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J. SIAM APPL. MATH. 
Vol. 14, No. 1, January, 1966 

Printed in U.S.A. 

PROGRAMMING UNDER UNCERTAINTY: THE 
EQUIVALENT CONVEX PROGRAM* 

R. J. B. WETSt 

Abstract. This paper is an attempt to describe and characterize the equiv- 
alent convex program of a two-stage linear program under uncertainty. 
The study has been divided into two parts. In the first one, we examine the 
properties of the solution set of the problem and derive explicit expressions 
for some particular cases. The second section is devoted to the derivation of 
the objective function of the equivalent convex program. We show that it 
is convex and continuous. We also give a necessary condition for its dif- 
ferentiability and establish necessary and sufficient conditions for the 
solvability of the problem. Finally, we give the equivalent convex program 
of certain classes of programming under uncertainty problems, i.e., when 
the constraints and the probability space have particular structures. 

1. Introduction. The standard form of the problem to be considered 
in this paper is: 

minimize z(x) = cx + E{qy}, 

subject to Ax = b, 

Tx + My = =, t on (Zi F), 

x>O, y>O, 

where A is an m X n matrix, T is ani mi X n matrix, M is an m X n matrix, 
t is a random vector defined on the probability space (Z, j, F). We shall 
assume that (1) is solvable. 

This problem belongs to the class of stochastic linear programming 
problems for which one seeks a here--and-now solution. Problem (1) is 
known in the literature as the two-stage linear program under uncertainty. 
One interprets it as follows: the decision maker must select the activity 
levels for x, say x = xX he then observes the random event t = i, and he is 
finally allowed to take a corrective action y, such that y 0, My = -TX 
and qy is minimum. This second stage decision y is taken when no uncer- 
tainties are left in the problem. 

It is clear that we could also write the objective function of (1) as 

(1') z(x) = cx + Ee{min qy I x}. 

* Received by the editors February 19, 1965, and in revised form June 11. 1965. 
t Mathematics Research Laboratory, Boeing Scientific Research Laboratories, 

Seattle, Washington. 
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90 R. J. B. WETS 

The interpretation given above indicates that (1) as well as (1') are con- 
ventional ways to express the same concept. Many practical problems 
can be formulated to fit the standard form, e.g., inventory problems, 
planning problems, transportation problems with uncertain demand, etc. 

All quantities considered here belong to the reals, denoted T. Vectors 
will belong to finite-dimensional spaces V and whether they are to be 
regarded as row vectors or column vectors will always be clear from the 
context in which they appear. Thus, for example, the expressions, 

X = (XI) X2) 
.. * * Xi) 

.. * Xn)) 

Tx= x, 

y y = ZYi Yi 
i=1 

are easily understood. No special provisions have been made for trans- 
posing vectors. 

For the sake of simplicity, we shall assume that (S, 0, F) is the proba- 
bility space induced in T', F determines a Lebesgue-Stieltjes measure and 
a is the completion for F of the Borel algebra in 'm. We also assume that 

= El t} exists. Also, note that our inotation t on (:, a, F) is meant to 
imply that the first stage decision has no effect on the probability space on 
which t is defined. In other words, t is independent of x. 

The marginal probability space for i = 1, . * , im will be denoted by 
(A4, 06, Fi). If it exists, we denote the density function of 4j by fr (06). 
If 4j is a discrete random variable, we denote its probability mass function 
also by f (j%). No confusion should arise from this abuse of notation. 
Moreover, let ax and ,i be respectively the greatest lower bound and the 
least upper bound of 26j. If Zi is not bounded below, we set ai = -m; if 
ai is not bounded above, we set Oi = + c*. 

We usually think of v as the convex hull of all elements of a with posi- 
tive measure. The probability measure may be discrete, continuous, or a 
mixture of both. Only in one particular case (?2A) shall we use another 
characterization of X, namely, : = { t I f(t) # 0}. 

The first part of this paper characterizes the solution set of (1), and it 
points out some of its properties. In the second part, we derive a pro- 
gramming problem whose set of optimal solutions is identical to the set of 
optimal solutions to problem (1). 

