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Generating Stochastic Ellipsoidal Forest and
Wildland Fire Scar Scenarios for Strategic Forest
Management Planning under Uncertainty
Claudio A. Kuhlmann, David L. Martell, Roger J-B Wets, and David L. Woodruff

Explicit consideration of the possibility of wildfires enhances strategic planning for landscape management; however, incorporating the stochastic processes that govern
fire occurrence and spread in optimization models that are used to inform landscape management presents new challenges. In this article, we describe a method of
generating spatially explicit fire scenarios in the form of elliptical fire scars with associated probabilities. Computational experiments demonstrate that good scenarios
can be achieved using currently available computer technologies. We also describe how more complex fire ignition and growth process models can be used to generate
more realistic fire pattern scenarios and provide insight into the quality and effort required for various approximations. We conclude by discussing how our methodology
could be used to perform some of the tasks for which fire managers use traditional burn probability models.
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Forests generate many social, economic, and ecological benefits
but they are complex dynamic ecosystems that are often in-
fluenced by stochastic fire, insect, disease, and storm events

that forest ecologists and forest managers often refer to as distur-
bances.1 Forest managers are responsible for the development and
implementation of strategic, tactical, and operational plans that
specify, for example, when and where protected areas are to be
established, what areas are to be used for recreation purposes, when
and where forest access roads are to be established, when specific
forest stands will be harvested for industrial purposes, and how the
resulting cut-overs will be regenerated, tended, and protected until
the next time they are scheduled to be harvested. Strategic planning
horizons in the boreal forest region of Canada span 100 years or
more during which tactical plans with planning horizons of several
years and daily, weekly, and monthly operational plans are also
developed and implemented. Uncertainty concerning natural dis-
turbance processes and many other factors such as, for example, the
future cost of harvesting and processing forest resources, the prices at
which forest products might be sold, and societal preferences con-
cerning how forests can and should be managed all complicate forest
management planning. Recent years have witnessed growing inter-

est in forest management planning under uncertainty. Hanewinkel
et al. (2011) provide a comprehensive review of risk management in
forestry, whereas Thompson and Calkin (2011) focus on dealing
with risk in wildland fire management. In this article, we describe
the development and use of a novel approach for incorporating
uncertainty concerning fire in forest management planning.

Fires can ignite and spread almost anywhere across forested land-
scapes so the state space of possible futures that forest managers must
consider (i.e., the fire perimeters or burn scars that might appear on
the landscape) is continuous, which can be a challenge for forest
managers who seek to address such uncertainty when they develop
spatially explicit forest management plans. Deterministic linear pro-
gramming models have been used extensively to support strategic
management planning in many jurisdictions since the early 1970s
(see, e.g., Navon 1971), and one of the accepted ways of incorpo-
rating uncertainty in planning processes in which linear program-
ming models are used is to develop stochastic linear programming
(SLP) models that are structured to account for uncertain futures
(see, e.g., King and Wallace 2010).

One SLP approach calls for the generation of a discrete set of
plausible scenarios that describe important aspects of what might
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occur in the future, estimation of the probabilities that those scenar-
ios might occur, and the incorporation of such information in SLP
models. Gassmann (1989) and Boychuk and Martell (1996) devel-
oped multistage aspatial SLP models that can be used to develop
aspatial strategies for timber harvest scheduling under uncertainty
due to fire. In this article, we develop a methodology for using
models of continuous state space stochastic fire ignition and spread
processes to generate a set of discrete fire scar pattern scenarios and
estimate the probabilities that those scenarios will occur in the fu-
ture. From the perspective of stochastic programming, this is novel
because it is the first work to form scenarios that are shapes on a
plane. Both the discretization and the probability estimation are
contributions of this work.

The rest of the article proceeds as follows. We begin by placing
our work in the context of the extant literature and providing an
overview of the issues. Next we lay out the method we propose for
scenario generation, which creates a need to determine distances
between elliptical fire scars that we address. Our computational
experiments are then described and the article ends with our discus-
sion and conclusions section in which we outline directions for
further research and application.

Forest Management Planning under Uncertainty
Although forest harvesting and regeneration in the boreal forest

region of the province of Ontario, Canada, take place at the level of
stands that are typically on the order of 25 ha or less, our focus is on
strategic management at the landscape or forest management unit
level, which might extend across 100,000 ha or more. When forest
managers develop forest management plans for flammable forest
landscapes, they must determine to what extent and how they
should incorporate potential but uncertain fire losses in their plans.

Martell (1980), Routledge (1980), and Reed (1984) extended
the traditional deterministic stand-level Faustmann optimal stand
rotation model to account for fire losses and found, not surprisingly,
that the optimal planned rotation interval should decrease as the
probability that a stand will burn increases. Unfortunately, their
results cannot be applied to the management of large landscapes
because they do not account for many factors including, for exam-
ple, the facts that the burning of a stand may affect the probability
that nearby stands will burn and that unconstrained optimal stand-
level decisions are unlikely to provide the relatively stable harvest
flows required by mills.

Forest managers began using aspatial deterministic linear pro-
gramming (LP) models to develop strategic forest management
planning models in the early 1970s (see, e.g., Navon 1971). Specific
stands were aggregated into groups or strata that were similar with
respect to age, species, growth rates, and other stand attributes, and
LP models were used to determine the annual allowable cut: how
much area should be harvested from each stratum during each pe-
riod to maximize some objective function (e.g., present net worth)
subject to constraints (e.g., variability in period to period harvest
flows) over a 100-year planning horizon. Those LP models did not
account for fire, and they were aspatial inasmuch as they did not
specify which stands should be harvested during each period.

Reed and Errico (1986) developed a “mean value” strategic forest
management planning model in which they addressed uncertain fire
processes by assuming that some “known” average fraction of the
forest burns during each time period. They conjectured that for
forests that did not have large burn rates, the solutions to their mean
value model would be close to the solutions to the corresponding

stochastic models, were they available. Gassmann (1989) formu-
lated a smaller version of the Reed and Errico (1986) model as a
multistage stochastic programming model and dealt with the desire
to mitigate changes in harvest flow by including a harvest flow
reduction penalty in his objective function. Boychuk and Martell
(1996) built on Gassmann’s approach and developed a stochastic
programming model which they used to investigate alternative strat-
egies for managing a hypothetical flammable forest that was repre-
sentative of the boreal forest region of the province of Ontario. They
found that Reed and Errico’s (1986) conjecture was valid for fire
activity levels typically observed in forest management units in the
boreal forest region of the province of Ontario.

