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1 Introduction

Stochastic (mixed-) integer programs arise in a variety of situations in which
discrete decisions combine with uncertainty in the data. Examples have been
reported in the literature for some time, and include server location [23], batch
sizing [18], electricity generation unit commitment [32], supply chain design
[29], network interdiction [5,12,14], and many others [33]. The general combi-
natorial, NP-hard nature of integer and mixed-integer problems makes them
difficult to solve even when all the data are known, but special structure may
allow for easier solution. A common approach to representing uncertainty in
data is to formulate a finite number of discrete scenarios for the values of
uncertain parameters together with associated probabilities. Methods for ob-
taining scenarios do not concern us here, but often take the form of sampling
from, or approximating, some stochastic process [8,15,25]. Decisions are classi-
fied into two or more stages according to which parameter values are assumed
to be known to the decision-maker when the decisions must be made. Those
decisions that can be delayed until some parameter values are revealed are
(1) modeled as scenario-dependent, (2) required to satisfy constraints using
that scenario’s data, and (3) incur scenario-dependent costs. Implementability
(or non-anticipativity) constraints are introduced to require that decisions not
depend on data not yet revealed. When these model components are combined
with an objective to minimize expected cost (where “cost” may include some
measure of risk), the resulting extensive form of the stochastic program be-
comes a very large mixed-integer program in which the underlying structure
of the deterministic combinatorial problem has been obscured.

The progressive hedging algorithm (PHA) has emerged as an effective
method for solving multi-stage stochastic programs, particularly those with
discrete decision variables in every stage. The PHA mitigates the computa-
tional difficulty associated with large problem instances by decomposing the
extensive form according to scenario, and iteratively solving penalized versions
of the sub-problems to gradually enforce implementability. Solving individual
scenario problems separately may allow a solver to exploit any special com-
binatorial structure that may be present. The PHA is especially easy to im-
plement in applications, such as the unit commitment problem we address in
Section 5.3, where sophisticated computational infrastructure already exists
for solving the deterministic version of the problem. In each iteration of the
PHA, an aggregated solution that satisfies the implementability constraints is
formed and penalties are applied in the next iteration based on deviations from
that solution. In this primal-dual method, the penalties are based on estimates
of the dual prices of the implementability constraints, and are updated in each
iteration. While convergence to a globally optimal solution is not guaranteed
in the case of mixed-integer problems, computational studies have shown that
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the PHA can find high-quality solutions within a reasonable numbers of itera-
tions [35]. Moreover, the time expended for each iteration can be dramatically
reduced by a very straightforward parallelization. Further, the PHA applies
equally well to multi-stage stochastic programs with discrete decision variables
in any stage or combination of stages.

A limitation in applying the PHA to stochastic mixed-integer programs is
the historical lack of information it provides regarding solution quality relative
to the optimal objective function value. In other words, without lower bound
information, PHA has served as a heuristic, albeit a high-quality one. In con-
trast, solution methods that use branch-and-bound [1] or branch-and-price [18]
rely on lower bounds on the optimal cost to form termination criteria as well
as to eliminate regions of the solution space from consideration. Thus, they
provide a built-in upper bound on the deviation of the incumbent solution’s
cost from global optimality.

In this paper, we correct this deficiency of the PHA in the mixed-integer
case, and report a lower bound result. We use the estimates of the dual prices
of the implementability (non-anticipativity) constraints to compute a lower
bound on the optimal objective function value in any iteration of the PHA
so that upper and lower bounds can be provided simultaneously. The bound
computation at each iteration requires approximately the same effort as exe-
cuting a standard iteration of the PHA. We also show that in theory, the lower
bound from the PHA can be as tight as the lower bound from the Lagrangian
dual problem, which is used in the dual decomposition method [3]. We empir-
ically study the convergence of lower bounds from the PHA and use them to
evaluate the quality of the primal solutions obtained in two different problem
domains. The empirical results expose how the tradeoff between solution time
and solution quality can be managed by appropriate parameterization of the
PHA.

The remainder of this paper is organized as follows. We begin in Section 2
by developing our notation for stochastic mixed-integer programs and formally
describing the PHA algorithm. Our lower bounding results are developed in
Section 3 for the two-stage SMIP case, and are subsequently extended to the
multi-stage case in Section 4. We empirically assess the quality of the PHA
lower bounds in Section 5, and analyze the relationship between PHA param-
eters and bound quality. We then conclude in Section 6 with a summary of
our results.