2. The solution set. We are only interested in the here-aind-now decision 
to be taken. Thus, a solution to (1) is not a pair (x?, yo). To see this, it 
suffices to remark that once x is selected and t is observed, the set of optimal 
second stage decisions y is uniquely determined by solving the linear 
program 
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PROGRAMMING UNDER UNCERTAINTY 91 

minimize qy, 

(2) subject to My = -Tx, 

y _ 0. 

It is thus obvious that the only decision variable of problem (1) is x. 
Nevertheless, the second stage affects our decision on x in two ways. 

First, we need to limit our set of acceptable first stage decisions to those 
for which there exists a feasible second stage decision, i.e., problem (2) 
is feasible. Also, for each selection of a vector x, we must take into account 
the expected costs of the second stage decisions such an x may generate: 
E~{min qy I x}. 

2A. The set of feasible solutions. A feasible solution to (1) is a vector 
x such that it satisfies the first stage constraints and such that it is always 
possible to find a feasible solution to the second stage problem (2), what- 
ever be the value assumed by t on Z. Dantzig and Madansky [2] call such 
a solution a permanently feasible solution. The word "permanently" was 
introduced to reinforce this notion of feasibility of the second stage problem 
for all values of t. We have rejected this terminology because it sometimes 
leads to confusion in the understanding of problem (1). 

The following example shows how the Dantzig-M/Jadansky definitionl of 
permanent feasibility differs from what one may believe to be meant by per- 
manent feasibility. We reserve the terms "permanently feasible" for the 
following concept: select a vector x such that the constraints are satisfied 
with probability one. Consider the following problem: 

minimize z(x) = cx + Q(Tx- 
(3) 

x E Q, 

where t is an in-dimensional random vector on (S, F), T is an m X n 
matrix, Q = {x I Ax = b, x > 0} c nX and Q is a real-valued function. 
If Q is defined as follows: 

Q(Tx- )=0 if Tx , 

Q(Tx -) = +oo, otherwise, 
then, for each fixed i, (3) is a linear programming problem. Such a func- 
tion Q (Tx- ) requires permanent feasibility, i.e., if there exists a solution 
(z (x) # + o ) to problem (3) it must satisfy the condition 
(4) Tx _ t, for every E C S. 
To see that problem (1) is not as restrictive, e.g., let 

Q(Tx -) = Et{ Qi(Tix -i) 
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92 R. J. B. WETS 

where 

Qi (T,x - t*) = if Tix_{i 

Qi(Tix - ti) = qi(* i - Tix) if Tix < ti 

Such a function Q (Tx -) no longer imposes permanent feasibility, i.e., 
z (x) is no longer identically equal to + x for all x which do not satisfy 
condition (4). We can then rewrite (3) as follows: 

minimize z(x) = cx + Et{O.y+ + qy-}, 

subject to Ax = b, 

Tx + Iy + Iy- = #, t oil (a, a, F), 
x?_ O, y+ > O y- _ O. 

Problem (5) is a special case of problem (1), known as the complete 
problem [6]. 

From our definition of feasible solution, it is clear that the decision 
maker is limited in its decision by a double set of constraints. Let 

K1 = tx I Ax = b, x ? O}. 

We say that K1 is the set determined by the fixed constraints. 
(6) PROPOSITION. K1 is a convex polyhedron. 

A set C is convex if xi , X2 E C implies [xl, x2] c C. By convex polyhedron 
we meani that K1 cani be writteni as the sum of a conivex polytope (convex 
hull of a finiite number of points in CJQ) and a convex polyhedral cone. 

Let 

K2 = {x I for every t E Z, there exists y ? 0 such that My = -Tx}. 

We say that K2 is the set representing the constraints imposed on our vector 
x by the induced constraints. The word "induced" means that these con- 
straints are the restrictions imposed on x by the condition: the second stage 
problem (2) must be feasible for all t E S. This is the meaning of the 
equality sign found in the constraints of the standard form: 

Tx +My t ton S0F). 
Let 

K20 = {x I Tx = -My for some y ? O}. 