Recent years have witnessed tremendous growth in interest in
spatially explicit models driven in part by widespread recognition
that in many countries (e.g., parts of Australia, Canada, and the
United States) forest vegetation and fuel buildups have made it
necessary to determine when and where to treat fuels to mitigate the
detrimental impacts of fire. Some authors have incorporated simple
fire ignition and spread process models in spatially explicit integer
and dynamic programming models (e.g., Wei et al. 2008, Konoshima
et al. 2010), but most efforts have been directed to using simulation
methods to develop what are referred to as burn probability (BP) mod-
els that can be used to evaluate fuel management strategies.

Most BP models use simulation methods to provide estimates of
the probability that specified points on a flammable landscape will
burn each year. The landscape is usually partitioned into a large
number of small cells or pixels and fire ignition and growth processes
are simulated for many (typically thousands) of years or fire seasons.
The simulation model tracks how often each pixel burns and the
number of years that a pixel burns divided by the number of years
simulated is an estimate of the probability that pixel will burn each
year. Many BP models have been developed for many different
landscapes (see for example, Miller et al. 2008, Ager et al. 2012,
Scott et al. 2012) and range in complexity from those that are based
on very simple fire ignition and spread process models to those that
are based on more complex fire ignition, fire suppression, and spread
on landscapes for which detailed descriptions of vegetation or fuel
and topographical features are provided.

BP models can be used to develop very powerful decision support
systems that can be used to enhance the management of flammable
landscapes, and they can be produced relatively easily once one has
compiled a digital description of the fuel and topography of the
landscape and coupled it with weather data and software implemen-
tations of fire ignition, suppression, and growth process models.
They do, however, have some limitations.

Many BP models are based on implicit assumptions that all the
simulated scenarios used to generate the estimated probabilities are
equally likely, which is unlikely. They produce point estimates of
the probability that any pixel on a landscape will burn during a
designated time period (e.g., a year or fire season), but they do not
provide confidence limits on those estimates. Furthermore, because
fire ignition, suppression, and spread are inherently spatial pro-
cesses, burn probabilities are actually spatially correlated.

Suppose one has a set of cells I and a second set of cells J on a
landscape. Because the cell-level burn probabilities are not indepen-
dent, one could not easily use them to estimate the probability that
all of the cells in set I and none of the cells in set J would burn during
any particular period. Thompson et al. (2013) address that concern
by focusing on polygons that contain what they describe as highly
valued resources and assets (HVRA) that can be damaged by fire,
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partitioning those polygons into cells, and then determining how
often simulated fire scars overlap the cells in those polygons. They
are then able to use their results to generate attributes of the burn
probability distributions for each of the HVRA polygons such as the
proportion of times some specified fraction of the cells within that
polygon are burned.

In this article, we develop a methodology that can be used to
produce what we describe as stochastic fire scar patterns for which
one can estimate the probability of occurrence that can be used to
answer such questions. Our approach is to incorporate the type of
fire ignition, suppression, and growth models that others have
used to produce traditional BP maps in a simulation model that we
use to generate a discrete set of fire scar patterns and estimate the
probability that each of those patterns will occur each year. Al-
though most BP models are based on gridded landscapes (see Miller
et al. 2008), we model fire ignition and spread in continuous time
and space.

We begin by describing how we used a fire ignition and an
elliptical growth model to generate spatially explicit fire scenarios in
the form of elliptical fire scars with associated probabilities for a
hypothetical forest that is representative of the boreal forest region of
Canada. Our computational experiments demonstrate that good sce-
narios can be achieved using currently available computer technologies.

Simulating Fire Ignition and Growth
To generate fire scar patterns we need to simulate the ignition,

suppression, and growth of fires. Because our primary objective is to
develop a methodology for generating spatially explicit stochastic
fire scar patterns, we chose to use a very simple fire model that can
readily be replaced by a more realistic model for more complex or
real flammable landscapes.

The number of lightning-caused fires that are ignited, de-
tected, and reported and burn a significant portion of a forest
management unit each year is the result of a uncertain number of
lightning storms that pass over the area, the number of cloud-to-
ground strokes produced by each storm, the moisture content
and other attributes of the forest vegetation or fuel those light-
ning strokes strike, the subsequent weather, and the effectiveness
of the detection and suppression systems. Because we are primar-
ily interested in generating spatially explicit stochastic fire scar
scenarios and we are not aware of any well-validated models of a
fire management system that includes all of those processes and
their interaction, we used a very simple fire ignition and growth
model to generate our fire scars.

Most of the forest fires that occur in the province of Ontario are
controlled by the initial attack force and burn little or no area, and
most forest management units in Ontario experience at most one
large (e.g., �200 ha) fire each year. Given the need to start with very
simple stochastic fire scar scenarios, we decided to restrict our atten-
tion to lightning-caused fire scar patterns with at most one large fire
per year.

We did so by assuming that our forest will be struck by at most
one cloud-to-ground lightning stroke each year and that the prob-
ability of a lightning strike igniting a fire that will survive the rainfall
associated with the storm cloud depends on many factors including
the type of vegetation or fuel that it strikes and being reported
(arrives and demands the attention of the fire suppression system) is
Pig. We further assume that the probability the fire would escape the
initial attack and grow across the landscape to become a large fire is
Pesc.

Our model forest is 10 � 10 km or 10,000 ha in size, and the
final size of escaped fires is assumed to be exponentially distributed
with an expected value of 200 ha. Fires grow in complex shapes that
are determined by the fuel and topography in which they are burn-
ing, the weather, particularly the wind speed and direction, and
suppression efforts. Many of the large fires that burn across the
boreal forest region of Ontario are somewhat elliptical in shape,
which is consistent with the simple elliptical fire spread model first
described by Van Wagner (1969). Because we are assuming that our
forest is flat and has a homogeneous fuel composition, we also as-
sumed that all of our fires burn in the shape of an ellipse with a
width/breadth ratio of 2.0 We assumed that the direction in which
the major axis of the ellipse is oriented is normally distributed with
a southwest to northeast direction, which is representative of large
fires in the boreal forest region of Ontario that are most often driven
by relatively dry southwest winds.

Most of the large fires that burn in the province of Ontario
exhibit significant temporal variation in their growth rates. They
grow rapidly on days when weather conditions favor fire growth
until they experience a fire-ending event (e.g., very significant
rainfall and or successful suppression action), but they grow very
slowly at night. Many experience fast growth rates for a very
small number (in same cases only one) of days that are inter-
spersed in sequences of low-hazard days during which they ex-
hibit little or no significant growth. Empirical distributions of
fire sizes in the boreal forest are very tail heavy, and we assumed,
for simplicity, that the final size of our escaped fires had an
exponential distribution.