2 Preliminaries

We begin by considering a simple two-stage stochastic mixed-integer program
of the form

min <"z + E[f(2,8)] (1)

s.t. Az >b (2)

reZB x Rm™P” (3)
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where 5 is a random vector defined on a probability space (=, A, P) and for a
particular realization £ of £, f(x,&) is defined as:

f(2,6) =ming(&) Ty (4)
st. Wy >r(§) —T()x (5)
y ez x R, (6)

Here, c €e R™M, A € R™*™ p e R™, g e R™ W € R™x"2 T ¢ R™M2X™
and r € R™2 comprise the data of the stochastic mixed-integer program. In
two-stage stochastic programming, the decision maker chooses values for the
first-stage decisions x before uncertainty is revealed and then takes recourse
actions in response to a particular realization of the random vector é . The
objective (1) is to minimize the sum of first-stage cost and the expectation of
the second-stage costs. The first-stage decisions must satisfy the constraint set
defined by (2). Constraint (3) enforces the mixed-integer restrictions on the
first-stage variables. The second-stage decisions are subject to a cost g(£) and
are restricted by Constraint (5). First-stage decisions constrain second-stage
decisions through the matrix 7'(¢). Constraints (6) enforce the mixed-integer
requirements on the second-stage variables. In general, the expectation can be
of a utility function and can include risk measures.

Stochastic programs of the form (1)-(6) are, in general, infinite dimensional
optimization problems. To cope with this difficulty, one usually constructs an
approximation of the problem by considering only finitely many realizations &
of é . In this paper, we assume that the random vector é has a finite support
in =, and restrict = to denote the set of realizations of ¢ with corresponding
probabilities pe. With this assumption, one can express the expectation in
(1) as a weighted sum, and write a large-scale deterministic mixed-integer
programming formulation of the stochastic program called its extensive form
(EF), as follows:

min 'z + Y peg(€) Ty (©) (7)
(ez

st. Az > b (8)

Wy(&) > r(§) — T(§)z(©), VEeE (9)

T € 7B x Rm—P (10)

y(§) € ZB? x R™27P2 VeEe = (11)

The condition that the first-stage decision variables x must not depend on a
particular realization of £ is implicit in the formulation (7)-(11). This condition
was explicitly stated as a constraint in [36]. Writing the constraints explicitly
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leads to the so-called scenario formulation of the stochastic program:

min " pe [eT2(6) + o(6) T0(¢)] (12)
ez

st. Ax(§) > b (13)

Wy(€) > r(€) - T(€)a(€) vee s (14)

pex(§) —pe& =0 VEe = (15)

&, 2(€) € ZB x RM P Vee = (16)

y(&) € ZF? x R"27P2 Ve = (17)

In the formulation (12)-(17), which we call the extensive form of the sce-
nario formulation (EFS), copies of the first-stage variables are created for
each realization or scenario of é In addition, the EFS includes constraints
(15), which are known as non-anticipativity or implementability constraints.
Non-anticipativity constraints in a two-stage stochastic program stipulate that
in all feasible solutions, the first-stage decisions are not allowed to depend on
the scenario.

Solving the EFS directly (e.g., using a commercial solver such as CPLEX or
Gurobi) is difficult for most practical problems, as large numbers of scenarios
can yield extremely large-scale mixed-integer programs. However, the scenario
formulation without the complicating non-anticipativity constraints (15) has a
well-known block diagonal structure that decomposes the problem by block or
scenario. Decomposing stochastic programs thus allows one to manage prob-
lem complexity. The progressive hedging algorithm (PHA) due to Rockafellar
and Wets [26] is a decomposition algorithm that operates by decomposing a
stochastic program by scenarios, and then coordinates a search for a Z that
satisfies (15). The PHA is related to other decomposition algorithms, e.g.,
alternating direction methods [2]. For € € =, let

X&) ={eeZl xR yecZP xR"™7P2: Az > b, Wy > r(&) — T(&)x}

The statement of the PHA for two-stage stochastic mixed integer programs
(SMIP) is then given in Algorithm 1.

The PHA is initialized by solving the individual scenario problems (Step 1).
Each iteration of the PHA involves an aggregation operation (Step 3), which
corresponds to a projection of the individual scenario solutions onto the sub-
space of non-anticipative policies [26]. The dual prices w” () are then updated
(Step 4), using the sole external parameter associated with the basic PHA: p.
The decomposition step of each PHA iteration (Step 5) involves solving sce-
nario problems whose first-stage costs have been perturbed by the dual prices.
Further, the objective function in this step is modified to include a proximal
term that measures the deviation of the scenario solution from the aggregated
first-stage policy 2. In practical applications, the test for convergence in Step
6 of the algorithm requires only convergence to within a tolerance for non-
integer variables.
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Algorithm 1 The Progressive Hedging Algorithm for Two-Stage SMIPs

