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SIAM J. APPL. MATH. 

Vol. 17, No. 4, July 1969 

L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO 
OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING* 

R. M. VAN SLYKEt AND ROGER WETSt 

Abstract. This paper gives an algorithm for L-shaped linear programs which arise naturally in 
optimal control problems with state constraints and stochastic linear programs (which can be repre- 
sented in this form with an infinite number of linear constraints). The first section describes a cutting 
hyperplane algorithm which is shown to be equivalent to a partial decomposition algorithm of the 
dual program. The two last sections are devoted to applications of the cutting hyperplane algorithm 
to a linear optimal control problem and stochastic programming problems. 

1. Introduction. It has been observed by many authors (see, e.g., Barr [2], 
Gilbert [12], Rosen [21], [22], Neustadt [18], Whalen [29], [30], Zadeh [31], 
Pshenichniy [19]) that the techniques of mathematical programming can be 
utilized to solve optimal control problems. The usual approach (although others 
are possible, e.g., Dantzig [6], Van Slyke [23]) is to discretize the system either by 
finite difference approximations or by considering the system in sample data 
mode. If the system dynamics are linear and there are no state space constraints, 
various devices [6], [23] of mathematical programming can be used so that the 
grid size or number of sample points in the sample mode does not affect the 
number of equations in the associated mathematical program. This is desirable 
since the computational effort for solving linear programs by the simplex method 
depends much more on the number of equations involved than on the number of 
variables. However, if state space constraints are present, the number of equations 
can grow astronomically. This is unfortunate, especially in the common situation 
where the state space constraints are automatically satisfied for most time periods. 
If confronted with problems of this type, the following heuristic procedure suggests 
itself: First solve the problem without the state space constraints, then check if 
the solution satisfies all the state space constraints. If it violates some of these 
constraints, introduce only those which are violated and solve this new problem. 
The procedure is repeated until a feasible (and thus optimal) solution is attained. 
The algorithm developed in this paper formalizes the ideas of this heuristic proce- 
dure. Whenever we obtain a solution which violates some state space constraint, 
we generate a restriction on the controls (rather than on the states) which eliminates 
this particular solution from the feasibility region. 

The algorithm can be slightly modified to solve stochastic programs with 
recourse, first considered by Dantzig [5] and Dantzig and Madansky [7] under 
the name of two-stage linear programs under uncertainty. The problem here is 
the following: A decision must be made before the actual values of some of the 
parameters of the problem are observed (it is assumed that those parameters are 
known in probability). Due to the lack of knowledge of the particular outcome 
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L-SHAPED LINEAR PROGRAMS 639 

of the random elements of the problem, discrepancies may occur which, after 
observing the actual values of those parameters, are to be corrected by selecting 
a particular recourse action (also called second-stage decision). One of the diffi- 
culties which arises when trying to solve such problems is that a particular decision 
and a particular outcome of the random elements may give rise to discrepancies 
for which there is no (feasible) recourse action. Thus, one should only select 
decisions such that, for every possible realization of the random elements, a 
(feasible) recourse action can be selected to correct the eventual discrepancies. 
Earlier treatments of stochastic programming ignored this difficulty [7], [25] by 
assuming that the structure of the stochastic program was such that this problem 
could not arise. It did appear that unless one made this assumption the additional 
constraints one had to introduce could be very large, even infinite when the random 
parameters had continuous distributions. 

In [7] Dantzig and Madansky considered stochastic programs with finitely 
distributed random parameters and complete recourse; i.e., for every decision 
and for every outcome of random variables there exists a feasible recourse. For 
obvious practical reasons it seemed desirable to remove those restrictive assump- 
tions. The last section of this paper develops an algorithm for stochastic programs 
which fail to satisfy the complete recourse assumption as well as the finite distri- 
bution assumption. 

In [27] it was shown that for stochastic programs with recourse (random 
right-hand sides) the set of feasible decisions, represented by an n-vector x, is a 
convex polyhedral subset of qn; thus at most a finite number of linear constraints 
must be added to the problem to determine the set of feasible decisions. However, 
the characterization of the feasibility region given in [27] is not very constructive. 
The algorithm developed here generates these linear constraints systematically 
and generates only those which are violated by some optimal decision candidate, 
in much the same way as in the control problem with state space constraints. 

The stochastic programming problem differs from the linear optimal control 
problem in that there is a cost associated with the recourse actions which must be 
accounted for. Dantzig and Madansky [7] suggest sampling to obtain the appro- 
priate characteristics of the cost function associated with the recourse problem. 
However, as pointed out by Madansky,' the utilization of sampling can lead to 
inaccuracies. This, as we shall see, can be avoided by using a gradient method 
rather than a cutting plane method. 

In ? 2, an algorithm which is essentially the same as the algorithm developed 
by Benders [3] 2 is described and a geometric interpretation is given. Section 3 
exhibits the duality between this algorithm and a variant of the decomposition 
algorithms of Dantzig and Wolfe. The applications of this algorithm to optimal 
control problems with state space constraints and stochastic programs with 
recourse are developed in ? 4 and ? 5 respectively. Now, let us give a mathematical 
formulation of the linear program we are interested in. 

l SIGMAP Conference on Stochastic Programming, Princeton, New Jersey, 1965. 
2 This was pointed out to us by E. Balas and J. Midler. 
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640 R. M. VAN SLYKE AND ROGER WETS 

We give the name L-shaped linear programs to linear programs of the form: 
Minimize 

(1) z = c 2X + c2y 

subject to 

(la) Al'x = b15 

(lb) A21x + A22y= b2 

xO0, y>O, 

where A" is an ml x n, matrix, A21 is m2 x n, and A22 is m2 x n2. As can be 
seen from the applications that we have in mind, we expect that (1) has some or 
all of the following characteristics: 

(i) The constraints A 21x + A22y = b2 are loose, in the sense that for "most" 
vectors x satisfying All x - b', x > 0, there exists y > 0 such that the 
constraints A21x + A22y = are satisfied. 

(ii) The vector y is of little interest, and the value of c2y is a small factor in 
determining the value of the optimal solution. 

(iii) The constraints A21x + A22y = b2 are numerous, possibly infinite, 
and are often given in an implicit manner. 

Thus, in order to speed up computation and limit storage requirements, it is 
desirable to work mainly with the constraints (la) and consider the constraints 
(lb) and the variables y only when needed. 

2. A cutting plane algorithm. 
2.1. Feasibility. Instead of problem (1), let us first consider the special case 

where c2 = 0 (this corresponds to the problem arising in optimal control problems 
with state space constraints): 

Minimize 

(2) z = cix 

subject to 

Allx = b19 

A21X + A22y= b2 

x ? 0, y_ O. 