The net result of our simplifying assumptions is that in our
simulated forest, each year at most one large fire burns in the shape
of an ellipse, the origin of which is uniformly distributed across our
hypothetical landscape and the orientation of which is stochastic to
produce a set of fire scenarios that can be incorporated in scenario-
based stochastic optimization models (Valsta 1992, Gassmann and
Ireland 1995). Because the scenario for no fire is easy to characterize,
we proceed to describe the process of generating single-fire scenar-
ios. The algorithm for generating the fire scar scenarios can be
summed up as follows

1. Find S1 fire scars, by doing S1 simulations to form the set of
fire cell sets (i.e., fire scars) called �.

2. Run S2 simulations and assign each fire to its nearest fire scar
in �.

3. The probability associated with each member of � is the num-
ber of assignments divided by S2 times the probability of a
fire.

The present analysis assumes only one significant fire per season or
time period under consideration. In step 3, the probability calcula-
tion allows for the possibility of no fire by unconditioning the prob-
abilities using the probability of a fire.

Step 1 discretizes the scenario space (the space of possible fires) to
produce a set of representative fire scars �. In the Representative
Patterns subsection below, we describe experiments to determine
approximately how many are needed to effectively discretize the
space to generate discrete stochastic fire scenarios for the forest used
in our experiments. Step 2 creates a need to compute distances
between fire scars, which are elliptical sets of points in two dimen-
sional space. This leads naturally to calculating the classic Pompeiu-
Hausdorff distance between ellipses) (e.g., see Rockafellar and Wets
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1998, §4.C). It measures how much a set A needs to be “fattened
up” to cover the other set B and how much B would need to “grow”
to cover A, taking the smaller of these two values

dPH� A, B� � min� such that max
a � A

d�a, B� � �

and max
b � B

d�b, A� � �

where d(c, C) is the (minimal) distance between a point c and a set C.
Using the fire simulator, we obtain the parameters that define

each ellipse: the major axis (a), the minor axis (b), and rotation with
respect to the x-axis (�). The distance metric is the key to the
algorithm for fire scar scenario generation that we just described so
the next section is devoted to a study of methods for computing it.

Directed Pompeiu-Hausdorff Distance between
Ellipses

In the case of simulated fire scars, the two sets of interest are
ellipses, so we can take advantage of some special properties. The
distances between two ellipses E1 and E2 is well parametrized in the
x-y-axis by their semimajor axis (ae), semiminor axis (be), center
(xce, yce), and rotation angle (�e). With this, the directed Pompeiu-
Hausdorff distance from E2 to E1 can be written as follows

max
�x2, y2� � E2

min
�x1, y1� � E1

��x1, y1�, �x2, y2��2 (1)

Remember that because this is a directed distance, to obtain the
Pompeiu-Hausdorff distance between E1 and E2 (which is not di-
rectional) one needs to solve this problem twice, from E2 to E1 and
vice versa.

The solution to this problem can be obtained through different
methodologies. Using the explicit representation of an ellipse, one
can make use of nonlinear optimization tools. It is also possible to
use several points to discretize the ellipses, allowing for the use of
geometric properties of polygons.

Optimization Methods
To solve problem 1 by applying continuous optimization meth-

ods, it is helpful to manipulate ellipses E1 and E2 in a way that allows
for a simpler representation of the problem. First, we rotate and
translate the original axes to have E1 centered and E2 maintaining its
original orientation with respect to E1. To accomplish this, E1 can
be redefined using its canonical representation

�E1 � � � x�1, y�1���x�1

a1
� 2

� � y�1

b1
� 2

� 1� (2)

f �E1 � � � x�1, y�1���x�1

a1

y�1

b1
1� � �3� (3)

where

�k � � x � �k: xk � �	
j�1

k�1

xj
2�

is the k-dimensional Lorentz or second-order cone (Ben-Tal et al.
2009).

To define E2 in the new axes it is useful to use the trigonometric
parametrization of its border

E2 � � � x2, y2�


	
x2�t� � xc2 � a2 � cos�2 � cost 
 b2 � sin�2 � sint
y2�t� � yc2 � a2 � sin�2 � cost � b2 � cos�2 � sint

�t � �0, 2�� � (4)

It is also known (Eberly 2003) that the rotation and translation of an
ellipse to a new origin (xc1, yc1) is given by

�x�2�t�
y�2�t�� � R � �x2�t� 
 xc1

y2�t� 
 yc1
� (5)

For this application,

R � �cos 
 �1 �sin 
 �1

sin 
 �1 cos 
 �1
� � � cos�1 sin�1

�sin�1 cos�1
� (6)

E2 can then be described in the rotated and translated axes
through the following equations

E� 2 � � � x�2, y�2��

	
x�2�t� � � x2�t� 
 xc1� � cos�1 � � y2�t� 
 yc1� � sin�1

y�2�t� � ��x2�t� 
 xc1� � sin�1 � � y2�t� 
 yc1� � cos�1

�t � �0, 2�� � (7)

Rewriting problem 1 for ellipses �E1 and �E2 the following is obtained

max
�x�2�t�, y�2�t�� � �E2

min
�x�1, y�1�

��x�1, y�1�, �x�2�t�, y�2�t���2
(8)

s.t.

�x�1

a1

y�1

b1
1� � �3

Three ways of solving this problem using optimization methods are
proposed.

Benchmark Optimization Model
A first approach is to discretize �E2 in N points and solve the

minimization problem for each one of these. In this case, for any
given point (p, q) � �E2, problem 9 needs to be solved.

min
�x, y�

��p 
 x�2 � �q 
 y�2

(9)
s.t.

� x

a1
� 2

� � y

b1
� 2

� 1

x � ��a1, a1�

y � ��b1, b1�

The directed Pompeiu-Hausdorff distance is obtained by taking the
maximum out of the N solutions obtained.
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This model is not the most practical one because it implies solv-
ing N optimization problems for each Pompeiu-Hausdorff distance
calculation. However, it gives a very reliable answer and has a very
straightforward implementation. For this reason, this method will
be referenced as the benchmark method. Bear in mind that not all N
problems need to be solved through optimization. For instance, if
the point (p, q) lies inside �E1, i.e., (p/a1)2 	 (q/b1)2 � 1, then its
distance to ellipse �E1 is equal to 0.

Binary Search Benchmark Optimization Method
Exploiting the regularity of the figures in hand, it is possible to

reduce the number of optimization problems to be solved. Based on
the work described in Edelsbrunner (1985), we developed a heuris-
tic method.