1: Initialization: Let v < 0 and w”(§) < 0,V¢ € =. For each £ € =,
compute:

(@"H1(€),y" "1 (€)) € argmin Tz +g(6)Ty
(z9)EX(©)

Iteration Update ve—rv+1
Aggregation: 7V + de pgx”(g)

Price Update: w”(§) < L) + pla (&) — 77)
Decomposition : For each § € =, compute:

(@ F1(€),y" 1 (€)) €
argming, e x ¢y {¢' = +9(6) Ty +w” (&) Tx + §l|lz — 2|*}

AN i >4

6: If all scenario solutions x(§) are equal, stop. Else, go to step 2.

3 Mixed-Integer Lower Bounds from Progressive Hedging

We now show that the dual prices of the non-anticipativity constraints in two-
stage stochastic MIPs define implicit lower bounds. We additionally demon-
strate an equivalence between the best lower bounds obtained by the PHA
and the lower bounds from the dual decomposition algorithm [3]. Finally, we
prove that our results hold when the PHA proceeds in the context of bundles
of scenarios in the course of decomposition.

3.1 Computing Lower Bounds

We now state our lower bounding result for the PHA. Let z* denote the optimal
objective function value of the SMIP defined by (12)-(17). In the following,
we assume that the SMIP is feasible and has an optimal solution with —oco <
2* < 400, and X (§) # 0, V€ € =. The following result shows that the dual
prices w(§),€ € =, define implicit lower bounds on z*.

Proposition 1 Let w = (w(§))¢c =, where w(§) € R™ satisfy > ¢ = pew(§) =
0 (component-wise). Let

De(w(€)) = L (c"z+g(©)Ty+w©) ). (18)

Then D(w) := ZgEEPEDﬁ(w(f)) <z"

Proof : Let (Z,{(2(¢),5(£)),V¢é € Z}) be an optimal solution to the SMIP
defined by (12)-(17). Feasibility implies (Z(£),7(§)) € X () for each £ € =.
Thus:

De(w(€)) < ¢ z(€) + g(&) 5(&) +w(§) "z(¢).
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Then

w) <Y pe (¢T2(E) + 9(€) TY(E) + w(é) Tx(6))

ez

_pr 'z +g(e +Zp5w ) &
e ¢exz

=Y pec"E+g(8)Tg(¢) = 2.
ez

The next-to-last equality follows from the assumption that Z&eE pew(§) = 0.
O

In every iteration of the PHA, the price update rule maintains the condition
that 3. = pew”(§) = 0. Indeed, this is true for v = 1 since wl (&) = p(at(&) -
dtes pex! (€)) and thus D tes pew!(€) = 0. By induction, it is straightforward
to see that > .. = pew”(§) = 0 for all v. Proposition 1 demonstrates that a
lower bound on z* may be computed in any iteration of the PHA by solving
an optimization problem that decomposes by scenario. We further observe that
the scenario sub-problems are nearly identical in structure to those solved by
the standard PHA, with the exception that the quadratic proximal terms are
absent. This observation has significant practical implications for efficiently
implementing lower bounding with PHA, including the availability of warm
starts when solving the lower bounding scenario sub-problems.

In summary, our result demonstrates that the dual prices define implicit
lower bounds for the PHA. Note that the non-anticipativity constraints (15)
define a subspace A and the optimality conditions in the convex case [26]
require that the dual prices lie in the subspace orthogonal to A/, i.e., the
requirement 2665 pew(§) = 0 can be interpreted as “dual feasibility” con-
straints for the primal constraint (15). Note that even in the SMIP case, the
PHA maintains this requirement on dual variables.

3.2 Lower Bound Convergence

We next consider the ordinary Lagrangian for the SMIP defined by (12)-(17),
which is obtained by dualizing the non-anticipativity constraints (15) using
multipliers A(€). Let U be the feasible set defined by (13), (14), (16), and (17).
For u = (&, (z(£),y(&))ec=) € U we define:

= > pe(cT2(€) + 9() Ty(&) + M) Tz () = A(©)T2).

{ex
The corresponding Lagrangian relaxation is given by:

F(\) = mi{fl L(u, \)

ue
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and its dual problem is given by:

ZLp = Sl;p F(N). (19)

It is well known that the value of the Lagrangian dual problem in the
mixed-integer case is equal to the optimal objective function value of a certain
“primal” problem [3,10,22]. We summarize this result as follows:

Theorem 1

zp =min§ > pele’ (&) + (&) Ty(€)] :

¢eE
{(2(€),y(¢)) € cleonv(X(£)), pex(§) — pet = 0,¥¢ € Z}}. (20)

when cleconv(X (§)) — the closure of the convex hull of £ — is a closed, polyhedral
set.