It is easy to see that K20 is a convex polyhedron. 
(7) PROPOSITION. K2 is convex. 

We have K2 = n tEK2t ; then K2 is either empty, a singleton or for all 
pairs of points x1, X2 E 12 we have x1, X2 E K2t for all t E S. Then for 
every t E Z, [xl, X2] c K2t; hence [xl , x2] Cn f E=K2e = K2 . 
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PROGRAMMING UNDER UNCERTAINTY 93 

The next result is an immediate consequence of (6) anid (7). 
(8) PROPOSITION. K = K1 n K2 is a convex set, where K is the set of 
feasible solutions. 

Remark. We have expressed the set of feasible solutions in terms of x 
alone, rather than x and y. 

In what follows, we assume that K has full dimension. If this were not 
the case, one would need to appeal to the relative topology. Most of our 
proofs do not require this assumption, but it simplifies our treatment and 
terminology. 

The set K1 is immediately available in terms of linear equations and 
inequalities involving x only. The set K2 presents much more difficulty. 
In general, say when Z is a continuum, i.e., when f E EK22 is ani infinite 
intersection of convex polyhedrons, then the characterization of K2 in 
terms of x alone is a much more complex problem. One main difficulty 
one encounters in trying to solve a program under uncertainty (no assump- 
tions on the probability space or on the structure of the constraints of 
(1)) lies in determining whether or not a given x belongs to K. 

We now examine some special cases where the assumptions made either 
on the constraints structure of problem (2) or on the probability space 
(Z, 0, F) allow us to obtain fairly easily an explicit expression for the set 
K2 (and so for K). 

Case 1. A has a finite number of points (card I I < co). The intersection 
nf E is finite and since K24 is a convex polyhedron, so is K2, and so is K. 
Let t1 t2 . , k be the values of t for which f(t) # 0. Then, 

K2 = x I Tx + My' I 1 = I, k*,D. 

Case 2. The matrix M = I (identity) and S is compact. Then 

K2 =x I for every E C ;, there exists y _ 0 and y = -Tx}, 

which implies 

x E K2 if and only if for every E ( !, -Tx > 0. 

Since Z is bounded, there exists a smallest closed interval, say TM c: 
with lower bound a, such that z c * The ai's correspond to the lower 
bounds for the random variables ti i = 1, * * , Xnm. 
(9) PROPOSITION. t - Tx > 0 for every t E Z if and only if Tx ? a. 

The proof of this proposition is trivial. We have 

(10) K2 = {x I Tx < a}. 

Case 3. M = (I, - I). The problem is complete. One says that problem 
(1) is complete [6] when the matrix M (after an appropriate rearrangement 
of rows anid columns) can be partitioned in two parts, where the first part 
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94 R. J. B. WETS 

is the identity matrix and the second part is the negative of an identity 
matrix, M = (I, -I). This case seems to represent a very important 
class of applications of programming under uncertainty. It is thus an 
encouraging fact that the set K cani be expressed immediately in terms of 
linear constraints in x. No assumption at all is necessary on the probability 
space (Z, 0, F). 

Let uis partition the vector y as follows: 

y = (Y+, Y), 

where y + corresponds to I and y- to - I; then 

K2 = {x J for every t E X, there exists y+ > 0, y- 0 

such that y+ - = y-Tx}. 
(11) PROPOSITION. K = Ki. 

Since K2 = (li (it is always possible to express any number as the 
difference of two nonnegative numbers), we have K = K1 n Th = K1 . 

This property, K = K1 , gives an intuitive justification for the use of 
the word "complete". Nevertheless, we should remark that K = K1 does 
not imply that M = (I, -I). 

2B. A feasibility test. We now fix x and t and concentrate our attention 
on the feasibi.lity of problem (2). From Farkas' lemma we get: 
(12) Either the equations My = - Tx have a nonniegative solution 

or the inequalities uM _ 0, u ( - Tx) < 0, have a solution. 
(13) PROPOSITION. x E K2 if and only if for every t E Z we have 

CT(x, t) > 0, where 

U(x, () = {min u( - Tx) uM > 0}. 

