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PROGRAMMING UNDER UNCERTAINTY: THE SOLUTION SET* 

ROGER WETSt 

Abstract. In a previous paper [81, we described and characterized the equivalent 
convex program of a two-stage linear program under uncertainty. We proved that 
the solution set of a linear program under uncertainty is convex and derived explicit 
expressions for this set for some particular cases. The main result of this paper is to 
show that the solution set is not only convex but also polyhedral. It is also shown that 
the equivalent convex program of a multi-stage programming under uncertainty 
problem is of the form: Minimize a convex function subject to linear constraints. 

1. Introduction. The standard form of the problem to be considered in 
this paper is: 

(1) Minimize z(x) = cx + Et {min qy} subject to 

Ax = b, 

Tx+Wy-i, = on F 

x > O, y O, 

where A is a m X n matrix, T is m X n, W is m X ii, and t is a random 
vector defined on a probability space (Z, i, F). 

We will assume that problem (1) is solvable. One interprets it as fol- 
lows: The decision-maker must select the activity levels for x, say x = &, 
he then observes the random event t = i, and he is finally allowed to take 
a corrective action y, such that y > 0, Wy = - T77 and qy is minimum. 
This corrective action y can be thought of as a recourse the decision-maker 
possesses to "fix-up" the discrepancies between his first decision and the 
observed value of the random variable. This recourse decision y is taken 
when no uncertainties are left in the problem. 

All quantities considered here belong to the reals, denoted by St. Vectors 
will belong to finite-dimensional spaces Tn and whether they are to be 
regarded as row vectors or column vectors will always be clear from the 
context in which they appear. No special provision has been made for 
transposing vectors. 

We assume that (Z, 9:, F) is the probability space induced in k% F 
determines a Lebesgue-Stieltjes measure and 9F is the completion for F of 
the Borel algebra in WYm. g, the set of all possible outcomes of the random 
variables, is assumed convex. If not, we replace it by its convex hull and 
fill up 9: with the appropriate sets of measure zero. We use the notation 
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t to denote a random vector of dimension m, as well as the specific values 
assumed by this random variable, i.e., points of -. No confusion should 
arise from this abuse of notation. 

The marginal probability space for i = 1,..., m will be denoted by 
(si, Wi, Fi) where Zi is a subset of the real line. If they exist, let ai 
and j3i be respectively the greatest lower bound and least upper bound of 

In the first part of this paper, we characterize the solution set of prob- 
lem (1); in the second part, we generalize our results to multi-stage prob- 
lems. 

2. The solution set. A solution of (1) is a decision to be made (here and 
now), thus a selection of activity levels for the vector x. The value to be 
assigned to the vector y can be determined by solving the deterministic 
linear program: 

(2) Minimize qy subject to 

Wy = t-Tx, 

y >o 

i.e., after x is selected and t is observed. 
In this paper, we are only interested in some of the properties of a solu- 

tion, i.e., the decision variable x. Nevertheless, the recourse problem (2) 
affects our selection of x in two ways. For each selection of a vector x, we 
must take into account the expected costs of the recourses such an x may 
generate. But also, we need to limit our selection of a vector x to those 
for which there exists a feasible recourse, i.e., problem (2) is feasible. This 
latter restriction and the conditions Ax = b, x > 0 determine the set of 
feasible solutions of problem (1). 

DEFINITION. A vector x is a feasible solution to (1) if it satisfies the first 
stage constraints and if problem (2) is feasible for all t in t. 

We do not call such a solution a permanently feasible solution. We re- 
jected these terms since they led to certain confusions, see [6] and [8]. 

2.1. Definition and notation. A set C is convex if xl, x2 C C im- 
plies that [xl, x2] C C. C is a cone with vertex zero if x C C implies that 
Xx C C for all X > 0. C is a convex cone if xl, x2 C C implies that 
X1 + X2 C. (a) is a ray, i.e., (a) = {zIz = Xa for X in [0, + oo ) and a E Tn}. 

The rays (a) and (b) are distinct if b E (a) or a E (b). C* is the polar cone 
of CifC* = {yIyx > 0, Vx GC). Thepolarconeofa ray (a) isahalf- 
space that we denote by (a)*. For further refereiice, see [4]. 