The conditions under which clconv(X (£)) is a closed, polyhedral set are satis-
fied in a broad range of practical contest, such as when (a) the set determined
by the linear constraints is bounded, or (b) the coefficients are rationals (see
[19]). Under such conditions, the best bound obtained from the Lagrangian
dual can be obtained by solving the linear program (20).

There are several methods for solving the dual problem (19), including
subgradient methods [30], cutting plane, and bundle-type methods [13]. The
Dantzig-Wolfe column generation method [7] is an approach to solve the primal
linear program (20). In [17], the authors show the duality between a cutting
plane model of F/(\) and the primal linear program (20), and provide a method
to recover a primal solution to (20) by solving the dual problem in the context
of stochastic mixed integer programs. They also suggest warm-starting the
branch-and-price method using the bound and primal solution obtained using
this implementation of the proximal bundle method.

Because we are dealing with SMIPs, there is typically a duality gap between
(20) and (12)-(17). The duality gap can be closed by branch-and-bound algo-
rithms, where the bounding can be done by either solving the dual problem
(19) or the primal problem (20). The first approach is developed in [3] un-
der the name Dual Decomposition, where the authors employ a conic bundle
method to solve the dual problem within the branch-and-bound. In [18], the
authors develop a branch-and-price method for SMIPs by solving the primal
problem for bounding.

We now show that by applying the PHA to the primal problem, one can
recover both primal and dual optimal solutions to (20) and (19), respectively.
Further and moreover, the lower bound D(w) from (18) is equal to zpp.

Proposition 2 Suppose the PHA is applied to the primal problem (20), where
each iteration involves solving scenario sub-problems for each scenario € € =
of the following form:

(z" 1),y () €
Arg MmN, (¢ 4 (e)) ecleonv( X (€)) 1€ (€) +9(€) Ty(€) + w (&) T2(€) + §|=(€) — &¥|*} .
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Then in the limit, one obtains a solution (Z*,w*(£)), where &* solves the primal
problem (20) and w*(£),V€ € = solves the dual problem (19). Moreover, in
the limit, the lower bound obtained from (18) is equal to zpp.

Proof : Because clconv(X(£)),€ € =, are closed convex polyhedral sets, the
optimization problem (20) is a linear program. The proof of this result then
follows from the proof of Proposition 5.2 in [26]. O

Thus, the previous application of the PHA can be interpreted as a primal-
dual algorithm in which sequences of primal solutions {2} ; and dual solu-
tions {w”(£)}52,,£ € = are generated during the course of execution. Further,
these sequences converge to a saddle point of the ordinary Lagrangian.

3.3 Scenario Bundling

One proven way to accelerate PHA convergence is to decompose by bundles of
scenarios, rather than individual scenarios. Bundles allows Step 1 and Step 5
of the algorithm to solve small extensive forms of the SMIP rather than single-
scenario problems [37,16,6]. Simultaneous consideration of multiple scenarios
enforces non-anticipativity among the composite scenarios, which in turn ac-
celerates convergence at the master PHA level. The number of scenarios in
each bundle must be balanced with the increased computational difficulty of
the resulting bundles.

Here, we formalize the bundle version of PHA and show that Proposition
1 readily extends to this context. Our computational results presented in Sec-
tion 5 indicate that the quality of PHA bounds can be improved dramatically
by bundling scenarios.

Suppose the set of scenarios = is partitioned into bundles, 3, of K scenarios
each. We denote the set of bundles by B, with 8 € B. Let Pg = deﬁpg. We
then specify the extensive form of an SMIP given B as:

min Tz + Y %;g@fy(o (21)
3}

s.t. Az > b (22)

Wy(&) = (&) — T(§)z(&), vEep (23)

z €I x RM P (24)

y(§) € 282 x R P2 V¢ € 5. (25)

We extend the notation defining the solution set X introduced in Section 2
as follows:

X(B) = {x € 2 x R,y = (y(€))gep € L7 x RK(ra—p2)
Az > b Wy(€) = r(€) - T(€)a.& € B).

The PHA with scenario bundles is then given in Algorithm 2.
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Algorithm 2 Progressive Hedging for Two-Stage SMIP with Scenario Bun-
dles

1: Initialization: Let v < 0 and w” (i) < 0,V € B. Compute for
each 8

v+1 , v+1 . T + & T )
(@ B), (y (5))565)€<i§§%)6 z ;e;gpﬁg(i) y(©)

Iteration Update: v «+ v + 1.

