d,k
h

. We obtain a corresponding probability density function fεki (·)
by fitting an exponential epi-spline. An illustrative example of
this step is shown in Figure 3, where NK = 2.

The error densities fεki (·) serve as the primary input to
the scenario generation process. The first step in scenario
generation involves the identification of a set of distribution
cut points C = {cz}|C|z=1, subject to c1 = 0.0 and c|C| = 1.0.
For each partition i and category k, we then calculate the
conditional expected value of the error in each interval defined
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Fig. 2. Regression of the Error Category Construction.

Fig. 3. Illustrative Error Category Regressions and Associated Error Distri-
butions with Hour Partition H = {1, 12, 24} and NK = 2 Categories.

by a pair of adjacent cutting points:

E
[
εki |εki ∈ [cz, cz+1]

]
=

∫ cz+1

cz

x · fεki (x)dx∫ cz+1

cz

fεki (x)dx

= ξk,zi

where ξk,si denotes the expected error in category k at cutting
point z for hour i. The number of cutting points can vary per
hour, as shown in Figure 4. In this illustrative example, C =
{0.0, 1.0} for i = 1, but C = {0.0, 0.5, 1.0} for i = 12, 24.

Given regression models (r̂k,dh,i ) for each hour partition
boundary i and category k, we compute loads at the partition
boundaries via:

ld,k,zHi
= r̂d,kHi

+ ξk,zi .

For each hour Hi and each category Cki , this step yields |C|
forecast load samples. The final step in our scenario generation
process is to connect these samples in order to construct a set
of paths that approximates the stochastic process representing
load for the full day. This is simply done by calculating the
scenario loads at time h ∈ [Hi, Hi+1) by assuming that the

Fig. 4. Distribution Cutting Points for Scenario Generation whenH =
{1, 12, 24} and NK = 2. For i = 1, C = {0.0, 1.0}. For i ∈ {12, 24},
C = {0.0, 0.5, 1.0}.

Fig. 5. Illustrative Scenario Paths Corresponding to the Cutting Points Shown
in Figure 4.

deviation from the forecast varies between the deviation at
hour Hi and hour Hi+1. This process is illustrated in Figure 5.
Under this methodology, the number of paths (i.e., scenarios)
generated is equal to

NK · (|C| − 1)|H|−1,

such that the number of scenarios is dictated by the values of
the referenced parameters. Further, the generation process is
deterministic, given a fixed set of historical input data.

IV. EXPERIMENTAL RESULTS

Although substantially better MAPEs can be achieved using
standard leave-one-out validation, we have generated our fore-
casts and scenarios by simulating a rolling horizon as would
be seen by a real-world system operator. In our experiments,
we consider data for ISO-NE. We begin by fitting the models
using only data from 2009 and 2010, and consider operations
during 2011. As we simulate the progression through the year,
data from 2011 is added to the fit process as it becomes
historical. Specifically, we execute the complete methodology
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Load Zone Weather Stations Weights

ME PWM 1.0

NH CON 1.0

VT BTV 1.0

CT BDL, BDR 0.13, 0.87

RI PVD 1.0

SEMASS PVD 1.0

WCMASS BDL, ORH 0.5, 0.5

NEMASSBOST BOS 1.0

TABLE I
LOAD ZONES FOR ISO-NE, WITH WEATHER STATIONS AND

CORRESPONDING WEIGHTS

described in Section II-B for each simulated day; the entire
procedure takes minutes of wall clock time to complete,
and is therefore feasible in practice. Because our interest
is in demonstrating scenario generation methods, and not
actually providing ISO-NE with load forecasts, we begin our
simulation on January 2, 2011 and end on November 20, 2011.
Excellent methods exist for dealing with the holiday season
in the US [13], but their use is beyond the present scope.
Further, we ignore August 28-30 of 2011, due to a hurricane
event in the region. We partition the days of the year into the
following date ranges: Winter (January 2 – March 31), Spring
(April 1 – May 14), Summer (May 15 – September 14), and
Fall (September 15 – November 20).