The theory of positive linear dependence was developed by Chandler 
Davis [3]. We review some of the definitions. A set of rays { (a'), (a2), ... I 
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spans positively a cone C if (b) E C implies that b = 1j Xja j for some 
selection of n rays a'j and some Xi > 0, j = 1, * , n. A set of 
rays { (a), * is positively independent if none of the a' is a positive com- 
bination of the others. Otherwise, the set is positively dependent. A set of 
vectors {al, a2, determines a frame for the cone C if {(a'), (a2), 
are positively independent and span positively the cone C. 

C is a convex polyhedral cone if it is the sum of a finite number of rays, 
C = {(b) I (b) = , (a') }. Equivalently C is a convex polyhedral cone 
if it is the intersection of a finite number of half-spaces whose supporting 
hyperplanes pass through the origin. A set K is a convex polyhedron if it is 
the intersection of a finite number of half-spaces. A bounded convex poly- 
hedron P is a polytope. It is easy to verify the following lemmas. 

LEMMA 1 [5]. Let C be a convex polyhedral cone, then C* is also a convex 
polyhedral cone. 

LEMMA 2. If C is a convex polyhedral cone, then every frame of C is finite. 
LEMMA 3. Every convex polyhedron K can be obtained as the sum of a 

polytope P and a convex polyhedral cone C. 

2.2. The polar matrix. Let A be a m X n matrix, and let C be the cone 
spanned positively by the columns of A, i.e., 

C= {yIy=Ax,x'O}, 
then C is a convex polyhedral cone. Moreover, a subset of A determines 
a frame for C. The same cone C can also be defined as the intersection of 
a finite number of half-spaces. Moreover, there exists a minimal set of 
hyperplanes which support C. This concept led to the following definiition. 

DEFINITION. A* is the polar matrix of A if 

ly I Y = Ax, x > 0} = C = {y I A*y > 0) 
and the matrix A* has mininmal row cardinality. It is easy to see that 
if A has full rank, i.e., rank A = m, then the matrix A* has m nonzero 
columns. If A * has m rows, then C is a simplicial cone; and if A * has 
one row, then C is a half-space. If C = NMZ, then no hyperplane supports 
C, i.e., the number of rows of A* is zero. An algebraic characterization of 
the faces of convex polyhedrals is given in [9]. 

2.3. Fixed constraints. Let 

K1, {x I Ax=b, x > O}. 

Since K1 does not involve any constraints involving later stages condi- 
tions, and since the constraints of K1 are well-determined, we say that the 
set K1 is the set representing the fixed constraints. 

PROPOSITION 1. K1 is a convex polyhedron. If m = 0, then K1 = T+n. 
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2.4. Induced constraints. Let 

K2= {x I V E C X, 3y _ O such that Wy =-Tx}. 

We say that K2 is the set representing the constraints induced on x by the 
following condition: No matter what value is assumed by the random 
variable i, there exists a feasible recourse y. If we define 

K2t= {xIWy= -Tx forsome y_O}, 
then 

K2= nK2,. 

In [8] it was shown that K2 is convex. Without loss of generality, we can 
assume that the matrix W has full dimension (mn-); otherwise there exists 
an equivalent system of linear equations to the system Tx + Wy = t 
with at least one equation of the form: Tix + 0 y = - , where 0 is a row 
vector of dimension in. If tj is a constant, we can add that equation to 
the system of equations Ax = b. If {i is not a constant, then problem (1) 
is not solvable and is thus without interest. 

In order to be able to appeal to some intuitive geometric concepts, we 
define the sets: 

L ={ I Vt E :, 3y > O such that Wy= X-I} 

and 

LE x I x Wy for some y _ 0}. 

We also get 

L = n L. 

LEMMA 4. K2t = {x I Tx = x, x e Ld and K2 = {x I Tx = x, x E LI. 
PROPOSITION 2. If Lt is a convex polyhedron so is K2t. Similarly, if L 

is a convex polyhderon so is K2 . 
Proof. If Lt is a convex polyhedron, then by the definition of a convex 

polyhedron there exists a matrix, say V, and a vector d such that x E Lt 
if and only if x E {x I Vx ? d}. Then, by Lemma 4, K2t {x x VTx ? d}. 
Similarly for L and K2 . 