Aggregation: 2V < ) . Pgz¥(f3).

Price Update: w”(8) < w*~1(B) + p(z¥(B) — &¥).
Decomposition : Compute for each 8 € B

<:z;u+1(5)7 (yy+1(§))geﬁ> €
arg min(Ly)Ex(ﬁ) {CTIE + de/g %Zg(f)—ry(g) + wy(ﬁ)—raj + %HIE - ‘/IA:VH2} .

A

6: If all bundle solutions z(/3) are equal, stop. Otherwise go to step 2.

The extension of Proposition 1 to the bundle version of the PHA is straight-
forward and is stated here for completeness. As in the single-scenario decom-
position, the proof follows directly from the fact that in every iteration v,

> pes Psw”(8) = 0.
Proposition 3 Letw = (w(B))sc 5, where w(B) € R™ satisfy 355 Psw(B) =
0 (component-wise). Let

o ; T D¢ T T
Do) = i | Tt X Ba@v© £ @ |0

Then D(w) =355 PsDp(w(B)) < 2*.

4 The Multi-Stage Case

~ T
In the multi-stage case, £ = {Et} is defined on a probability space (=, A, P),
t=1
where 7 is the number of stages. We organize realizations, &, into a tree with
the property that scenarios with the same realization up to stage t share a
node at that stage. We use <, to refer to a realization up to time ¢ - i.e., a
node in the scenario tree — and .; to refer to the parent node.

With this notation, we restate problem (1)-(3) as
min CT.’El +Ef~2 [f2(-751;€2>] (
s.t. Axq1 > b (
1 EZT XRnlfpl’ (

N NN
© oo 3
= Z —
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Forte2,...,T, fi(xi—1,6<¢) is defined as:

fe(ze-1,&) :ming(fq)Tﬂ?t + Egt+1\5§t [fe1 (241, E<ev1)] (30)
st Wi(€at)ze > 1e(§ct) — Te(§ct) i1 (31)
€ ZF x R™P (32)

Here, c € R™, A € R™M>*™ p € R™, g(l<t) € R™, Wi(Ect) € R™MEXM
T(€<t) € R™>*™-1 and ry(€<¢) € R™t comprise the data of the stochas-
tic mixed integer program. To compress the problem statement, we define
EéTngST[fTH(-)] to be zero.

To re-write formulation (12)-(17) for the multi-stage case, it is useful to
introduce some notation for the scenario tree. Let G;(§) be the scenario tree
node for £ at stage t. We write the multi-stage scenario formulation as

-
min Zpg CT$1(§)+th(Qt(€))T$t(f) (33)
¢e= t=2
s.t. Az (&) >b (34)
Wi(Gi—1(8))xe(&) > 74(Ge(§)) — T(Ge(§))we-1(E), €€ Z,t=2,...,T
(35)
pe(§) — pede = 0,

t=1,....,7T,DeG, E€D? (36)
(37)
Ty, Xy EZT x R™ P .
(38)

For the multi-stage case, let
X(¢) = {a:l €ZE x RM™P gy € ZH x R 7Pt (39)
Aml Z b7 Wt(gt—l(f))xt(@ Z Tt(gt(f)) - T(gt(f))xtfla t= 27 .. aT} .
(40)

For the statement of the algorithm, let G; be the set of all scenario tree
nodes for stage t. For a particular node D let D~! be the set of scenarios that
define the node. The statement of the multi-stage PHA is given in Algorithm 3.
Some of the steps can be implemented to get the same result with a little less
computational effort.

The main thing to notice about the multi-stage case is that that everything
remains from the two-stage case for the first stage because all £ share a single
G1(§). Further note that each non-leaf node behaves like the first stage for its
own tree.
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Algorithm 3 Progressive Hedging for Multi-Stage SMIP

1: Initialization: Let v + 0 and w”(Gi(§)) < 0, V€ € =, t =
1,...,7. Compute for each £ € =

-
2" t(€) € argmine’ z; + th(gt(g))%t
z€X(§) t=2

2. Iteration Update: v < v + 1
3: Aggregation: Compute for eacht =1,...,7 —1 and each D € G;:

H(D) > mai(€)) Y m
fep-1 fep-1
4: Price Update: Compute for eacht =1,...,7 —1 and each £ € &
w”(G(€)) + w1 Ge(€)) + p[2”(Gi(€)) — 7 (Gu(€))]
5: Decomposition: Compute for each £ € =

2T (E) € argming e x (¢ ¢ a1

+ 3005 96(Ge(€) T + 307 [w(Ge(€)) Ty + Lllwe — 2 (Ge(€))I1?]