As reported in Table I, ISO-NE is divided into 8 load
zones. Weather data for each zone is taken from one or two
stations. For zones with two stations, an aggregate weather
forecast is computed by weighting the composite station data
appropriately. Historical load data was obtained by ISO-
NE through their web site (http://www.iso-ne.com/markets/
hstdata/znl info/hourly/index.html). Hourly day-ahead tem-
perature forecasts were provided directly by ISO-NE.

As indicated in Section II-D, we aggregate data from
disparate zones to make more data available to the fit process.
Zone aggregation proceeds as follows, by employing two
reference zones: CT and NEMASSBOST. The RI, SEMASS,
and WCMASS zones are aggregated with the CT zone, while
the ME, NH, and VT zones are aggregated with the NE-
MASSBOST zone. This aggregation corresponds to a partition
of ISO-NE in approximately northern and southern regions,
which in turn share similar load characteristics. Within each
partition, we select the zone with the greatest demand as the
reference zone, minimizing the total load transformed.

A. Forecast MAPEs

We quantify load forecast accuracy as the Mean Average
Percent Error (MAPE), denoted by MAPE(NR, κ), as∑

z∈Z
∑
d∈D

∑
h∈H

(
lz,dh − E(lz,dh )(NR, κ)

)
/lz,dh

|Z| · |D| · |H|
·100 (3)

where Z , D, and H respectively denote the sets of load zones,
dates, and hours under consideration. NR and κ denote regres-
sion fit parameters. The aggregated MAPEs obtained for each
date range in 2011 are reported in Table II, considering NR =

Segments (NS )
Season 1 3 5 7

Fall 5.45 4.66 4.2 3.99
Spring 3.1 2.88 2.67 2.73
Summer 10.25 4.82 4.14 4.19
Winter 5.25 3.32 3.29 3.47

TABLE II
AGGREGATED ISO-NE MAPES FOR 2011

Fig. 6. Scenarios for Low Variance Load Forecast Day in 2011 for Zone CT

24, κ = 500, and a variable number of temperature segments
NS . The corresponding disaggregated (by zone) MAPEs are
reported in Table III. We observe that segmentation of the data
by temperature does improve load forecast accuracy, although
the benefits either stagnate or decrease once NS ≥ 7. Further,
the data in Table II exhibit load forecast accuracies that are
consistent with those obtained by ISO-NE in practice, e.g,.
see http://www.iso-ne.com/support/training/courses/wem101/
10 forecast scheduling callan.pdf. However, our method ad-
ditionally provides estimates of forecast variability, repre-
sented through a collection of load scenarios.

We now briefly consider inclusion of dew point in addition
to temperature in the segmentation process, which intuitively
can influence load by impacting cooling requirements. In this
case, we segment by forming scalar weather quantity based
on a linear combination of temperature and dew point, again
using observations at h = 12. The resulting aggregate MAPEs
are shown in Table IV, and indicate that inclusion of specific
quantities can marginally improve load forecast accuracy in
specific contexts.

Finally, we provide exemplars of forecast load scenarios for
the CT zone in ISO-NE, for early summer days in 2011. We
have selected low and high variance load 50-scenario cases,
respectively shown in Figures reffig:lowvariancescenarios and
7. These two particular cases serve as test cases for assessing
our stochastic unit commitment solver, described in the com-
panion paper. All scenario sets generated for ISO-NE, either
at the zonal or aggregate level, are available by contacting the
authors.
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Segments (NS )
Season Zone 1 3 5 7

Fall NH 4.44 4.22 4.41 4.14
VT 3.52 2.91 2.95 3.04
ME 4.13 4.14 4.02 4.15
CT 8.31 7.12 6.77 6.51
RI 5.93 5.3 4.49 4.0
SEMASS 5.75 4.99 4.4 3.84
WCMASS 7.2 6.6 6.34 6.66
NEMASSBOST 4.82 4.63 4.19 4.07