If for a given x and for every t E > we have U (x, t) > 0, then the sys- 
tem of inequalities, uM > 0 and u( - Tx) < 0, has iio solution. By (12), 
the system My = - Tx has then a nioinnegative solution, for all t E S. 
This means that x? E K2 . 

Proposition (13) yields a test which allows us to determine if a given 
x E K1 is or is not a feasible solution to (1). Nonetheless, such a procedure 
would be completely inefficient if we had to perform this test for all t in S. 
If Z does not have finite cardinality, this test for any given x would involve 
solving an infinite number of linear programs of the form, 

minimize u(t - Tx), 

subject to uM ? 0. 

If problem (1) is stated in a slightly different form (it is very often 
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PROGRAMMING UNDER UNCERTAINTY 95 

possible to reduce problem (1) to (14)), viz., 

minimize z (x) = cx + Es{ qy}, 

(14) subject to Ax = b) 

Tx + My _ , ton (, F), 
x>O, y>O, 

it is possible to obtain a more efficient test. We then apply the following 
form of Farkas' lemma: exactly one of the two alternatives hold: either 
the inequality, My _ - Tx, has a nonnegative solution, or the inequal- 
ities 

uM>O ( u(-Tx) <0X 

have a nonnegative solution. 
(15) PROPOSITION. x E K if and only if x E K1 and for ever? 
E C, U(x, ,) _ 0, where 

U(x, t) = {min u( - Tx) juM _ 0, u ? 0}. 

If 4 has a lower bound-from a practical point of view this is a very 
mild condition-then let a be such that a E 2 and a ci-t for all (i E , 
i = 1, , m. Since u is restricted to be nonnegative, we have 

U(x, a) < U(x, ), for every E. 

M\4oreover, a E Z aiid U (x, a) < 0 imply that there exists at least one 
point of 4 for which the condition U(x, t) > 0 does niot hold. By (10) 
this x is not a feasible solution. We have proved: 
(16) PROPOSITION. X E K if and only if x E K1 and U(x, a) > 0. 

For this case, it is thus sufficient to solve one linear program to test the 
feasibility of a given x which belongs to K1 . Proposition (11) is not true 
if ai < (i for all ti E as, i = 1, , in, but a f Z. For instaice, consider 
the following example. Let 

T = ' M =[ 

2 = {0 1- 1 1 < 01 -<? < 2) t + 42 _ } 

and let x = (xl, x) = (0, 0) belong to K1 . By definition of a, a = (a1 , a2) 
= (-1, 0). It is easy to see that $ c {D = My, y _ 0} and that the 
affine transformation obtained by translating Z by Tx, maps Z into itself 
(Tx = 0), i.e., x = 0 E K. But U(x, a) is not bounded below. 

Suppose now that we have at hand x such that x E K1 and U (x, a) < 0, 
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96 R. J. B. WETS 

where U (x, a) is as defined in (15). Let U2 be an optimal solution to 

minimize u(a -T&), 

subject to uM > 0, 

u > 0. 

Since U(x, a) < 0, we have ga < U'T and by (16), x f K. Thus, every 
x E K must satisfy the inequality 

(17) (a T)x ? iua. 

We can add this condition (17) to the fixed constraints, Ax = b, x _ 0. 
It has the effect of cutting off part of the set K1 . 

3. The equivalent convex programming problem. We now show that a 
linear program under uncertainty can be expressed in terms of the first stage 
decision variable x, as a convex program that we shall call the equivalent 
convex programming problem. We derive the properties of the objective 
function of the equivalent convex program and construct the equivalent 
convex program when the constraints and the probability space satisfy the 
assumptions made in ?2. 

3A. The equivalent convex program. 
(18) DEFINITION. A programming problem, minimize f(x), x E K, is 
an equivalent programming problem to (1), if f(x) is given explicitly for 
each x (not just as a function of x, y, and t as in (1')), if K is the set of 
feasible solutions to (1), and if an optimal solution to the equivalent pro- 
gramming problem is an optimal solution to (1). 