In this case the algorithm proceeds as follows. First solve the simpler linear 
program: 

Minimize 

(3) z = cIx 

subject to 

Allx = bl, 

x > O, 
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L-SHAPED LINEAR PROGRAMS 641 

whose optimal solution we denote by 5-. For the time being we assume that (3) 
is solvable. 

Feasibility criterion. There exists y > 0 such that A22y = b - A X. 
If 5- satisfies the feasibility criterion, then x- and some y determine a feasible 

(and thus optimal) solution to (2). We denote by K2 the set of all x satisfying the 
feasibility criterion. 

If x- does not satisfy the feasibility criterion, we generate a constraint involving 
only x which is violated by x- but satisfied by any feasible solution to (2). This 
constraint is then added to the constraints of problem (3). This added constraint 
has, in a sense to be made precise later (? 2.5), the property that it cuts deepest into 
the set K1 = {x I A l lx = b', x > 0}. The process is then repeated until an optimal 
solution to the augmented problem (3) satisfies the feasibility criterion. We shall 
show that we have to add at most a finite number of constraints to (3) in order to 
achieve this goal. 

To determine whether 5- satisfies the feasibility criterion or not, we try to 
find a nonnegative solution, y, to 

(4) A22y = b2 A 215X 

This can be considered geometrically. Let pos A22 = {tlt = A22y, y > 0} be 
the closed convex cone generated by the columns of A22. Then x~ satisfies the 
feasibility criterion if and only if b2 - A215 E pos A22. If not, i.e., if 

b2 - A 215 l pos A22, 

there is a hyperplane through the origin separating strictly b2 - A2 15- and pos A22. 
Such a hyperplane, say {x lax = 0}, is determined by its normal a which must 
satisfy at < 0 for tepos A22 and o[b2 - A21]5 > 0. 

? . b2 A A21 x 

FIG. 1 

The normals a, which are needed, are generated using a slight variant of the 
Phase I procedure for the simplex method. We solve the following problem: 

Minimize 

(5) w =ev+ + ev- 

subject to 

A22y + Iv+ - b2 - A215 

y_?O, vO+ > O, v- >O, 
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642 R. M. VAN SLYKE AND ROGER WETS 

where e is a row vector of l's, I is an m2 x m2 identity matrix and v+ and v- are 
m2-vectors of variables. 

Problem (5) has always an optimal solution with w ? 0. x- satisfies the feasi- 
bility criterion if and only if w = 0 at the optimum. If at the optimum w > 0, then 
there exist dual variables a satisfying 

vA22 ? 0, 

(6) -e < a _ e, 

o[b2 - A215-] = min w > 0. 

Thus a has the desired properties. In the next sections we show that the 's gener- 
ated by solving (5) are optimal in some sense and give the geometrical interpreta- 
tion in more detail. 

In order for x to be feasible it is clear that b2 - A2 2x must be on the same side 
of the hyperplane {tiat = 0} as pos A22. 

Thus, x feasible implies that 

(7) {[b12 - A21x] < 0. 

We then add the constraint 

(8) [cA21]x > ab2 

to the linear program (3). 
It is also possible that when solving problem (3) (or even after a few additional 

constraints have been added) we discover that (3) is unbounded. Thus, the solution 
to (3) is no longer given in terms of a particular vector x, but we are given a half- 
line in K1, say x-p + ac, A > 0, on which cx decreases monotonically to - oo as 
A goes to + oo. 

PROPOSITION 1. If -A215-c and b2 - A215-p belong to pos A22, then (2) is un- 
bounded. If -A2 1x-c pos A22, then every solution to (2) must satisfy the constraint 

(9) [cA 21]x > ab2, 

which is violated by xp + ac for A sufficiently large, where a denotes the vector of 
optimal simplex multipliers corresponding to the optimal solution to: 

Minimize 

(10) w=ev + +ev 

subject to 
A22y + Iv+ -Iv- = -A215xc' 

y O0, v>+ > 0 v- > 0. 

If -A2 15iX Cepos A22 but b2 - A215-p ~ pos A22, then every feasible solution to (2) 
must satisfy the constraint generated by solving the linear program (5), where x is 
set equal to x-p. 

Proof. The conclusion is immediate if - A215c and b2 - A215 p belong to 
posA If-A 2iXposA22,thenforsome t,b2 - A21x - ^A21A c posA22 for 
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L-SHAPED LINEAR PROGRAMS 643 

all A > A. To see this, it suffices to observe that if the a are the optimal simplex 
multipliers for (10) then oA22 > 0 and xA2A1`5 > 0. Thus, by selecting A sufficiently 
large, o(b2 - A - AA2 15c) can also be made arbitrarily small. Set 2 = 0 if 

-(b2 - A21xP) < 0, otherwise select 1 such that a(b2 - A -21p-A21 = 0. 
Then for all A > i, a determines a hyperplane separating pos A22 and 

(b2 - A2 lX - A2 lX ) 

It follows that every x in K1 such that x = (5xp + ac) + y jcc, ,> 0, violates (9), 
which must be satisfied by every feasible solution to (2). If - A2 ce pos A22 
but b2 - A21xp 0 pos A22, either b2- A 21p -A215xc does not belong to pos A22 
for all A _ 0 or there exists A such that if A > i, b2 - A215p-AA21xc belongs to 
pos A22. Now let a denote the optimal simplex multipliers obtained from (5) by 
setting x = 5xp. If for all A > 0, b2 - A21p - A215 does not belong to pos A22, 
the ray xp + a. violates for all A the constraint (8) so generated, and thus this 
particular extreme ray is eliminated from the feasible solution. On the other hand, 
if b2 - A -2 15 A21A2C belongs to pos A22 for A > i, the points 

b2 - A21(5X + ac) - tA2 15c, t ? 0, 

satisfy the constraints, and the ray (xp + U)j + lic has not been eliminated from 
the set of feasible solutions. This completes the proof. 

We can thus summarize the procedure to find an optimal solution to (2) as 
follows: 

If (3) (with or without additional constraints) is solvable with x = x~, we then 
solve (5) If w = 0, then x is an optimal solution for (2). Otherwise we generate a 
constraint of the type (8) which is then added to the constraints of (3). If (3) (with 
or without additional constraints) is unbounded with a direction of decrease for 
cx given by x = xp + Ae_ A > 0, we then solve (10), and (5) with x =xp. Let 
wv- and w denote the optimal value for (10) and (5) respectively. If wV- = w = 0, then 
(2) is unbounded. If wv- > 0, we use the optimal multipliers of (10) to generate a 
constraint of the type (9) which is added to the constraints of(3); if w = 0 but w > 0, 
we generate a constraint of the type (8). 