Spring NH 3.14 3.46 3.69 3.93
VT 3.23 3.18 3.04 3.22
ME 4.25 3.9 4.07 4.0
CT 3.46 3.64 3.42 3.89
RI 3.24 2.97 3.27 3.32
SEMASS 3.05 2.93 3.17 3.24
WCMASS 3.74 3.5 3.8 3.98
NEMASSBOST 3.24 3.41 3.35 3.48

Summer NH 9.29 5.65 4.95 5.05
VT 5.64 3.75 3.41 3.4
ME 7.54 4.65 4.83 4.54
CT 11.22 6.42 5.98 5.84
RI 12.9 7.15 5.69 5.86
SEMASS 12.72 6.76 5.6 5.74
WCMASS 9.47 5.51 4.57 4.63
NEMASSBOST 11.34 6.17 5.78 5.32

Winter NH 4.99 3.88 3.78 3.82
VT 4.28 3.77 4.02 4.17
ME 4.1 3.87 3.65 4.05
CT 6.17 4.35 4.21 4.32
RI 5.23 3.81 3.56 3.84
SEMASS 5.34 4.05 3.76 4.11
WCMASS 5.46 3.69 3.84 3.95
NEMASSBOST 5.42 3.54 3.62 3.67

TABLE III
ZONAL ISO-NE MAPES FOR 2011

Segments (NS)

Season 1 3 5 7

Summer 10.55 4.73 4.06 4.06
TABLE IV

AGGREGATED ISO-NE MAPE FOR SUMMER 2011, USING
SEGMENTATION BASED ON TEMPERATURE AND DEW POINT

B. Parameter Sensitivity for Model Fitting via Epi-Splines

To construct our regression models via dpi-splines, it is
necessary to specify values for the following key parameters:

• NR: The number of intervals into which the hours of a
day are sub-divided.

• κ: The maximum curvature of the regression curve.

While it is necessary to specify a specific norm (e.g., L1 or L2)
when solving the embedded optimization problems, in practice
the choice of norm has almost no impact on the resulting load
forecast MAPEs. In contrast, accuracy is more sensitive to the
choice of NR and κ, as we now demonstrate.

Fig. 7. Scenarios for High Variance Load Forecast Day in 2011 for Zone CT

First, we consider the impact of NR on load fore-
cast accuracy. We compute the MAPEs for NR ∈
{6, 12, 18, 24, 32, 48}, fixing NS = 5 and κ = 500. The
results that the MAPE changes from about 4.7% to 4.5% over
the range, with values of 24 and above yielding nearly equal
MAPEs.

Next, we consider the impact of κ on load forecast accuracy.
Fixing NR = 24 and NS = 5, we compute MAPEs for κ ∈
{20, 40, 60, 80, 100, 150, 200, 500}. Extremely small values of
κ do adversely impact the MAPEs by severely restricting the
curvature; however, over the range of κ we tested, there is
essentially no sensitivity.

V. CONCLUSION

In this paper, we consider novel methods for obtaining
distributions of forecast load in each hour of day d, based
on weather forecasts available on day d − 1. Our goal was
to use the estimated trends and error distributions to generate
probabilistic scenarios for the day-ahead load, for use as input
for assessing stochastic unit commitment solution procedures.
Our experiments indicate that our models (1) can be generated
using data readily available by system operators, (2) can be
produced in minutes of run time for multiple years of input
data, (3) produce errors that are competitive in the aggregate
with load forecasting procedures used by industry, and (4)
obtain MAPE values for forecast load that are similar to those
found in hind-casting studies that eliminate weather forecast
uncertainty by focusing on strictly on actual or observed
weather quantities. We continue to refine our methods, specifi-
cally by focusing on reducing prediction errors associated with
peak load periods and adapting the approach to times of the
year where temperature is not as strong a predictor of the load.
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