The method begins by calculating the distance between four
equally spaced points of �E2 and �E1, after which the farthest point to
�E1 is picked. The method is based on this first approximation, as it

then searches around this first point for the optimal solution. On
each iteration, half of the remaining portion of the ellipse is dropped
from the analysis, keeping the portion that is around the farthest
point found up to that stage (Figure 1). With this heuristic, the
number of optimization problems to be solved is reduced dramati-
cally because it is not necessary to visit all the points of each ellipse.
Consequently, the processing time is also reduced.

Conic Duality Optimization Model
A second possibility is to rewrite the minimization problem pres-

ent in 8 as a maximization using conic duality (Ben-Tal et al. 2009,
p. 415). This allows expression of the problem as a maximization-
maximization instead of a maximization-minimization optimiza-
tion problem. This method, referred to here as the conic duality or
c-d method, is not so intuitive and requires some manipulation to

derive its final representation. Details of this method can be found in
the Appendix.

Contrary to what is desirable, this nonlinear optimization
problem is not always concave. Its concavity depends on the
ellipses to which the problem is applied (Figure 2). This is trou-
blesome with nonlinear solvers such as KNITRO (Waltz and
Nocedal 2003) and IPOPT (Wächter and Biegler 2006), which
will sometimes end at a local optimum regardless of the existence
of a better global optimum. To avoid this problem different
initial values for the optimization variables 
 and � must be
given, which transforms the method into a heuristic.

Bear in mind that every point of ellipse E2 should be considered,
both in its border and interior; however, only the border is relevant
because that is where the optimization problem will find its solution.
This approach is applied for the resolution of the benchmark as well
as for the conic duality methods, in which only the border of the
ellipse is considered in the discretization and parametrization,
respectively.

Discrete Geometric Methods
It is also possible to solve problem 1 by discretizing E1 and E2

into n1 and n2 points, respectively, which can be thought of as
converting them into two convex polygons P1 and P2. Having the
two polygons in hand, one can apply one of the methods described
below.

Exhaustive Search
In this method, we calculate the directed distance by computing

for every vertex of P2 the Euclidean distance between it and every
vertex of P1 to find the closest one. The maximum among these n2

distances will be considered as the directed distance from P2 to P1.
Following this procedure, the directed distance from E1 to E2 is

Figure 1. Binary search approach (shown without translation and rotation). The lower ellipse is �E2.

rich5/for-fs/for-fs/for00115/for2798d15a xppws S�1 12/9/14 10:15 Art: FS-14-065 Input-md

Forest Science • MONTH 2014 5

F1

AQ:D-E

F2

EatonT
Cross-Out

EatonT
Replacement Text
to

dlm
Comment on Text
It is difficult to see the horizontal bar over Esub2 

Is it possible for you to move the bar up a little as you did in equation (7) on  page 4 of the proof so it can be more easily seen?



Auth
or 

Proo
f

obtained. The Pompeiu-Hausdorff distance will then be the maxi-
mum between these two. In other words, a discrete Pompeiu-
Hausdorff distance is computed in �(n1 � n2) time (Figure 3 [the
implicit polygons are not shown]). This is a trivial approach that
most certainly could be improved.

It is important to note that this is not an exact method for
calculating the Pompeiu-Hausdorff distance between convex poly-
gons. It is quite possible that the closest point from a vertex of either

polygon lies not on a vertex but on an edge of the other, something
that is not considered by this approximation.

Atallah Algorithm
It is also possible to follow a more intelligent methodology to

obtain the directed distance between P1 and P2, taking advantage of
the properties shown by convex polygons. An algorithm that could
compute the directed distance in �(n1 � n2) time was first developed

Figure 2. Examples of the directed Pompeiu-Hausdorff distance between different ellipses.
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in Atallah (1983). However, it only considered disjoint convex poly-
gons, which is unsuitable for the application in hand.

To explore this possibility, we implemented the algorithm devel-
oped in Atallah et al. (1991) which builds upon the previous work.
By computing the possible intersections between the two polygons,
which can also be made in �(n1 � n2) time (O’Rourke et al. 1982),
the algorithm is able to calculate the directed distance for nondis-
joint convex polygons, maintaining the complexity of the former
algorithm.

For the implementation of both methods, we will consider an
equal number of discrete points for both polygons (i.e., n1 �
n2 � N).

Computational Experiments
Comparison of Methods

To assess the quantitative differences between the methods, we
computed the Pompeiu-Hausdorff distance between 2,000 pairs of
ellipses, divided into 10 sets, each one starting from a different seed

to generate the necessary random numbers. These experiments were
conducted on an x86-64 machine with 2100-MHz CPUs and 126
GB of RAM. The benchmark method using 400 points was chosen
to be the base model to which other models are compared to assess
their accuracy. Results obtained using IPOPT solver (Wächter and
Biegler 2006) are presented in the following sections.

Optimization Methods
Three optimization models were described: benchmark, bench-

mark with binary search, and conic duality. Table 1 shows that these
methods vary considerably in their times of execution, depending on
the number of discrete points N or the number of starting points, as
it corresponds. Naturally, as more points or problems are consid-
ered, the computational time increases.

Table 2 shows the statistics for the relative error between every
method and the chosen base method calculated as

�P�H
benchmark400 � �P�H

�P�H
benchmark400 (10)

Figure 3. Ellipse approximation example for n1 � n2 � 4.

Table 1. Execution times for optimization methods with forest fire
ellipses.

Method N/starting points Mean SD

. . . . . .(s) . . . . . .

Benchmark 4 0.511 0.064
50 9.150 1.488

100 22.970 5.501
400 207.038 82.986

Binary search benchmark 50 2.049 0.233
100 2.790 0.580
400 3.305 0.305

Conic duality 1 0.222 0.132
4 0.991 0.560
8 2.036 1.046

Table 2. Relative errors for optimization methods with forest fire
ellipses.

Method N/starting points Mean SD

. . . . . .(%) . . . . . .

Benchmark 4 1.179 1.475
50 0.012 0.017

100 0.003 0.005
400

Binary search benchmark 50 0.021 0.378
100 0.003 0.005
400 0 0

Conic duality 1 0.666 4.742
4 �0.00021 0.0003
8 �0.00021 0.0003
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The conic duality method is the fastest method overall. However,
when only one starting point is considered, the SD of the relative
error is high in comparison with that of other methods, indicating a
low accuracy. On the other hand, if four or more starting points are
considered, the method is able to consistently find the global opti-
mal answer. In particular, four starting points would seem to be
enough to find the optimal solution because no variations in the
solutions are noted when more starting points are considered. For
these reasons the c-d method with four starting points is considered
to be the best optimization method implemented.