Clearly this process is finite since each a corresponds to a basis for (5) (or (10)) 
of which there is a finite number and, moreover, no constraint can be repeated. 
Obviously, no constraint of type (9) will be generated after we obtain a bounded 
solution to (3). 

It is conceivable, of course, that the number of bases of (5) or (10), correspond- 
ing to a particular a, could be very large, so that the number of generated con- 
straints could be large compared to the number of original constraints (lb), 
in which case the proposed algorithm might be inefficient. However, since we 
only add binding constraints which have a deepest cut property (as we shall see 
later) and if properties (i), (ii) and (iii) mentioned in the Introduction are satisfied, 
this seems unlikely. 

Another useful property of the algorithm is that in adding new constraints 
to (3), the next iteration already has a basic solution which is infeasible only for 
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644 R. M. VAN SLYKE AND ROGER WETS 

one basic variable. The basis is the basis for the previous iteration, plus the slack 
variable for the added constraint. Thus, each successive x can be easily obtained 
by a few steps of the dual simplex method. 

2.2. Optimality. We now return to our original problem (1), i.e., to the case 
where c2 may be different from zero. Obviously, problem (1) is equivalent to: 

Minimize 

(11) clx + 0, 

subject to 

Q(x) < 0 

x EK = K1 n K2, 

where 

(12) Q(x) = {min c2ylA22y = b2 - A21x, x > 0}. 

We first make the following observation. 
PROPOSITION 2. For all x E K2, Q(x) is either a finite convex function or Q(x) is 

identically - cc. 
Proof. For all x E K2, the following linear program is feasible: 
Minimize 

(13) c2y 

subject to 

A22y = b2 - A21X 

y ? 0. 

Moreover, for all x E K2, (13) is unbounded if and only if the linear system rA22 ? c 
is inconsistent. Thus, if (13) is unbounded for some x, it will be unbounded for all x. 
It remains to show that if Q(x) is finite on the convex set K2, then it is convex. 
Consider x?, xi E K2 and x' = (1 - X)x0 + Xx', where A E [0, 1], and let yo, y' 
and y' be optimal solutions to (13) when x equals x0, xi or xA respectively. Then, 

(14) (1 _ i)Q(xO) + )Q(Xl) = c2[(1 - J)y0 + Xyl] > c2Y/ = Q(x?) 

since (1 - A)y' + Ay' is a feasible solution (but not necessarily optimal) to (13) 
when x equals x-. This completes the proof. 

PROPOSITION 3. Suppose Q(5-) is finite; let 7 denote the optimal simplex multi- 
pliers corresponding to the solution of (13) with x = 5-; then the linear function 

(15) (iA21)x - (fb 2) 

is a support of Q(x). 
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L-SHAPED LINEAR PROGRAMS 645 

Proof. Since i is optimal for (13) with x = x-, by the duality theory for linear 
programming we have that 

(16) -(b2 - A2X) = Q(X). 

By assumption Q(x) is finite, and thus for all x E K2, 7 is a feasible solution for all 
duals of (13): 

Maximize 

7r(b2 - A 2 X), 

A22 < c2 

but 7 is not necessarily an optimal solution. Thus, again by the duality theory we 
have 

(18) 7 (b2- A 21x) ? max 7r(b2 - A21x) I(7A22 < c2)} = Q(x) for all xe K 

This completes the proof. 

Even though the following observation is not absolutely necessary for the 

subsequent development, it is worthwhile to note. 
PROPOSITION 4. Suppose Q(x) is finite on K2; then Q(x) is a convex polyhedral 

function. 

Proof. By letting x range over K2, we see that only a finite number of supports 

to Q(x) of the type (15) can be generated, since every 7t corresponds to a particular 
basis of A22 and A22 has only a finite number of square nonsingular submatrices. 

Moreover, for all x E K2 there is some support of type (15) which meets Q(x) at x. 
Thus, the upper envelope of this finite number of linear supports coincides with 

Q(x). This completes the proof. 

The process to obtain an optimal solution to (1) (or, equivalently, to (11)) is very 
similar to the one already described for finding a feasible solution. Suppose x is a 
feasible solution, i.e., x- E K = K1 r K2, and (13) is solvable with x = x. Let i be 

the corresponding optimal simplex multipliers. Then, 

Q(5X) = 7i(b2 - A21X). 

Moreover, by convexity of Q(x) and the properties of 7 given in Proposition 3, 
it follows that 

Q(x) > 7b2 - [7A21]X 

for all x in K. Thus, a pair (x, 0) is feasible for (11) only if 

0 > 7b2- [-A21]X, 

which we can also write as 

(19) [7-A21]X + 0 > 7b2. 

On the other hand if the (x?, 0Q) are optimal for (11) and the 70 are the optimal 
simplex multipliers obtained from (13) by substituting x for x?, we have that 

Q(x?) = 7t0b2 - it0A21x0. 
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646 R. M. VAN SLYKE AND ROGER WETS 

The optimality of x? implies that cx + Q(x) ? cx? + Q(x?) for all x in K. From 
00 ? Q(x)? and 0 unrestricted in (11) it follows that 00 = Q(x?). 

These last two observations allow us to construct a finite procedure for 
finding an optimal solution to (1). Say (xk, 0k) is an optimal solution to the following 
linear program: 

Minimize 

(20) c'x + 0 

subject to 

(20a) [7t1A21]X + 0 > (7t1 b2), 1 =1 , k - 1, 

xecK, r K2. 

We then solve (13) with x = xk. If (13) is unbounded, then (1) is unbounded. If not, 
let ik+ 1 denote the optimal simplex multipliers. 

Optimality criterion. If 

(21) ok = Ik+ l[b2 -A21xk, 

then xk is an optimal solution to (1). 
If ok < Q(Xk), we add the constraint 

[r k+'A 2]x + 0 _k? lb2 

to the constraints of (20), which has the effect of eliminating the point (xk, ok) 

from the set of feasible solutions of (20). The algorithm is initiated with x? min- 
imizing clx on K and 00- oo. 