In ?2, we have already characterized the set of feasible solutions to (1). 
To exhibit an equivalent convex program to (1), it suffices to show that 
(1') is convex in x. Let us consider the second stage problem (2) for a 
fixed t in >, as a function of x. Then, by (A3) of the Appendix, 

(19) P(x, t) = {min qy I My = -Tx, y > O} 

is convex in x on {x I Tx = - My, y _ 0 and in particular on K2 . 
By the duality theorem for linear programs, we have 

(20) P(x, 0) = Q(x, 0), 
where 

Q(x, I) = {max 7r( - Tx) I rM < q} 

for fixed t in S. Let 

Q(x) = Ee{min qy I My = -Tx, y ? 0O 
(21) 

- EelQ(x, t)} = Ee{P (x, t)} 
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PROGRAMMING UNDER UNCERTAINTY 97 

be the expected value of the second stage problem (2) for a given x in K2 . 
(22) PROPOSITION. Q (X) is convex on K2 (see [2]). 

Since by (A3) of the Appendix, Q (x, t) is convex in x on K2 it suffices 
to remark that applyinig the operator Et to Q(x, t) is equivalent to per- 
forming a positive weighted linear combination of convex functions, i.e., 
Q (x) is convex on K2 . 

Thus the equivalent convex program to (1) is, 

minimize z (x) = cx + Q (x), 
(23 ) 

subject to x E K. 

(24) PROPOSITION. Q (X) is continuous on K2. 
Since Q (x) is convex on K2, the result is immediate if K2 is open. To see 

that K2 could be open, conisider the following example. Let M = 1, T = 1 
aind V = (0, 1); then K2 = (-oo, 0). In general, by (A12) of the Appen- 
dix, Q (x, is uniformly continuous in x and t; thus 

Q(x)-f Q(x, t) dF(t) 

is continuous in x on K2. 
Coinsider the dual to the second stage problem (2), 

maximize 7r( - Tx), 
(25) 

subject to FTM _ 

and let r (x, t) be the optimal solution to (25) for fixed x and t. In what 
follows we assume that 7r (x, t) and Q (x, t) are defined for all x in K and 
all t in ?. Define 

(26) Fr(X) = E1{F(x, )x} = f F(X, ) dF(t) 

as the expected optimal solution to problem (25) for a given x. Also, let 

;(x) = E{fr(x, )t} = Fr(X Z) dF(). 

Note that r (x) is an mi-dimensional vector and that { (x) is a scalar. 
(27) PROPOSITION. [C - 7r()T].X = -4(s) is a supporting hyperplane 
of z(x) at x = x, where x CE K (see [2]). 

Since [c - r (T) T]-T + 4' (T) = z (), it suffices to show that, for every 
x E K, z(x) ? [c - r(X)T]x + 4(1^). But this is true, since for all x E K 
arid for all t E 2, 

Fr(x, )(-Tx) > 7rF(x, )-Tx). 

Integrating both sides with respect to (IF() and adding cx on both sides, 
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98 R. J. B. WETS 

we get 

z(x) = [c - 7r(x)T]x + {'(x) > [c - 7r()T]x + {(x). 

(28) COROLLARY. [C - 7rQ()T] is a gradient of z(x) at x. 
We give to the term "gradient" the same meaning as Minty gives to 

"generalized gradient" in [5]. 
(29) PROPOSITION. If F (t) is continuous, then z (x) is differentiable on K. 

By (A15) of the Appendix, r (x, t) is piecewise constant. M\oreover, 
since the set of points where 7r(x, t) is multivalued has measure zero, 
7r (x) and VI (x) are unique for all x E K. This implies that z (x) has a unique 
supporting hyperplane for all x in. K By (22), z(x) is convex, i.e., z(x) 
is differentiable on K. 

The condition that FQ() is continuous is sufficient but not necessary; 
e.g., let 

T = M =, I ={ 2 (i) = (2)} 

fW2) = (0) 

c [2,2] q = [1,1], x = [XlIx X; 

then z (x) = x1 + X2 . 
(30) PROPOSITION. Let xo E K; then xo is optimal if and only if there exists 
7r (x?) such that for every x E K, 

[c - 7r(x0)T]xo < [c - 7r(x0)T]x. 