Discrete Geometric Methods
The same experiments were also conducted using the discrete

geometric methods. Computational times for these are shown in
Table 3, and the relative errors between the methods and the base
method are displayed in Table 4.

Here some contradictory results were obtained. The Atallah al-
gorithm requires more execution time than the exhaustive search
method, even though the opposite could be expected, given the
complexities of both methods. The reason is that to implement the
former it is necessary to make various comparisons between points
to check whether the geometrical conditions that make a point
optimal are satisfied, whereas the latter has a straightforward imple-
mentation that does not require these types of comparisons. These
geometrical conditions also affect the accuracy of the method. The
way these conditions were implemented requires comparisons be-
tween float-point numbers, which carry precision issues yielding a
higher error than they should. When the relative error of the Atallah
algorithm for different values of N is compared with that for the c-d
method, it is clear that this effect appears when 100 or more discret-
ization points are used. For these, the distances obtained are higher
than the ones obtained with the c-d method, yielding a negative

mean value for the error. In addition, the SD increases considerably
when going from 50 to 100 points, which implies a reduction in the
reliability of the method.

On the other hand, the exhaustive search method approximates
very well to the c-d method. For both types of ellipses, the relative
error with use of 400 points or more is very similar to that obtained
with the optimization method, taking half of the computational
time. It is also important to note that use of more than 400 points
does not improve the accuracy of the method by much, and it only
implies an increase in the computational time.

For these reasons, the exhaustive search method with 400 points
is considered to be the best proxy to the optimal Pompeiu-
Hausdorff distance because it maintains accuracy while reducing the
computational time considerably.

Quality of the Approximation for Ranking
Bear in mind that our ultimate goal is not to compute distances

for their own sake but rather to compare distances between pairs of
ellipses. As described in the Introduction, for the purpose of prob-
ability calculation, we want to assign each simulated fire to its near-
est fire scar in the set of representative fire scars (�). In this section,
we analyze how the different approximation methods behave when
used to rank a set of ellipses according to the Pompeiu-Hausdorff
distance to another ellipse, with particular attention to how the
presumptive closest ellipse is ranked.

We have seen that of the several methods implemented the one
that could approximate the Pompeiu-Hausdorff distance the best
was the c-d method with four starting points; however, the method
takes an average of 0.991 second, which is a considerable amount of
time if we want to compute several thousand calculations. It was also
noted that the exhaustive search method was more efficient at the cost of
accuracy, depending on the number of discrete points used (N).

To assess the differences in how these methods rank the repre-
sentative fires, an experiment concerning 300 representative and
5,000 sampled fires for five different seeds was conducted. The c-d
method and the exhaustive search approximation with different
numbers of points were used to rank the representative fires for every
set. Because the c-d method is the best bound on the Pompeiu-
Hausdorff distance we have obtained, the ranking generated using
this method is taken as the reference. Taking this into account, we
computed the position that the ellipse ranked as the closest repre-
sentative ellipse with the c-d method appeared on the ranking gen-
erated by the exhaustive search method. Results for the percentage of
times the representative ellipse ranked as closest by the c-d method
appears on each position of the exhaustive search ranking for differ-
ent amount of discrete points (N) are shown in Tables 5–8. It is
important to note that because the c-d method is computationally
costly, only the first 20 ranked ellipses with the exhaustive search

Table 3. Execution times for discrete geometric methods with
forest fire ellipses.

Method n Mean SD

. . . . . . . . .(s) . . . . . . . . .

Exhaustive search 4 0.0003 9.161 � 10�5

50 0.011 0.003
100 0.039 0.010
400 0.563 0.103

1,000 3.373 0.542
Atallah algorithm 4 0.005 0.001

50 0.057 0.020
100 0.120 0.055
400 0.571 0.611

1,000 1.909 3.473

Table 4. Relative errors for discrete geometric methods with forest
fire ellipses.

Method n Mean SD

. . . . . . . .(%) . . . . . . . .

Exhaustive search 4 �0.354 3.059
50 0.0005 0.047

100 0.00019 0.008
400 �0.00019 0.0007

1,000 �0.00021 0.0003
Atallah algorithm 4 �0.19 2.322

50 �0.007 1.566
100 �0.450 9.433
400 �0.460 9.503

1,000 �0.463 9.573

Table 5. Differences between rankings using the c-d method and
exhaustive search with N � 4.

Seed 1st 2nd 3rd 4th–10th �11th

. . . . . . . . . . . . . . . . . . . .(%). . . . . . . . . . . . . . . . . . . .

19 84.62 10.50 2.92 1.96 0.00
29 83.06 11.06 3.56 2.30 0.02
39 83.54 10.64 3.50 2.24 0.08
49 83.10 10.82 3.62 2.44 0.02
59 82.58 11.56 3.18 2.68 0.00
Mean 83.38 10.916 3.356 2.324 0.024
SD 0.772 0.417 0.297 0.265 0.033
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method with N � 400 were taken into consideration to generate the
c-d rankings.

Naturally, increasing the number of discrete points used for the
exhaustive search method increases the accuracy of the ranking gen-
erated. This is shown by the percentage of times both methods yield
the same representative fire as the closest one. Note that with use of
more than 50 points for the exhaustive search method, 
1% of the
rankings yielded a closest ellipse different from the one returned by
the c-d method.

Taking into consideration these results and the need for a fast and
accurate methodology, we propose a multistage approach. In the
first stage, representative fires are ranked using the exhaustive search
method with N � 4 after which only a percentage of them are kept
for further analysis. In this way, representative ellipses that are far
away from the sampled fire are discarded using few computational
resources. The remaining representative ellipses are ranked using the
results obtained with the exhaustive search method with N � 50 as
input for the c-d method starting points. Using the more accurate
method for final ranking assures a high level of approximation to the
exact distance. Even though we cannot assure an exact fit, the level of
approximation is high, while it reduces the time of computation
considerably, making the multistage method viable, as opposed to
the exact methods that need computational resources that might be
excessive in some situations.

Representative Patterns
The set of representative patterns, �, is the discretization of the

space of possible fires that will constitute the scenarios. Hence, we
want to work with a number of patterns that cover the forest fairly
well (i.e., all fire cells covered by at least one representative pattern).
To do this, we use a simple procedure for generating the represen-
tative patterns: we repeat the simulation of the S1 representative
patterns 10 times to generate candidate � sets; the algorithm then
selects the set that covers the most fire cells.