Now suppose that (20) is unbounded after at least one constraint of type 
(20a) has been introduced. Note that in such a case, (20) cannot be unbounded for 
some fixed x and 0 = - x, since 0 must satisfy the constraint of type (20a). 
Thus, there exists some ray, say xp + Axc, A > 0, on which the objective of (20) 
can be pushed to - oc. Checking if this ray belongs to pos A22 has been dealt with 
in the previous section. If not, we generate constraints of type (8) or (9). Now 
suppose b2 - A21xp and -AA2 1xc belong to pos A22. Let yc be an optimal 
solution to the linear program: 

Minimize 

c2y 

subject to 

A22y= -A21XC 

y ? O, 

and let it be the corresponding vector of optimal simplex multipliers. If 

c1xc + c2YC < <, 

then obviously (1) is unbounded. If clxc + c2yC > 0, then xc is not a desirable un- 
bounded direction since letting A go to + oc in xp + Axc would push the objective 
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L-SHAPED LINEAR PROGRAMS 647 

of (1) to + oo. In this case adding the constraint 

[7rA21]x + 0 > Lmb2] 

to (20) would eliminate the direction x, from the desirable (optimal) solutions of 
(20). If clxc + c2y, = 0, then no point of the ray xp + Ax. will be preferable to xp 
as a solution to (1); thus adding the above constraint to (20) will keep xp in the set 
of feasible solutions of (20) but will eliminate the other points of the ray. 

This process is obviously finite since each 7r corresponds to a basis of A22 
and these are finite in number. Moreover, no 7r can be generated twice since this 
would lead to a constraint already present which could not be violated by the 
solution at hand. In this section we have assumed that each x generated is a 
feasible solution. If x X K2, then one may have to introduce constraints of type (8) 
or (9) before continuing the search for an optimal solution to (1). 

2.3. Summary of the algorithm. 
Step 1. Solve the linear program; 
Minimize 

(22) z =c'x + 0 

subject to 

(22a) Allx b15 

subject to 

(22b) [:A2] [alb2] , k-1 , s, 

(22c) [7kA lx + 0 ? [1kb2], k 1, t , 

x ? 0. 

Initially, s t 0. 0 is set equal to - co and is deleted from the actual 
computations as long as there are no constraints of type (22c). If (22) is infeasible, 
so is (1) and we terminate. If (22) is solvable, go to Step 2. If (22) is feasible but un- 
bounded, go to Step 2'. 

Step 2. Problem (22) is solvable. Let (xl, 01) be an optimal solution to (22). 
Use the simplex method (Phase I, Phase II) to solve the following problem: 

Minimize 

(23) w=c2y 

subject to 

A22y = b- 

y > 0. 

If (23) is feasible, i.e., Phase I terminates with the infeasibility form different from 
zero, we use the multipliers so generated to construct a constraint of the form 
(22b). If (23) is feasible and unbounded, so is (1) and we terminate. If (23) is solvable 
and min w(x') = 01, then x' is optimal and we terminate. Otherwise, we use the 
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648 R. M. VAN SLYKE AND ROGER WETS 

multipliers so generated to construct a constraint of the form (22c) and return to 
Step 1. 

Step 2'. Problem (22) is feasible but unbounded. Let x' + Ax', i > 0, be a ray 
of unbounded decrease of c1x. We then solve (23) with b2 - A2 'x' replaced by 
-A2 'xI. If this problem is infeasible (i.e., Phase I terminates with positive objective 
value), we use the optimal simplex multipliers to generate a constraint of type 
(22b). If this problem is feasible, let y' be the optimal solution and 7t the associated 
simplex multipliers. Now solve (23) with x' = x4 . If this new problem is infeasible, 
we generate a constraint (22b) as in Step 2. Otherwise, either c'x' + c2yI < 0 in 
which case (1) is unbounded and we terminate; or c'x' + c2yI ?0, and then 71 is 
used to generate a constraint of type (22c) and we return to Step 1. 

Finally, it is not difficult to see that if so desired (e.g., in order to keep the 
data related to problem (22) in the easy access memory), it is possible to remove 
those constraints of (22b) and (22c) which are slack, although they may be generated 
again and have to be re-introduced. This also necessitates a new finiteness proof 
which is based on the fact that, upon taking suitable account for degeneracy, the 
objective value c'x + Q(x) corresponding to every feasible solution to (23)- 
generated in Step 2 is monotonically decreasing, so there are only a finite 
number in which (23) has a feasible solution. On the other hand, between feasible 
solutions to (23) when constraints of the form (22b) are being introduced, the value 
of c1xk is monotonically increasing so that a feasible solution to (23) always 
occurs after a finite number of steps. 

2.4. Some geometric characterizations. We have already pointed out that 
checking if a particular point, say x-, is feasible corresponds to determining if 
b2 - A215 belongs to the cone pos A22 = {tlt = A22y, y ? 0}. Similarly, if at 
some stage the program (22) yields an unbounded direction, then solving (23) with 
b2 - A21x' replaced by -A21x' corresponds to determining if the ray A(-A21XI), 
A > 0, belongs to the cone pos A22. Even checking for optimality of a given pair 

(0', xI) can be viewed as determining if (b2 0 A21 ') belongs or does not belong 

to the cone 

(24) os(2) ={T=c2y, t = A22y, y 0} 

In this section and the following one, we limit our discussion to the case where we 
are checking for feasibility, i.e., x- in K2; but in view of the above observations our 
remarks can be adapted equally well to the other parts of the algorithm. 

Suppose x E K1 but does not belong to K2. Then solving the linear program 
(5) yields w > 0. At the same time we generate some a, which corresponds to a 
particular basis of the matrix (A22, I, - I). The basic solution contains at least one 
artificial variable, i.e., a component of the vector (v+, v-), at positive level. Since 
otherwise w = 0 and b2 - A21x E pos A22, we have the next proposition. 
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PROPOSITION 5. Suppose the optimal solution to (5), with w > 0, contains 
exactly one artificial variable. Then, a is the normal of a supporting hyperplane of 
POS A22 determining an (M2 - 1)-dimensionalface of pos A22. 

Proof First note that this (M2 - 1)-dimensional face may be pos A22 itself, 
viz., if pos A22 is of dimension m2 - 1. Also, by the hypothesis of this proposition 
the cone pos A22 has at least dimension m2 - 1. By assumption, there are at least 
m2 - 1 columns of A22 such that rA22 = 0, where A22 denotes the jth column of *j *jntetejholmo 
A22. Of these, m2-1 are linearly independent since m2 - 1 belong to the basis. 
Let F = {tlt = EjeA 22yj y> O} where J = {jlkA 22 = O}. It now suffices to 
observe that F = pos A22 n {tlat = O}, that {tla = O} is a supporting hyperplane 
of pos A22 and that F has dimension m2 - 1 since it contains m2 - 1 linearly 
independent points. This completes the proof. 

Thus, if it is possible to obtain a solution to (5) with only one artificial variable 
in the optimal basis, it follows that a determines an (M2 - 1)-dimensional face of 
pos A22. The number of deficiency 1-faces of pos A22 is much smaller than the 
number of bases of (A22, I, -I) (see [11]). However, it is not always possible to 
obtain an (M2 - 1)-face of pos A22. In fact as is indicated in the next proposition, 
it is sometimes possible to obtain solutions to (5) such that 

(25) {tiat = O} n pos A22 = {O}. 