6: If all scenario solutions z(§) are equal, Stop. Otherwise goto step 2

5 Impact of p on Lower Bound Quality

In this section, we empirically study the impact of strategies for choosing the
PH p parameter on the convergence of lower bounds in the mixed integer
programming case. Note that in Proposition 1 the minimization is over the
convex closure of the constraints, but in these experiments we minimize over
the X (&) defined in Section 2 or X (/) as defined in Section 3 in the bundling
case (i.e., we solve the MIP rather than optimizing over the convex closure).
We consider different classes of two-stage stochastic mixed-integer programs.
Previous experience [21,20] indicates that larger values of p can accelerate the
convergence of the PHA to a primal feasible solution. In [35], the authors study
the impact of p for obtaining fast primal solutions and give recommendations
for choosing p for a general class of stochastic resource allocation problems.
Here, we instead focus on the relationship between p and the convergence of
lower bounds. We show that as in the primal case, the quality of lower bounds
obtained by the PHA in the case of SMIPs is significantly impacted by the
choice of p. However, the relationship between p and bound quality differs in
key aspects from the primal case, as we will illustrate below.

We begin in Section 5.1 with a brief discussion of the theoretical motivation
for differences in the empirical behavior of PHA convergence in the primal and
lower bound iterates, as a function of the value of the p parameter. We then
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define our computational environment in Section 5.2. Our empirical analyses
on the conference of PHA lower bounds in the SMIP case are then investigated
on a pair of two-stage test cases: stochastic unit commitment (Section 5.3) and
stochastic server location (Section 5.4).

5.1 Motivation

Rockafellar and Wets [26] provide a characterization of an iteration of the
PHA in terms of a certain “proximal saddle function.” They show that in each
iteration of the algorithm, #V*1 and w”*!(¢),V¢ € Z, is the saddle point of
the following function:

l(v,w) + *||U—$||+Zp§ Hw — "]

§e=

where

(v, w) :=inf Y pefe’2(€) + (&) Ty(§) + w(&) Tz (&)}

fes

s.b. (2(6),y(8)) € X(§), V6 € =

> pew(§) =0,

ez

T =w.

The iterates being saddle points of the proximal saddle function suggests a
tradeoff in choosing p for the convergence of the primal and dual sequences,
which we will now empirically demonstrates.

5.2 Computational Environment

We encode the stochastic programming model and corresponding instance data
for both the unit commitment and server location problems examined below in
PySP [34]. PySP is an open-source modeling and optimization framework for
stochastic programming, co-developed by Sandia National Laboratories and
the University of California Davis. The Pyomo [11] algebraic modeling lan-
guage is the basis for PySP; both packages are in turn embedded in the Coopr
software library (https:software.sandia.gov/trac/coopr). The resulting
models and associated data are available from the authors upon request.

The PySP library provides a generic and customizable implementation of
progressive hedging, specifically focusing on capabilities such as cycle detec-
tion and variable fixing that are commonly employed in the case of stochastic
MIPs [35], and scenario bundling. Using the supplied extension framework, we
have developed a generic implementation of the lower bounding scheme for
progressive hedging, as described in Section 3. This extension, presently inte-
grated into PySP, is coded to ensure that the lower bounding computations
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(i.e., the sub-problem solves performed to compute D(w) ) do not interfere
with the core progressive hedging functionality. In particular, the extension
ensures that (1) proper warm-starting of sub-problems between primary PH
iterations are maintained (2) indicator status of fixed variables is restored
following lower bounding sub-problem solves.

In the interest of brevity, we do not report timing results for the various al-
gorithm, and consequently do not provide details of our hardware environment
here. Rather, the focus of our experiments is to investigate the relationship
between p and the quality of lower bounds generated by progressive hedging.

5.3 Stochastic Unit Commitment

Unit commitment is a tactical planning problem faced by power grid operators
world-wide, and is solved on a daily basis. For each thermal generation unit
(e.g., coal or natural gas plant) in the system, unit commitment determines
the time periods for the next day during which each unit will be operating,
in addition to the corresponding power output level, given predictions for the
next-day load (demand). Complicating constraints are incurred by generator
operational requirements. For example, large thermal generating units such
as coal plants cannot cycle on and off frequently, and must be kept on or off
for a minimum number of time units once started up or shut down. Similarly,
thermal units are limited in their ability to rapidly change their power output
levels.