To assess its efficacy, an experiment in which this procedure is
replicated 5 times for each value of S1 is done. Statistics for this
experiment are shown in Table 9.

Considering the coverage and the trade-off between accuracy and
computational time, we conduct the remaining experiments using
200 representative patterns because this number provides reasonable
coverage and is computationally expedient.

Probability Convergence
There are usually limited computational resources available,

which necessitate a trade-off between speed and the number of
simulations we can do. In turn, being able to generate only a limited
number of simulations generates a statistical error, originating a
second trade-off between number of runs and accuracy of the
results.

We have shown that the execution time for one distance calcu-
lation between ellipses is sensitive to the method being used. Even
though the multistage approach proposed for ranking calculation
for each simulated fire is relatively fast, taking only 0.546 (seconds)
for 
�
 � 200, it would still add up to a considerable amount of time
to simulate several thousand ellipses. This limits our ability to gen-
erate as many simulations as we desire in a reasonable time, espe-
cially if we wanted to consider a larger set of representative patterns.

Statistics of Estimands
The ultimate goal of our procedure is to estimate 
�
 probabili-

ties, one for every representative pattern (200 in this particular anal-
ysis). Hence, there is a need to analyze each of these estimates sep-
arately, because they most likely will have different statistical
characteristics and convergence behaviors. We will analyze these
characteristics by looking at the conditional probability of burning,
given that there is a fire

�(Burni 
 Fire) �
Hitsi

N
�i � �1. . .
�
� (11)

where N is the number of simulated fires in the sequence and Hitsi

is the number of times a simulated (sampled) fire is assigned to the

Table 6. Differences between rankings using the c-d method and
exhaustive search with N � 50.

Seed 1st 2nd 3rd 4th–10th �11th

. . . . . . . . . . . . . . . . . . . .(%). . . . . . . . . . . . . . . . . . . .

19 99.28 0.44 0.16 0.12 0.00
29 99.18 0.54 0.08 0.20 0.00
39 99.08 0.70 0.10 0.12 0.00
49 99.14 0.62 0.10 0.14 0.00
59 99.04 0.58 0.30 0.08 0.00
Mean 99.144 0.576 0.148 0.132 0.00
SD 0.093 0.096 0.090 0.044 0.00

Table 7. Differences between rankings using the c-d method and
exhaustive search with N � 100.

Seed 1st 2nd 3rd 4th–10th �11th

. . . . . . . . . . . . . . . . . . . .(%). . . . . . . . . . . . . . . . . . . .

19 99.40 0.32 0.16 0.12 0.00
29 99.26 0.44 0.10 0.20 0.00
39 99.30 0.48 0.10 0.12 0.00
49 99.42 0.34 0.10 0.14 0.00
59 99.26 0.36 0.30 0.08 0.00
Mean 99.328 0.388 0.152 0.132 0.00
SD 0.077 0.069 0.087 0.044 0.00

Table 8. Differences between rankings using the c-d method and
exhaustive search with N � 400.

Seed 1st 2nd 3rd 4th–10th �11th

. . . . . . . . . . . . . . . . . . . .(%). . . . . . . . . . . . . . . . . . . .

19 99.44 0.28 0.16 0.12 0.00
29 99.32 0.38 0.10 0.20 0.00
39 99.40 0.38 0.10 0.12 0.00
49 99.46 0.30 0.10 0.14 0.00
59 99.26 0.36 0.30 0.08 0.00
Mean 99.376 0.34 0.152 0.132 0.00
SD 0.084 0.047 0.087 0.044 0.00

Table 9. Forest coverage for different number of representative
ellipses, S1.

No. of representative
patterns Mean Minimum Maximum SD

. . . . . . . . . . . . . . .(cells) . . . . . . . . . . . . . . .

10 10.439 9.695 11.943 896.35
50 27.979 26.225 30.357 1,635.07

100 35.431 34.439 36.773 1,086.87
200 39.410 38.885 39.765 324.45
300 39.965 39.948 39.995 19.18
400 39.993 39.975 40.000 10.44
450 39.998 39.990 40.000 4.47
500 40.000 40.000 40.000 0
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ith pattern. Figure 4 shows the probabilities averaged over five in-
dependent fire sequences as a function of the number of simulated
(sampled) fires; each sequence has 1,000’000 simulated fires. Natu-
rally, the values are irregular at first but tend to stabilize as more and
more simulations are considered. From simple inspection of the
values given per iteration, one can say that not much is gained by
simulating more than 200,000 fires. It is also seen that values for
every probability stabilize around a single value, simplifying the
analysis because statistics estimated at early stages can be used as
realistic estimators, as opposed to a situation where divergence or
temporary convergence was observed.

To support this result, we analyzed the SD of the probabilities
based on elements introduced in Gelman and Rubin (1992) for the
variance, studying the following statistics

A � average of m within-sequence standard deviations, each based
on n � 1 df.

S � SD between the m sequence means, each based on n values of x.

where m is the number of sequences of fires simulated, n is the
number of simulated fires in each sequence considered, and x is the
value being estimated. To compute the statistics the first part of each
sequence was dropped (ironically referred to as “the burn-in pe-
riod”), leaving only the last 10,000 simulations. Of these, values
given between intervals of 100 samples were used (i.e., 100 data
points were considered for every calculation). By considering a con-
stant number of samples, we are able to isolate the statistical char-
acteristics of the last simulations from early variations in the se-
quences that do not contribute to having accurate information. It
also allows us to calculate the statistical error based solely on the
information retrieved by the SD of the 100 data points. Values for
these statistics are presented in Figure 5, where they are displayed
separately per quantile. The first quantile is the 40 least probable (of
the 200) representative fire patterns. In this figure it is possible to
detect a clear drop in all quantile in the average SD within sequences
(A) between 20,000 and 200,000 simulations, after which SD re-
duction drops at a slower rate. This behavior is also seen for S,
suggesting that probabilities tend to be independent of the random
seed as more simulations are used, which is natural. Interestingly,
higher probabilities require more samples to be as stable between
sequences as low probabilities are, which could be troublesome if S

was high. However, S is on the order of 10�5 for all probabilities
after only 20,000 simulations.