PROPOSITION 6. Suppose x 0 K2 and (bi - A 2*x) is different from zero for all i 
and that, for all j, 

(26) E A2j> E j 
i i 

holds; then no column A 22 of A22 will figure in the optimal basis of (5). A3' denotes 
the i-th row of A2 1. 

Moreover, one should realize that the conclusion of the above proposition 
depends very much on the selection of cost coefficients + 1 for the artificial vari- 
ables in the infeasibility form. In fact any set of positive numbers could be selected 
as cost coefficients for the infeasibility form. Thus, an obvious complement to 
Proposition 6 is the following corollary. 

COROLLARY 1. Suppose x 0 K2 and (b2 - A 2 x) is different from zero for all i, 
and for all j and all sets of positive numbers t1, , , m2 the relation 

(27) E tA2 > fi p^j2 
(bi - Ai2 X) O (bi -Ai2 IX) <O0 

holds; then no column A*22 of A22 willfigure in the optimal basis of (5). A%.*' denotes 
the i-th row of A21. 

To see that the condition (27) is not vacuous, consider 

(28) A22 =(1 ) and b2 A21x=(). 
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Obviously the condition (27) is much weaker than (26) since it allows for 
some perturbation of the coefficients of the objective functions in (5). It also indi- 
cates how one may modify (5) in order to increase the number of the columns 
of A22 figuring in the optimal basis. This would naturally increase the dimension 
of the face of pos A22 determined by the corresponding a. In practice, this would 
involve a parametric study of the linear program (5). The constraints (22b) so 
generated would generally be "better" than those obtained by solving (5), but 
whether the extra computation is justified can probably be discovered only by 
experience in using the algorithm. 

2.5. A "deepest cut" property. As we mentioned earlier, the constraints (8) 
obtained by solving (5) have a deepest cut property with interesting geometrical 
interpretations which we now examine. The linear program (5) can be interpreted 
as finding the nearest point in pos A22 to d = b2 - A21x in the sense of the 11-norm: 

Minimize 

(29) Iz-d ll 
subject to 

z E pos A22 CX2 

d = b2 -A25, 

where llzll 1 denotes the 11-norm given by llzl 1 1 z 
The 11-norm is defined on the space 1m2 of column m2-vectors. Associated 

with Rm2 is its dual space (,1?2)* which may be identified with all real-valued linear 
functions on 3Im2, As is well known, any linear function f(z) in Wm' can be repre- 
sented in a one-to-one way as a matrix product r x of an m2-dimensional row 
vector t and the column vector x. We shall thus think of (Rm2)* as a space of row 
vectors with the same dimension as iRMm2* A hyperplane, H, passing through the 
origin of 9lm2 can be represented in the form H = {zl7z = 0} for some TC # 0 
in (,m2)*. However, this representation is not unique since (/h7)z = 0 determines 
the same hyperplane for any real number ,B # 0. To resolve this ambiguity, we 
specify that 11r11* = 1, where 11 11* is a norm defined on (m2)* This norm can be 
defined quite naturally [9] by using on ?flM2 by means of the following relation: 

(30) 117I * = max {rzIz1 ZI 1 ? 1} 

It is easily seen that 11 * = 11 ( = maxi I nil, the l,,-norm. A given 7r determines 
also a half-space S = {zl7z : O} which is bounded by H. The condition that 

= 1 and the specification of which half-space is to be determined uniquely 
defines rr. 

The dual of (5) is: 
Maximize 

(31) -[b2 A 2 
1,g 

subject to rA22 < 0, 

ail 1, 1 , 
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Let us interpret (31) in the language developed here. a is an m2-dimensional 
row vector which is an element of (,Wm2)*. It determines a half-space S by 

S = {xlax ? 0}, 

which includes pos A22. This follows from the relation z E pos A22, implying that 
z = A22y for some y > 0; hence z = (aA22)y < 0. The relations 

j~lS _ 1, i-1, , M2, 

are equivalent to Ila ? 1. Of all elements of (jm2)* satisfying these conditions 
we are to find one which maximizes o[b2 - A215]. Let us now examine the geo- 
metrical interpretation of maximizing a[b2 - A 215.]. 

The distance from a point z to a hyperplane H given by H = {zlaz =O, 
or equivalently from the origin to the plane H, = {zlaz = az}, can be obtained 
by solving the linear program: 

Minimize 
ez+ + ez- 

subject to 

az -az -az, 
z+, z- > 0. 

The optimal solution is obviously determined by 

+ - 
+ - z~~~~=z~~~~~ -z~~~~~~ =~~-az, z~ =zi= Zv - v Zv - Z i -Z 

av 

for i : v, where lavl = maxi Jai. Thus, the distance from z to H is 

1 1 1u,c 1 
maxIail IlajK 

Thus, problem (31) (i.e., the dual of (5)) can be interpreted as finding a E (SM2)* 

determining a supporting hyperplane of pos A22 which is as far as possible from 
b - A21 in the sense of the 11-norm. Moreover, by the duality theory of linear 
programming, we have that this maximum distance is equal to the 11-distance of 
b2 - A215 from pos A22. Thus, in terms of the 11-norm we have generated a 
"deepest cut." 

3. The partial decomposition algorithm. A very natural approach to L-shaped 
programs is via the decomposition algorithm of Dantzig and Wolfe [8]. None- 
theless, if (1) has the properties mentioned in the Introduction, the straightforward 
application of the decomposition algorithm to problem (1) does not take advantage 
of the structure of the problem. 