Traditionally, unit commitment has been formulated and solved as a deter-
ministic mixed-integer program, which includes reserve constraints to provide
a buffer of extra capacity in case of inaccurate demand forecasts or renewable
generation output. With the incorporation of increasing amounts of genera-
tion from unpredictable and variable sources such as wind and solar power,
uncertainty in the demand placed on thermal generators has increased dramat-
ically. Stochastic programming formulations of the unit commitment problem
have been proposed in order to reduce the reserve levels, by explicitly ac-
counting for the uncertainty via probabilistic scenarios [32]. Binary variables
in the first stage constitute the on/off decisions for the thermal generators.
Some formulations [24,27] additionally include binary variables for commit-
ting fast-responding ”peaker” units in the second stage. Other second stage
variables include scenario-specific power generation levels. In [28], the authors
report the results of a parallel implementation of the PHA to rapidly obtain
solutions to large-scale stochastic unit commitment problems.

First, we report the results of the PHA when executed on a 5 bus test
case of the AMES wholesale power market test bed system [31], augmented
with additional unit commitment extensions [9]. The stochastic unit commit-
ment problem formulation is based on the deterministic formulation of [4]. The
problem instance includes 5 generators and 5 buses, with a scheduling horizon
of 24 hours. We consider 10 load scenarios. The extensive form of this instance
has 16,194 variables (1,200 binary) and 24,092 constraints.
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Fig. 1: Primal and lower bound quality for a 5-bus unit stochastic unit com-
mitment instance, obtained by progressive hedging under different values of
the penalty parameter p.

We perform multiple runs of PHA on this instance, varying the strategy
used to compute values for the penalty parameter p. Specifically, we consider
fixed p € {1,2,5,15,30}. During each run, we record the value of the final pri-
mal incumbent solution and the time-series of the lower bound D(w) obtained
at each iteration of the PHA. The results are shown in Figure 1, which addi-
tionally displays the optimal solution value. We observe a significant trade-off
in terms of the quality of both primal and lower bound quality as p is varied.
Using large values of p leads to runs in which small numbers of iterations
of the PHA are required to achieve primal convergence. However, the qual-
ity of the final solution can be relatively poor. Further, large p values can
lead to oscillations of the dual prices, leading to poor convergence of not only
the dual variables but also the lower bounds. In contrast, while low values
of p lead to increased numbers of PHA iterations required for primal con-
vergence, the quality of the resulting primal solutions and the corresponding
lower bounds is significantly improved. In particular, when p = 1 the primal
solution is optimal, and the lower bound is very tight. Overall, these results
clearly demonstrate that the choice of p is of critical importance in determin-
ing not only high-quality primal solutions, but also tight lower bounds, via the
PHA.

5.4 Stochastic Server Location

Next, we consider the interaction between PHA lower bound quality and
p considering the stochastic server location problem (SSLP) [23]. Like the
stochastic unit commitment problem considered above, this is a two-stage
SMIP. Scenario-independent instance data specifies the set of potential server
and customer locations, server capacities, installation costs, and revenues.
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Scenario-dependent instance data additionally specifies the set of customers
that are actually realized in that specific scenario. Binary first-stage decision
variables indicate whether to invest in a server at each of the potential lo-
cations, while binary second-stage decision variables control the assignment
of customers to servers. Constraints enforce limits on server capacity, and the
objective is to minimize the difference between the investment costs associated
with server siting and the revenue obtained by serving material customers.

We now examine illustrative empirical results associated with the SSLP.
Publicly available SSLP instances (available in the SIPLIB — http://www2.
isye.gatech.edu/~sahmed/siplib) are denoted as SSLPm.n.s, where m is
the number of potential server locations, n is the number of potential clients,
and s is the number of scenarios; instances having common values of (m,n)
differ only in the scenario sets). We converted the SIPLIB instances into the
PySP data format, and validated the resulting solutions relative to reported
results.

First, we consider the interaction between the p and PHA bound quality.
For a given SSLP instance, we vary p, and for each experiment we allow
PHA to converge to a fully non-anticipative solution. At each iteration of
the PHA, we compute a lower bound on the objective function value using the
procedure described in Section 3. An illustrative example is shown in Figure 2,
for the instance SSLP.5.25.50. Here, we vary p and display the corresponding
time-series in the computed lower bound D(w). We omit the primal solution
objective value in this case, as the optimal value is achieved in each run. As
in the stochastic unit commitment case, we observe an inverse relationship
between lower bound quality and the value of p, i.e., lower values of p lead to
improved lower bounds, albeit at the expense of increased numbers of PHA
iterations required to achieve primal convergence. Further, for large p, we
observe unstable, oscillatory behavior in the lower bounds computed by the
PHA.