Based on this information, we can build a precision policy based
only on the SD of the estimands. For example, let �̂i be the esti-
mated mean based on 100 data points (10,000 simulations) for the
ith representative pattern and �̂i its estimated SD. Based on the
central limit theorem, a (1 � 
)% confidence interval for the true
mean is defined as follows

� �̂i 
 z
1�




2
�

�̂i

�n
, �̂i � z

1�



2
�

�̂i

�n� (12)

where n is the number of simulations and z1 � (
/2) is derived from
the cumulative normal distribution function. We can impose the
precision level we want (�) with certain confidence by imposing
conditions on the width of the confidence interval

2 � z
1�




2
�

�̂i

�n
� � (13)

With this we can determine the statistical error that complies with the
precision policy defined. In turn, this will allow us to determine the total
number of replications needed to reach that error for all estimands. For
instance, defining � � 10�4 and 
 � 0, 05 implies that

�̂i �
10�4 � �100

2 � 1,96

 2,55 � 10�4

Which holds true for all i �{1…
�
} after 50,000 simulations.
It would be desirable to impose even lower precision levels; however,

this is not always possible due to computational concerns. Figure 6
shows the number of simulations needed to obtain different precision
levels using 
 � 0.05 and the computational time needed to compute
them running 20 parallel processes. Computational times increase lin-
early among the number of simulations; however, the increase in pre-
cision does not follow the same trend. In fact, after 100,000 simulations
we reached a precision of order 10�5, which is reduced by 1 order of
magnitude only after 800,000 simulations. Considering the computa-
tional resources needed to obtain this precision level, it seems unreason-
able to simulate more than 100,000 ellipses.

Probability Vector Convergence
We can arrive at similar conclusions by analyzing the 
�
 probabilities

as a whole, thinking of the vector of conditional probabilities retrieved
after the jth iteration (simulated fire) as a probability distribution Pj �
(pj1, pj2, …, pj
�
), where pji is the conditional probability that the ith
representative pattern burns, given that there is a fire for the ith
representative pattern after j fires have been simulated. Clearly

	
i�1


�


pji � 1 � j (14)

allowing the use of measures of distance to assess similarity or diver-
gence between probability distributions. A comprehensive review of
metrics used to study probability convergence is presented in Gibbs
and Su (2002). We use the Hellinger distance, given its properties
and simplicity.

The Hellinger distance (Le Cam and Yang 2000) between two
discrete probability distributions P and Q over a space 
 is
defined as

Figure 4. Probability of burning given that there is a fire for each
representative pattern.
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Figure 5. A and S for each representative pattern per quantile.
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h�P, Q� �
1

�2� 	
��


��P��� 
 �Q��� 2 (15)

It follows that (Gibbs and Su 2002)

0 � h�P, Q� � 1 (16)

We computed the distance every 1,000 simulations both between
sequences and within sequences, taking the vector obtained using
1,000,000 simulations as a reference for the latter. Figure 7 displays
the mean distance between all pairs of sequences and the distance
within sequence as a function of the number of simulations. Similar
behavior can be seen for both statistics. A clear drop in distance is
observed between 1,000 and 100,000 simulations, after which the
rate of reduction decreases.

After analyzing the estimated probabilities as a function of the
number of iterations, both separately and as a vector, we can con-
clude that not much is gained by simulating more than 100,000
fires. However, even this many iterations may seem excessive, given
that confidence intervals are relatively tight after only 20,000. In this

context, it is not how many iterations are enough that is important,
but how many iterations one can afford to compute, given the fire
simulator in use and the available computational resources. Exper-
iments with 
�
 � 300 produced similar results.

Discussion and Conclusions
We have described a method of creating realistic fire scar scenar-

ios for strategic planning as well as extensive computational experi-
ments that describe its performance. Our algorithm for generating
the fire-cell resolution fire scar scenarios is as follows

1. Find S1 fire scars by doing S1 simulations n times to form the
set of fire cell sets (i.e., fire scars) � that provides the best
coverage as described.

2. Run S2 simulations and assign each fire to its nearest fire scar
in �.

3. The probability associated with each member of � is the num-
ber of assignments divided by S2.

When the algorithm is used in practical settings, experiments may
be needed to set the parameters for any particular forest; however,
we have shown that for a hypothetical forest that is representative of
the boreal forest region of Canada, n � 10, S1 � 200, and S2 �
5,000 works well and S2 � 20,000 works very well. Generation of
200 scenarios requires a few minutes on a laptop computer when the
distances needed in step 3 are computed using a two-stage heuristic.
Consequently, larger values of S1 and S2 are tractable in some appli-
cations. We have developed, tested, and illustrated the use of a
methodology for generating discrete sets of stochastic forest and
wildland fire scar scenarios by using a very simple fire ignition and
growth model and applying it to a simple hypothetical forest, but
our methodology can readily be enhanced and applied to evaluate
strategies for managing risk on real flammable landscapes.

We assumed that the locations at which fires might ignite are
uniformly distributed across our forest, but fire ignition processes
are influenced by fuel, weather demographics, and land-use pat-
terns. Brillinger et al. (2003, 2006) used generalized mixed-effects
methods to develop spatially explicit fire ignition models for por-
tions of the states of Oregon and California, respectively, and their
approach could be incorporated in our methodology. We used a
very simple elliptical model, but it could readily be replaced by more
complex models that account for variations in fire growth across the
landscape. Preisler et al. (2004) built on the methods developed in
Brillinger et al. (2003) to develop a spatially and temporally explicit
nonparametric regression model that can be used to predict the
probability that a fire which occurs in a specific 1 � 1 km cell in their
study area in the state of Oregon would become large (40.5 ha or
more) or the conditional probability that a large fire will occur in a
cell. Ziesler et al. (2013) used fire scar data from Yellowstone Na-
tional Park to develop a conditional burn probability methodology
that one could use to predict the conditional probability that a fire
will grow to fill a specified set of cells on a landscape that might be
used to model the generation of fire scars in a BP model.

One could, of course, use complex fire spread models (e.g., vari-
ants of the Huygens type model developed by Richards [1995]) to
model fire growth. The probability that a fire will escape initial
attack and its final size depend, of course, on both the productivity
of the initial and extended attack systems and the suppression mod-
els (e.g., Fried and Fried 1996). The large-fire simulation system

Figure 6. Precision level obtained and computational time per
number of simulations.

Figure 7. Hellinger distance between probability vectors for rep-
resentative patterns.
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(FSim) described by Finney et al. (2011) includes ignition, suppres-
sion, and fire growth components and could be used to generate the
type of fire scar patterns on which our methodology is based.

We have focused on the generation of single-fire scenarios to
simplify our analysis, and because most forest management units in
the boreal forest region of the province of Ontario seldom experi-
ence more than one large fire each year, a revised version of our
methodology could be expanded to deal with the possibility that
more than one fire might occur during each period. The challenge is
to develop a suitable method of measuring how similar a specific
scenario is to the initial set of baseline scenarios to which it must be
compared. We are working in continuous space, and it would be
challenging to extend our current methods to develop a continuous
space methodology that deals with multiple fire scenarios. One
could, however, discretize the landscape into small cells as others do
and compare patterns in terms of the number of cells in common.