Decomposition can, however, be advantageously applied to the dual of 
problem (1): 

Maximize 

(32) w = ub' + vb2 
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652 R. M. VAN SLYKE AND ROGER WETS 

subject to 

uAll + vA21 < cl 

vA22 < C2, 

where decomposition is done with respect to the coefficient vectors of the variables 
v. The coefficient vectors of the component u are retained unmodified: 

Maximize 

(33) w = ub' + I 'kPk + ZLkYk 

subject to 

uA" + Z kRk + E 1-kJk _ C, 

EZXk = 1, 

?k > [ ? Pk >_ ?, 

where Rk = jrkA21 and pk = 7.kb2 for a vertex 71k of the convex polyhedron deter- 
mined by7rA22 ? C2;Tk = T kA2l and Yk = ukb2 for an extreme ray k of the convex 
polyhedron icA22 ? c2. If we now take the dual of (33) assigning dual multipliers 
xj to the first n1 inequalities and 0 to the last equation, we obtain the dual problem: 

Minimize 

(34) z = clx + 0 

subject to 

Allx =bl, 

RkX + 0 >_ Pk,0 k = 1, I t , 

Tkx -> pk, k = I sI 
Tx > Yk' 

or equivalently: 
Minimize 

z = clx + 0 

subject to 

Allx =bl, 

(O.kA 2l)X 
? okb2 k = 1, , 

(7[kA21)X + 0 > 7kb2, k = I 
x > 0, 

which corresponds to (22). Note that the feasibility constraints (22b) correspond 
to the extreme rays of the polyhedron 7rA22 < c2, whereas the optimality con- 
straints (22c) correspond to extreme points of 7rA22 < c2. The constraints gener- 
ated in Step 2' of the cutting plane algorithm correspond to columns of (33) 
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L-SHAPED LINEAR PROGRAMS 653 

generated during the Phase I of this partial decomposition procedure. Thus, the 
algorithm which we developed here can be interpreted as a dual method of the 
Dantzig-Wolfe decomposition algorithm. 

On the other hand, let us consider the L-shaped linear program in the 
equivalent form: 

Minimize 

(35) c'x + Q(x) 

subject to 
Allx = bl, 

xeK2, x > 0; 

then our algorithm can be interpreted as a cutting plane algorithm [4], [16]. 
If A2' and A22 have a finite number of rows, K2 is a polyhedral set and Q a convex 
polyhedral function. The method of [4], [16] can be used to establish the conver- 
gence of our algorithm in the case where the number of rows is infinite; alter- 
natively, the results in [23] can be used to establish convergence using the inter- 
pretation of our algorithm as the dual of a decomposition procedure. 

This is simply a reflection of the fact that the cutting hyperplane methods of 
Cheney and Goldstein [4], Goldstein [13], and Kelley [16] on the one hand and the 
decomposition methods of Dantzig and Wolfe [8], the algorithm associated with 
Wolfe's generalized program [5], [23], and in particular Dantzig's convex pro- 
gramming algorithm [5] on the other hand are simply dual methods to one 
another. 

4. Optimal control with state constraints. A rather standard optimal control 
problem is: 

Maximize 

(36) qo(T) 

subject to 

dq = B(t)q(t) + C(t)u(t), dq 

q(O) = qo 

q(T) c-L = {q = (qo, qn)|qi =Jq, i=1,- n}, 

q(t) e Q(t) c _, 

u(t) E U(t), 

where U(t) and Q(t) are closed convex polyhedral sets.3 We consider the discrete 
analogue of this system: 

3 The case where U(t) is not polyhedral leads to algorithms which converge but are not finite. 
Problems for which U(t) is not polyhedral are treated in [23]. Problems for which Q(t) is not polyhedral 
can be treated by analogous devices. 
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Maximize 
N 

subject to 

q - q - B'q1 + C'u', 

qO= qO 
qN e L, 

qi e Qi, 

Ui E Ui 

a = 0, . , N - 1, where A = T/N, qi = q(iA), and similarly for the other func- 
tions. Since q'+ =' [I + AB']q' + AC'u', we can now solve for each qk inductively 
in terms of the initial state qo and the control sequence uo, ..., uki. Thus 

ql = [I + AB0]q0 + AC0u0, 

q2 = [I + AB'1]{[I + AB01q0 + AC0u0} + AC'u', 

and, in general, 

qk+1 = 
{fJ [I + ABjI}qo ? [I + ABk] ... [I + AB']AC0u0 + 
j=k 

+ [I + ABk]ACk uk-I + ACkUk. 

Let 

(37) Y[j, k] = [I + ABk-1] [I + ABk-2] + + [I + ABS] 

for j < k, Y[j, j] = I and ACk = Ek. Then we have 
k-1 

(38) qk = Y[O,k]qo + , Y[j + 1,k]Ejuj. 
j=0 

Since Q' and U' are closed convex polyhedral sets, we can formulate the con- 
straints on ui in the form F(i)ui > f(i), j = 0, ., N - 1, and those on the state 
variables q as G(j)qj > g(j). So now we have: 

Maximize 
N 

subject to 
N-i 

Uoq 
N 

- Y[j + 1, N]Ejuj Y[O,N]qo -qT, 
j=0 

F(i)ui > f (i), j- 0, N - 1, 
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and the additional constraints 

GUY)q > g(i), j= 0 *-*,N- 1, 

where qT = (O,qf, ,qqT). If we let u [u?, , uNll and A [-Y(1, N)E0, 
- Y(2, N)E,, - Y(N, N)Ek] and b = Y[O, k]q? - qT, we have: 

Maximize 

(39) qo 

subject to 

Uoq N + Au = b, 

F(i)ui > f(j), j =0, *-N N-1, 

Gjqj > g(0) j = O, N- 1, 

where qj is given by (38). The approach for handling the constraints F(iui _ t() 

by generalized linear programming has been described in [6] and [23]. Thus for 
simplicity, we limit ourselves to a discussion of the constraints G(j)q' > g(i) and 
assume that the constraints F(i)ui > f(i) on the ujs's simply reduce to the require- 
ments that they are all nonnegative. We may now simplify the maximation 
problem just above to read: 

Maximize 

(40) qN 

subject to 

UoqN + Au =b, 

GUY)q > g(j), j= 0, N - 1, 

u ? 0. 

It is this problem which we interpret as an L-shaped program. The correspondence 
is A - A", u - x, and finally the slack variables of the implicit constraints on u, 
G(ijqj > g(J), correspond to y. In this case, c2 = 0 so that second-stage feasibility 
is the only requirement. Frequently from the physical nature of the problem it 
is clear that "usually" the state constraints will not be violated, and, of course, 
the values of the slack variables are of no particular use so that the represerntation 
of (40) as an L-shaped program seems particularly appropriate. 

To generate the cut we simply evaluate 7iJ by 7ir = 1 for [g(i) - Gqi]j > 0 
and i = 0 otherwise. The cut is equal to tiG()qJ > 7tig(j), which is the sum of 
the infeasible equations. All that remains is to express these in terms of the u's. 
In other words, we wish to evaluate 

(k-1 

(41) E, 7kG(k) E Y[j + 1 , k]Ejuj 
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and the constant term 

E 7 k[g(lk- Y[O, k]q0]. 

This will give a new constraint An+1 * u > bn+1 which must be satisfied by u, 
where An+1 * denotes the (n + l)th row of A; the special structure of (41), in 
particular, of the Y[j, k] makes possible many simplifications in determining 
An+ 1,* and bn+ 1 and, in particular, the relevant quantities would be accumulated 
as one determines 7ic, rather than determining 7i and then going back to calculate 
An+ 1,* and bn+ 1 In addition, if the state space constraints are "loose," not many 
of the equations would be violated. 