Next, we consider the result obtained for PHA lower bounds on the SSLP
when bundling scenarios. Specifically, we vary the number of scenarios in
each bundle considered by PHA, while holding p constant. The scenario-to-
bundle assignment is fixed during the course of execution, although this is
not strictly required. An illustrative example in shown in Figure 3, for the
instance SSLP.5.25.100. In this case, we fix p = 2. This result clearly demon-
strates the effectiveness of bundling as a method for simultaneously improving
lower bound quality and reducing the number of primal iterations required
for convergence. In particular, even small bundles can yield dramatic improve-
ments in PHA lower bound quality.

Finally, we consider summary results of SSLP instance behavior under the
PHA, shown in Table 1. In this experiment, we consider PHA behavior with
no bundling, under two strategies for setting p. In the first strategy, we simply
fix p = 1. In the second strategy, we employ the variable-specific p strategy
described in [35]. This strategy has proved useful in quickly obtaining high-
quality primal solutions to network design problems. As shown in Table 1,
the average value of p obtained under this strategy is significant, ranging
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Fig. 2: Lower bound quality for the PHA, obtained for the SSLP.5.25.50 in-
stance under various values of the p penalty parameter.

from 27.5 to 34.3. Under p = 1, the primal solutions obtained using PHA are
extremely high-quality, with very tight corresponding lower bounds. However,
the number of iterations required to achieve primal convergence is comparably
large. In contrast, while we observe no significant difference in primal solution
quality under the ps., strategy, the lower bounds are significantly worse than
those obtained using p. However, the total number of iterations is remarkably
smaller. Overall, these results further reinforce the fundamental finding of our
empirical investigations presented above and in Section 5.3: smaller values of
p lead to higher-quality lower bounds, at the expense of increased numbers of
PHA iterations. Fundamentally, there is a clear trade-off in bound quality and
run time, analogous to case for PHA primal solution quality.

6 Conclusions

We have presented a lower bound for cost minimization stochastic mixed in-
teger programs that can be computed in any iteration of the PHA using the
dual prices on non-anticipativity as they are updated by the algorithm. The
bound computed from optimal values of the dual prices is as tight as pos-
sible given the duality gap caused by integer-valued decision variables when
computed using the convex closure of the constraints. We show computational
evidence that it is very tight when computed over the constraints for the orig-
inal problem, which results in an effort to compute the bound that is similar
to one PHA iteration. The bounding procedure is applicable to any number of
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Fig. 3: Lower bound quality for the PHA obtained, for the SSLP-5-25-100

instance under p = 2 and variable numbers of scenarios per bundle.

p=1 P = Psep
Instance | Iters | Primal L.B. | psep | Iters | Primal L.B.
5.25.50 98 | -121.60 | -122.25 | 34.3 11 | -121.60 | -128.36
5.25.100 76 | -127.37 | -127.78 | 34.3 20 | -127.37 | -134.80
5.50.50 40 | -337.12 | -337.30 | 27.5 2 | -337.12 | -341.98
5.50.100 50 | -323.70 | -323.91 | 27.5 2 | -323.70 | -327.84
10.50.50 446 | -369.94 | -370.64 | 25.9 6 | -369.94 | -382.90
10.50.100 556 | -359.33 | -360.03 | 25.9 18 | -359.33 | -374.04
10.50.500 | 958 | -354.09 | -354.87 | 25.9 20 | -354.09 | -369.21
15.45.5 31 | -262.50 | -262.52 | 28.5 6 | -261.20 | -269.20

Table 1: Convergence, primal quality, and lower bound quality statistics for
SSLP instances under PHA using p = 1 and the strategy psep. Columns record
the instance, the number of iterations required for primal convergence, the
primal solution objective function value, the best lower bound obtained by
PHA, and — in the case of the strategy psep, — the mean value of p for the
first-stage decision variables.

decision stages with integer decisions in any stages. It also applies when the
problem is decomposed into subproblems for bundles of scenarios rather than
single-scenario subproblems.

Computing lower bounds for the PHA allows one to assess the quality
of the solutions generated by the algorithm contemporaneously. This fills an
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important need when one applies PHA to mixed integer programs in practice
or uses it in conjunction with other algorithms based on dual prices. The latter
application remains as a promising area for potential future research.

Numerical results indicate that the quality of the bound from the PHA is
inversely related to speed of convergence via the progressive hedging param-
eter, p. Bundling scenarios can dramatically improve its quality in both two-
and multi-stage formulations. In two different types of problems, the computed
bounds confirm that the PHA can quickly converge to good mixed-integer so-
lutions.
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