We note that the use of the stochastic fire scar patterns that can be
generated using our methodology need not be restricted to the de-
velopment of strategic forest management planning models. Once
the patterns are developed they could be used to easily answer some
of the questions that traditional burn probability models are used to
answer. Suppose, for example, the forest management unit con-
tained a home and one wanted to estimate the probability that home
will burn. One could identify all of the S1 fire scar scenarios that
intersect that home and the probability that the home will be de-
stroyed could quickly be determined by summing the probabilities
of the scenarios that intersect the home.

But our fire scar scenarios can also be used to answer questions
that are not so readily answered using traditional BP models. Sup-
pose one wanted to locate two conservation areas on a flammable
forest landscape. One could use a modified version of the traditional
BP model inasmuch as one could tally not the probability that each
pixel or cell on the landscape would burn but rather the number of
times both of those conservation areas burned. If one wanted to
evaluate alternative locations, one would have to rerun the burn
probability model for each of the conservation area configurations
one would like evaluated.

Our burn scar patterns could, however, be much more easily used
to evaluate alternative conservation area configurations. One could
propose a configuration, identify all of the single fire burn scar
scenarios that burned both of the conservation areas, and sum their
probabilities to estimate the probability that both would burn. One
could identify other configurations and just as quickly also evaluate
them. One could also easily answer more complex questions such as,
the probability that neither would burn, that area 1 would burn and
area 2 would not, or that area 2 would burn and area 1 would not
burn, all using the same set of fire scar scenarios.

In closing, we note that the need to generate stochastic fire scars
and incorporate them in stochastic programming models extends far
beyond the strategic forest management planning under uncertainty
due to fire that motivated the development of our methodology.
Forest and wildland fire managers have to deal with considerable
uncertainty when they attempt to resolve their strategic, tactical, and
operational decisionmaking problems, and we recognize that they
have yet to exploit important advances in stochastic programming.
Initial efforts to apply stochastic programming methods to fire and
forest management focused on strategic planning problems (e.g.,
Gassmann 1989, Boychuk and Martell 1996), but there have been
several recent attempts to apply stochastic programming methods to
operational fire problems (e.g., Ntaimo et al. 2012, 2013, Lee et al.

2013). Given the very broad and diverse decisionmaking problems
that confront forest and wildland fire managers, there is a need to
further explore what stochastic programming has to offer and to
evaluate how well specific approaches perform when they are ap-
plied to specific classes of forest and wildland fire management de-
cisionmaking problems.

Endnote
1. White and Pickett (1985) defined a disturbance as “any relatively discrete event in

time that disrupts ecosystem, community, or population structure and changes
resources, substrate availability, or the physical environment.” It is important to
note that despite the fact that the term “disturbance” has negative connotations
and natural disturbance processes can and often do have destructive impacts on
public safety, property and forest resources, natural disturbance processes are
natural forest ecosystem processes and essential to ecosystem health.
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Appendix: Details of Conic Duality
In this Appendix we provide details of the conic duality method.
Introducing z � � such that

z � ���x1, �y1�, ��x2�t�, �y2�t���2 (17)

f ���x1 
 �x2�t�� ��y1 
 �y2�t�� z� � �3 (18)

problem 8 can be expressed as a conic maximization-minimization
problem

max
�x�2�t�, y�2�t�� � �E2

min
�x�1, y�1, z�

z

(19)
s.t.

�x�1

a1

y�1

b1
1� � �3

�� x�1 
 x�2�t�� � y�1 
 y�2�t�� z� � �3

The minimization problem (20) is the one of interest, because it
is necessary to transform it to end up with a maximization problem,
avoiding the calculation of the discrete benchmark method.

min
�x�1, y�1, z�

z

(20)
s.t.

�x�1

a1

y�1

b1
1� � �3

�� x�1 
 x�2�t�� � y�1 
 y�2�t�� z� � �3

This is equivalent to

min
�x�1, y�1, z�

�0 0 1� � �
x�1

y�1

z
�

s.t.

�
1

a1

0 0

0
1

b1

0

0 0 0

� � �
x�1

y�1

z
� 
 �

0

0

�1
� � �3 ��1, �2, �3� (21)

�
1 0 0

0 1 0

0 0 1
� � �

x�1

y�1

z
� 
 �

x�2�t�

y�2�t�

0
� � �3 ��1, �2, �3�
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where �1, �2, �3, �1, �2 and �3 are the corresponding dual
variables.
Applying conic duality to the previous problem, the following rep-
resentation is obtained

max
�1..3, �1..3

��3 � x�2�t� � �1 � y�2�t� � �2

(22)

s.t.

��1, �2, �3� � �3

��1, �2, �3� � �3

�
1

a1
� �1

1

b1
� �2

0

� � �
�1

�2

�3

� � �
0

0

1
�

Using this last result, it is possible to transform 1 to the following
maximization problem

max
t, �1..3, �1..3


�3 � x�2�t� � �1 � y�2�t� � �2

s.t.

��1, �2, �3� � �3

��1, �2, �3� � �3

�
1

a1
� �1

1

b1
� �2

0

� � �
�1

�2

�3

� � �
0

0

1
� (23)

x�2�t� � ex � fx � cost � gx � sint

y�2�t� � ey � fy � cost � gy � sint

where

ex � � xc2 
 xc1� � cos�1 � � yc2 
 yc1� � sin�1 (24)

fx � a2 � �cos�1 � cos�2 � sin�1 � sin�2� (25)

gx � b2 � �sin�1 � cos�2 
 cos�1 � sin�2� (26)

ey � � yc2 
 yc1� � cos�1 � �xc1 
 xc2� � sin�1 (27)

fy � a2 � �cos�1 � sin�2 
 sin�1 � cos�2� (28)

gx � b2 � �sin�1 � sin�2 � cos�1 � cos�2� (29)

Moreover, knowing that cos2t 	 sin2t � 1, it is possible to
introduce 
, � � � such that 
2 	 �2 � 1. With this, we obtain
the final representation for the original problem

max

, �, �1..3, �1..3


�3 � �ex � fx � 
 � gx � �� � �1

� �ey � fy � 
 � gy � �� � �2

(30)
s.t.

��1, �2, �3� � �3

��1, �2, �3� � �3

�
1

a1
� �1

1

b1
� �2

0

� � �
�1

�2

�3

� � �
0

0

1
�


2 � �2 � 1
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