The proof is a direct application of (28) and the monotonicity prop- 
erties of the "gradient" of a convex function [5]. 
(31) COROLLARY. If z (x) is differentiable, then xo is optimal if and only if 
for all x in K, 

[c - r(x0)T]xo < [c - r(x0)T]x. 

One could regard (30) and (31) as statements related to the solvability 
of problem (1). If we disregard the inconsistent case (K is empty), we 
can write: (1) is solvable if and only if there exists a pair (x?, 7r (x0)) such 
that 

[c -7r (x) T]xo < [c -7r (x?) T]x 

for all x in K. Note that (1) can have an infinite or a finite infimum. i\Iore- 
over, since z(x) is cointinuous, z(x) may fail to achieve a minimum on K 
only if K is Inot bounded. 

3B. Special cases. When the constraints of problem (1) and the prob- 
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PROGRAMMING UNDER UNCERTAINTY 99 

ability space satisfy the assumptions considered in ?1, we show that the 
equivalent convex programs are programming problems for which satis- 
factory algorithms exist. 

Case 1. v is finite. Let t , *... , )k be the values assumed by the random 
vector t with probabilities fj, f2, -, fk respectivel.y. We have seeii in 
?1 that the induced constraints can be expressed explicitly in terms of 
linear equations and linear inequalities. The equivalent convex program 
is a linear programming problem which can be expressed as follows: 

minimize z(x) = cX + flqyl + f2qy2 + + fkqykI 

subject to Ax =b 
Tx + Myl 1 

(32) Tx + My2 -2 

TX + My k k 

- Z~~~~~~~ > ?, y > 0 y2 > o . ..y > 0. 

Dantzig and MViadansky [2] have shown that there exists a dual of this 
problem which is in the standard form for the application of the decomposi- 
tion algorithm of Dantzig and Wolfe [4]. To find this dual problem, we 
use a more direct approach than the one found in [2]. 

Let (a, 7r , 7r , .*. , 7r) be the variable appearing in the usual dual 
formulation of (32). Define 

7r = IT k; 

then the dual reads 
maximize ub + fl7rl1l + f7w202 + + fCkrkk, 

MA + flir'T + f272 T + + fk7rkT < c, 

r2M 

krmM q. 

This problem has an "angular" structure. The first n inequalities can be 
used to generate the master program. The last k X n inequalities con- 
stitute the subproblem. Depending on T and M, it may be advantageous to 
use variants of the decomposition algorithm, e.g., see Abadie [1]. 
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100 R. J. B. WETS 

Another simple transformation gives the problem (32) the structure of 
a multi-stage system (so-called "staircase" system) where the linear 
constraints for all stages but one are identical. This last feature may 
simplify considerably the computation. To obtain this form, subtract from 
each row of Tx + My'+l = S +' the corresponding row of Tx + My' = 
for 1 = 1, I ,k -1. Problem (32) becomes 

minimize z(x) = cx + flqyl + fqy2 ? + fk*lqyk1 + fkqyk 

subject to Ax =b 

Tx + My =1 

- My' + My2 = 2 

yk-1 + Myk=ik - ik-1 

x 
l>oy > 0 , y > 0, y 

> 0 

Case 2. M is square and nonsingular, and A is bounded. We show that 
under these assumptions there exists a linear programming problem whose 
set of optimal solutions is the set of optimal solutions of the linear program 
under uncertainty. 

(a) M is the identity (M = I). The problem under consideration is 

minimize z (x) = cx + Ed qy}, 

subject to Ax = by 

Tx + Iy = , ton (, F), 
x _ 0, y > 0. 

For fixed x and {, the second stage problem (2) is 

minimize qy, 

(33) subject to Iy = -Tx, 

y > 0. 

If (33) is feasible, then min qy = q (- Tx). Moreover, if x E K, then 
(33) is feasible for all t in X, i.e., -Tx ? 0 for all t in $. We have 

E {fmin qy I x E K} = E{q(S,- Tx)} = q, - qTx. 