This application is an example of an important subclass of L-shaped programs 
which could be called I-shaped programs. These are L-shaped programs in which 
the components of the y-vector are simply slack variables. 

The integer programming algorithm of Gomory [14] can be considered as 
another example of an I-shaped program, where A21x + Iy = b2, or, equivalently 
A21x _ b2, represents the infinite number of constraints which can be added to 
eliminate noninteger extreme points but do not eliminate any feasible integer 
points. 

5. Stochastic programs with recourse. A stochastic program with recourse 
(random right-hand sides) also known as two-stage linear programs under 
uncertainty [7] reads: 

Minimize 

(42) z = cx + EJ{min qy} 

subject to 

(42a) Ax =b 

(42b) Tx + Wy ?> on (E, z, F), 

x>O, y_O. 

The interpretation to be given to this problem, as well as the definition of the 
symbols, can be found in [25] or various other papers in this area (see, e.g., [7], 
[15]). Problem (42) is easily recognized to be an L-shaped program with possibly 
an infinite number of constraints (42b) and an infinite number of y-variables. We 
denote by ..the support of the random variable 4, i.e., the smallest closed subset 
of SM of measure one. 

We shall assume that E has a least upper bound a, such that a E -.and for all 
i, di < ai for all 4 E _. If this model is viewed as the representation of a physical 
decision process, the assumption that for each i there exists ci such that Xi oci 
seems to be very natural. The additional assumption that oc E. is somewhat more 
restrictive. However, this would certainly be the case if the components of 4 were 
independent random variables and each Xi had compact (or bounded above) 
support. Extensions and a more complete discussion of these questions can be 
found in [24]. 
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From a mathematical viewpoint the assumption that for each i there exists 
oai is not so appealing; but if such an upper bound does not exist, then determining 
if problem (42) is feasible has to be dealt with differently, as can be seen from the 
following proposition. 

PROPOSITION 7. Suppose for some i there is no niumber oci such that dj K ai for all 
e . Then (42) is feasible only if the lineality space of pos (W, -I) contains 4i, 

where Wj is the i-th component of the Cartesian product SM' - 7J=1 ?Wj (j denotes 
the real line). y 

Proof If i c - pos(W -I), then the equation (W, -I)ikY = Ci is solvable 

for all Sj with y and s nonnegative. Otherwise, for some Ci the above equation is 
not solvable. Since dj has no upper bound, for any x there exists 4 in E (determining 
di) such that the system 

(43) l4'ty ?i - Tix, 

y 2 0 

is inconsistent. This implies that for no x the recourse (or second-stage) problem 
is feasible for all 4 in E; thus the set of feasible solutions to (42) is empty, i.e., (42) 
is infeasible. This completes the proof. 

If the dj's are independent and for certain i's, dj has no greatest upper bound, 
we can use the preceding proposition to determine if (42) is infeasible. If the 
criterion is satisfied, we can ignore those equations whenever we verify whether a 
given x is feasible or not. In [28] the problem of characterizing and computing 
(which can be easily done) the lineality space of pos (W, -I) has been dealt with 
in detail. 

In the algorithm to be described below, we shall assume that for each i, oci 
exists and a c E. Proposition (16) in ? 2B of [26] allows us to derive constraints 
[26, Equation (17), p. 96] of the form 

(44) (arT)x > ca, 

which, in view of Proposition (16) of [26], play the same role as the feasibility 
constraints (8) play in the L-shaped linear program. Moreover, it has been shown 
that the feasibility region for the decision variables x determined by the induced 
constraints [26, p. 92] can be represented by a finite number of linear constraints 
[27, Proposition 12]. In ? 2.4 of this paper we have shown the relation between the 
feasibility constraints (8) that we introduce and the supports of the cone 
pos (W, - I). In [27] the accent has been placed on deriving an expression in terms 
of a minimal number of supports of pos (W, -I) determined by the rows of the 
polar matrix [27], rather than an arbitrary finite collection of supports. As can 
be seen from Proposition 5, supports of maximum dimension corresponds to 
obtaining a particular solution to the linear program: 

Minimize 

ev + 
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subject to 

Wy + Iv+ - Iv- = a- Tx', 

y>O, v+ >0, v- >O. 

These observations allow us to construct an algorithm which will find 
feasible solutions to (42) in a finite number of steps: by requiring that x satisfy 
the constraints (42a) to which we add a finite number of constraints of the form 
(44), each constraint being generated by solving one linear program; rather than 
verifying if for a particular x and for all C e E. there exists a feasible y, i.e., y > 0, 
such that Wy ? _ - Tx. 

We now outline a general algorithm for solving problem (42), general in the 
sense that we make no assumption on the structure of the matrices (in particular 
W) or on the form of the distribution of the random variable X, except that , have 
a greatest upper bound. (See Proposition 7 if this is not the case.) We ignore the 
special cases of infeasibility and unboundedness which are to be handled as 
before. 

Step 1. Solve the linear program: 
Minimize 

cx + 0 
subject to 

(45a) Ax b, 

(45b) (ukT)x > aka k = 1, *--, S, 

(45c) (k T)x + 0 > pk k = 1, I 

x ?0. 

Initially, s and t are zero. If no constraints of the form (45c) are present, 0 is set 
equal to - o and is ignored in the computation. Let x', O0 be an optimal solution 
of (45). 

Step 2. Solve the linear program to find 

(46) w= min ev + 

subject to 
Wy + Iv - Iv- = - Tx', 

y?> O, v~+ > 0 v- > 0. 

If w' = 0, go to Step 3. If wl ; 0, the optimal multipliers ul are used to generate 
a cut of the form (45b). 

Step 3. For all 4 in E, solve the linear program: 

(47) w2 = min qy 

subject to 
Wy -Is = Tx', 

y _ O, s > 0. 
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Each 4 determines an optimal 7t, say, 7t'(4) We then compute 

w2(xl) = Ej{7'(4)( TX-)}, 

7t Ej{n'()9} and p' = Ej{i'(4)4}. If w2(xl) < O', we terminate (optimality 
criterion). If not, we use 7z', pl to generate a new constraint of the form (45c) which 
we now add to our problem (45) and return to Step 1. 

We should also point out that in following this procedure, it is possible to 
generate an infinite number of constraints of the form (45c). Nevertheless, a 
result of K. Murty [17] allows us to keep mn (T is mn x n) or less constraints of the 
form (45b) and (45c) at each cycle, i.e., the constraints with nonzero slack can be 
removed. 