By (9) and (10) there exists a vector a such that 

K = {x I Ax = b, Tx < a, x _ 0}. 
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PROGRAMMING UNDER UNCERTAINTY 101 

Thus the linear program, 

minimize z(x) = (c - qT)x, 

subject to Ax = by 

Tx ? a, 

x > O, 

yields the set of optimal solutions to our problemn. If V is comnpact, thein 
each neighborhood of a, has positive measure. If the random variables 
{i, i = 1, ... , an, are independent, then Z is an interval (in 9'-) and 

= a(9) 
(b) M is square and nonsingular. The problem reads: 

minimize z (x) = cx + E~{ qy}, 

subject to Ax = b, 

Tx + My = #, t on (>0F), 
x _ 0, y _ O. 

If oine multiplies both sides of Tx + My = t on the left by M-' = [ij, 
one obtains 

Tx + ly=i on (4,0, 
where 

T M-T-1 

M-1: z -- kq. 

Since > is bounded by assumption and M-1 is a nonsingular linear map- 
ping, 4 is also bounded. Hence, our new problem is similar to the previous 
case (M = I). Let S* be the smallest interval contaiining 2 and let a * 
be the lower bound of S:*. The equivalent convex program then reads: 

minimize z(x) = (c - qM 1T)x, 

subject to Ax = b, 

M-'Tx a 

x > 0. 

The components of the vector a* can be computed as follows. Let ai 
and /3% be respectively the greatest lower bound and the least upper bound 
for 4.; then 
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(Yi =min ZMjtl where aj < (j < oj 
j=l 

ai* = E ,iji* where t = {,B if >,, 0,? 
j=1 {f3 if Aujj < 0. 

From this computationi procedure for a*, it is easy to see that the condition 
that Z is bounded is too strong; all we ineed is that a* exists. 

Some generalizations are possible. For example, let M be a Leontief 
matrix with substitutions and let t - Tx ? 0 for all t in a and all x in K. 
One then shows that such a problem can be reduced to the case where M 
is square and nonsingular [3]. In this case, the condition t - Tx > 0, for 
all t in Z and all x in K, is not restrictive, since ti - Tix < 0, for some i, 
is meaningless if the second stage problem (2) is a Leontief system with 
substitution. 

Case 3. The problem is complete. M = (I, -I). By (11), the equivalent 
convex program has the form, 

minimize z (x) = cx + Q (x), 

(34) subject to Ax = b, 

x > 0. 

This problem was studied in detail in [6]. For completeness, we list the 
particular forms of this convex program for some specific distribution 
functions F (k). 

Assumptions on (:, A, F) Equivalent convex program 

is finite (t discrete) .......... ............. Linear program with upper bounds 
F(t) uniform ................................ Quadratic program 
F(t) continuous 

If one approximates t by a sum of uniformly 
distributed random variables, then ...... Quadratic program 

F(t) exponential 
If one approximates the objective function, 

then .................................... Quadratic program 
In general .................................. Separable convex program 

Moreover, many generalizations of the complete problem lead to an 
identical class of equivalent convex programs. Let us, for instance, con- 
sider the following problem: 

minimize z(x) = cx + Eq+y+ ? qfy-}, 

subject to Ax = b, 

Tx + I?0 Iy- = y?O, on F), 

X ? 0, C + 
E H)? N 
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PROGRAMMING UNDER UNCERTAINTY 103 

where 

H = {y+ I y+ = Lz, z ? 01. 

If L is a Leontief matrix with substitution such that H contains some 
y+ > 0, and if q+ + q- _ 0, then one can show [3] that such a problem 
has also an equivalent convex program of the form (34). 

Appendix. A linear program can be considered as a function of its parame- 
ters 

f(c, A, b) = {min cx i Ax = b, x _> 0}. 

We study the properties of this function where b is variable. Let 

f (t) = {min cx i Ax = t, x > O}, 

T= {tt = Ax, x > 0}. 

(Al) LEMMA. Z is a convex polyhedral cone containing the origin 0. 
For the sake of simplicity, we shall assume that the matrix A has full 

row rank, so in particular m < n. The case f(t) = -so for all t in Z is 
without interest; moreover we have the following. 

(A2) LEMMA. f(t) = - for some t E Z if and only if for every t E 2, 
f(t) - 00 

Thus we shall assume in what follows that f(t) > - oo for all t E 2. 
Note that f(t) is defined only for t in X. 

(A3) PROPOSITION. f(t) is convex on 
Consider any to, ti E i: and X E [0, 1]. Let tx = Xto + (1 - X)tj ; by 

(Al) we have th E Z. Let xi be such that 

f(ti) = cxi = {mincxIAx = ti,x _ 01, 

for i = 0, X, 1; then x = Xxo + (1 - X)xl is a feasible but not necessarily 
optimal solution to: min cx such that Ax = t,, x _ 0. Consequently, f(t) 
satisfies the basic inequality, 

Xf (to) + (1 - X)f(t1) = Xcxo + (1 - X)cxl = cx _ cxx = f(tx) 

for all to, t1 in Z and 0 < X ? 1. Loosely speaking, we can rephrase (A3) 
as follows. A linear program is a convex function of its right-hand side. 

(A4) COROLLARY. Let 

f*(t) = {min tx i Ax = b, x _ 01, 

and let Z = {t i f* (t) > - c}. Then f* (t) is concave on X 
(A5) PROPOSITION. If A is square and nonsingular, then X is a simplicial 

cone and f (t) is linear on X. 
It suffices to remark that f (t) = cA-'t on X = {t i A-'t ? 0}. 
(A6) PROPOSITION. Let B be a submatrix of A such that B is an optimal 
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basis for some t. Then B is an optimal basis for all t in ZB = {t i B1t ? O, 
B is a simplicial cone, and 'ZB C 5. 

(A7) COROLLARY. If B is an optimal basis for some t, then tB is the 
unique subset of Z for which B constitutes an optimal basis. 

By (A5) and (A6), we have the following. 
(A8) COROLLARY. f (t) is linear on ZB . 
(A9) PROPOSITION. There exists a decomposition of Z into simplicial 

cones T , ,Tk such that 
(i) ? - {t I Bit ? O}, i = 1, * , k, where Bi is a square, nonsingular 

submatrix of A of rank m, 
(ii) B, is an optimal basis for some t, 
(iii ) U t=1 tt = 
(iv) intzi nint 1=j 0fori j. 
This proposition can be proved using (A5), (A6) and (A7). It is easy 

to see that this decomposition may not be unique. By (A8) and (A9) we 
get the next results. 

(AlO) PROPOSITION. f (t) is piecewise linear on Z. 
(All) PROPOSITION. f(t) is continuous on Z. 
Since f(t) is convex it is continuous on int Z. Moreover, (A8), (A9) 

and (AlO) imply that f (t) is linear on, and in the neighborhood of, the 
boundary. 

(A12) COROLLARY. f (t) is uniformly continuous on Z. 
This is immediate by (A10) and (All). 
Consider the following problem: 

(A13) maximize irt, subject to irA < c, 

and let r (t) be an optimal solution to (A13) for a given t in Z. 
(A14) PROPOSITION. If A is square and nonsingular, then 7r(t) is con- 

stant on Z. 
It suffices to remark that ir(t) = cA'1 on Z = {t I A-'t ? O}. 
(A15) PROPOSITION. r (t) is a piecewise constant function on Z. 
This proposition can be proved using (A9) and (A14). Let us remark 

that i7r(t) may be multivalued on the boundaries of the simplicial cones 
determining the decomposition of Z, but it is single valued on their in- 
terior. 

(A16) PROPOSITION. ir () *t is a supporting hyperplane to f(t) at t = 
tE . 

Since at t = t, the hyperplane r (t) . t intersects f (t), it suffices to show 
that 

7r()t ?<f(t), foreveryt E Z. 
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PROGRAMMING UNDER UNCERTAINTY 105 

But this is true, since by the definition of 7r (t), 

r()t W r(t) t = f (t). 

This last proposition, (A10), and (All) imply the following. 
(A17) PROPOSITION. The graph of f(t), { (z, t) I z > f(t), t E Z}, is 

a convex polyhedral cone with vertex 0. 
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