We have separated Step 2 of the paraphrase (in ? 2.3) of the cutting plane 
algorithm into two parts. The reason is that, in order to generate the feasibility 
cuts, we need only consider the upper bound of E (not all elements of E), whereas 
we need complete information related to the probability space (E, Y, F) in order 
to compute 7ri and p'. Even when has finite cardinality the labor so saved should 
be considerable. Moreover, if E has infinite cardinality, it is difficult to perform 
Step 3 unless the structure of W is such that it is possible to find a closed form 
expression for 7z' and p' (e.g., see [20] and [25]). The remaining part of this section 
is devoted to suggesting a method to circumvent this problem. We start by describ- 
ing a variant of the above algorithm. 

If 4 is an absolutely continuous random variable, we can modify the algorithm 
as follows: 

Step 1. Solve the linear program: 
Minimize 

(48) [c _ l- 1 T]x 

subject to 

A1lx = b, 

(k T)x > a k2 k = , 

x > 0. 

Initially s = 0 and 7ri-' = 0. Let l' be an optimal solution to (48). Find 

min @(i) = c[(1 - ))x`' + %LV] + Q[(1 - ))x' + ?l'], 
O<A< 1 

where x'- 1 was our previous solution (xo = 0) which for 1 > 1 was used to deter- 
mine z'- ' and the function Q(x) is as defined in [26, Equation (21)] . Say V(A') < #(i) 
for A E [0, 1]. If A' = 0, we terminate with the optimal solution x'- 1 (optimality 
criterion). Let x' = (1 - AL)xl - 1 + A'5I. 

Step 2. Proceed as above. 
Step 3. Proceed as above to determine it', and then return to Step 1. 
The convergence of this algorithm can be easily verified if we observe that 

from Proposition (29) and Corollary (28) in [26] it follows that if 4 is a continuous 
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random variable then Q(x) is a differentiable function with gradient - 7z1T at x'. 
Thus, the above algorithm can be viewed as a variant of the Frank-Wolfe algorithm 
[10] for finding the minimum of a convex differentiable function on a convex 
polyhedral set. Since their procedure requires twice-differentiability and in general 
Q(x) will not be of class C2, their convergence proof does not strictly apply. The 
necessary modifications can be found in [25, Propositions (37), (41) and (43)]. 

The last algorithm as well as the first one we suggested, to solve stochastic 
programs with recourse, relies on the possibility of performing Step 3. If E does not 
have finite cardinality, this seems to be nearly impossible. However, one could 
exploit a suggestion of Dantzig and Madansky [7] which consists in sampling 
the distribution of 4 and solve Step 3 for some finite sample. This would naturally 
result in approximated values for n' and p'. As has already been pointed out in the 
Introduction, this approach would generate a constraint of type (45c) which 
would not necessarily be a support of the function Q(x), and could very well 
eliminate the optimal solution (42) from the set of feasible solutions to (45). This 
inconvenience is completely eliminated if we follow the second procedure since all 
the constraints present in (48) never involve any approximation process. 

We are however still left with two problems; First to solve Step 3 for a large 
(possibly very large) number of values of 4 in E. Second, the resulting it' will not, 
in general, determine the gradient of Q(x) at x', and thus the convergence properties 
of the algorithm are changed. This second problem will be the object of another 
paper in which various sampling techniques are examined and the convergence 
properties of the algorithm are established. We now show how to obtain the 
approximate value it' for n' from a specific sample. Let 4', , XN be a sample of 
size N obtained from the distribution of 4. Our purpose is to solve (in Step 3) the 
N linear programs of the form: 

Minimize 

(49) qy 

subject to 

Wy_IS = Xk _ TXl, k = 1, N, 

y > s, S > 0. 

Since we are performing Step 3, xl E K; and since 4 e _, it follows that (49) is 
feasible for all Xk. Moreover if (49) is unbounded for some Xk, it is unbounded for 
all 4 E ^; thus (42) is unbounded (see Proposition 2). Let us assume (49) is solvable. 
Let 7r'(4) denote the optimal simplex multipliers associated with solving (49) for a 
particular 4. Then 

(50) it1 = N 1 
k= 1 N 

In the appendix of [26], we have reviewed the properties of the function 
Q(t) = {min qyl Wy = t, y > O}; in particular, we shall use the fact that if {l7(t)} 
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is the mapping determining the optimal simplex multipliers, then there exists a 
function iz(t) in {1z(t)} piecewise constant on pos W. In particular, if W') is an 
optimal basis corresponding to a particular value of t, then W') is also an optimal 
basis for all t E pOS W(i). Let q(i) be the subvector of q corresponding to W'); then 
7r(t) = q(')W') 

- 
determines an optimal vector of multipliers for all t e pos W'). 

Applying this result to (49) we see that 7rt(4) is also optimal for all Qi such that 

(di - TxV) E pos W(4), where W(4) is the optimal basis obtained from solving (49) 
for some fixed 4. To determine if (J - Tx') E pos W(e) it is sufficient to verify 
that 

MO4) W(4j - Tx,) > 0. 

This can be easily done since W(<)-' is available from the final optimal tableau. 
We now give an algorithmic procedure to find fi', as defined by (50). 
Step a. Select an unbiased sample of size N from the distribution of X, say 

,N. Compute Sk = -k Tx',k = 1, , N. By (Ci) we denote the set of 
available Qi and set L = N. 

Step b. Select some C in {;J} and set C = Sk (initially k = 1) and solve the linear 
program: 

Minimize 

qy 
subject to 

Wy - Is = Sk, 

y > 0. 

Let ir(;k) be the optimal simplex multipliers and W(Ck) be the corresponding 
optimal basis. 

Step c. Let n(k) be the number of vectors Qi in the set {QC} such that 

(51) W(Ck) -I C > O. 

Set L = L - n(k); and if L > 0, return to Step b with k = k + 1 and delete from 
the set {WJ} those C' which satisfied (51). If L = 0, terminate with 

z = 
I 

Z n(k)t(gk). 

In returning to Step b it is suggested to select C (in the remaining set of {Ci}) 
such that C fails to satisfy (51) only in a minimum number of components (if possible, 
one). Thus the previous basis would be the optimal basis for the new Sk Up to 
very few dual simplex steps. 

A few experiments have been made on an IBM 7094 (with a not nearly 
optimal code). We have selected N = 3000 and 5000, and 10 ? m- < 40 (mi is the 
numbers of rows of W). In each case the computation of itl took never more 
than twice the time required to solve one linear program of the same size. In the 
same vein, a number of experiments have been conducted by Balintfy and Prekopa 
for random linear programs. In their manuscript [1] they show that numerous 
"tricks" can be performed to improve sampling procedures. 
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