Thus, in order to show that K2 is a convex polyhedron, it suffices to 
show that L is a convex polyhedron. For each i, Lt is the translate by t 
of the cone spanned positively by the columns of the matrix -W. Thus, 
L is the result of the intersection of "parallel" cones, each one being the 
translate of the same cone and having for vertex the point t. 

Let W* be the polar matrix of the matrix W, then - W* is the polar 
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matrix of -W. W* is of dimension min by 1, where 1 = OitL = L W,I = 1 
if Lt is a half-space, and so on. 

LEMMA 5. L= {X I W*X < W*{&. 
Proof. By definition of the polar matrix, we have that {t t Wy for 

some y > O} = {t I W*y < O}. Then, by translation of the cone so de- 
fined, we obtain the desired result. 

PROPOSITION 3. L = {x I W*X < a, where a,i = inf Wi*t for 

Proof. The result is immediate if L = Jm, i.e., 1 = 0. Let us assume 
that 1 ? 1. By definition L = El.: Lt . For t in Z all the hyper- 
planes Wi*x = Wi, i = 1, ... , 1, are parallel. Thus x E L if 
Wi*x < inf E Wi* = ai*. If for each i the linear form Wi*t attains its 
infimum on the convex set X, the set L is well-defined. If for some i, no 
infimum exists, the set of feasible solutions is empty and problem (1) is 
not solvable. 

We have thus proved that L is a convex polyhedron. L is a cone if and 
only if there exists t in Wm such that W*t = a*. From Propositions 2 
and 3, we derive the following theorem. 

THEOREM 1. K2 = {x I W*Tx ? a*)} is a convex polyhedron. 

2.5. The solution set. It now is easy to conclude that Proposition 4 is 
true. 

PROPOSITION 4. K, the set of feasible solutions, is a convex polyhedron. 
Proof. By Proposition 1 and Theorem 1, K1 and K2 are convex poly- 

hedrons; and since K = K1 n K2, the proof is immediate. 

3. The equivalent convex program. In [8] it was shown that to each 
problem of the form (1), there exists an equivalent deterministic problem, 
in terms of the decision variables x, which is a convex program, i.e., the 
minimization of a convex function (cx + Q(x)) on a convex set K. We 
have shown here that this set K is polyhedral and consequently that this 
equivalent convex program has the general form: 

(3) Minimize cx + Q(x) subject to 

Ax = b, 

W*Tx < a*, 

x > 0, 

where Q(x) is defined in [8] and W* and a* are as above. 

4. Multi-stage linear program under uncertainty. In this last section, 
we will show that the equivalent convex program (in terms of the decision 
variable x) of a multi-stage linear program under uncertainty is also of 
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the form (3), i.e., the minimization of a convex function subject to linear 
constraints. We first consider the following generalization of problem (1): 

Minimize ex + Et{ min q(y)} subject to 

Ax = b 
(4) 

Tx + Wy-i, on F) 

x > O, y C D, 
where q(y) is a conivex functional in y on 9Jr, D is a convex polyhedron, 
and A, T, W and t are as above. In [7], it was shown that problem (4) 
possesses also an equivalent convex program, whose objective reads: 

Minimize cx + Q(x), 

where 

(5) Q(x) = E{min q(y) I Wy - Tx, y > O}. 

We now show that the solution set of (4) is a convex polyhedron. 
Intuitively, we could argue as follows: Since D is a convex polyhedron, 

so is W(D) ={t I t = Wy, y C D}, and so is -W(D) for each t. Since 
all polyhedrons t - W(D) are the translate by t of a given polyhedron, 
these polyhedrons are "parallel", and their intersection is a convex poly- 
hedron of the same "form", with the possible exclusion of some faces. 
Then by Proposition 2, the set of induced constraints, K2, of problem (4) 
is also a convex polyhedron. Since K1 is the same as for problem (1), we 
have that K, the set of feasible solutions, is also polyhedral. 

LEMMA 6. W(D) is a convex polyhedron. 
Proof. By definition of W(D). 
In order to point out some of the properties of this set W(D), we give 

more detailed construction of the set W(D). By Lemma 3, every convex 
polyhedron D can be expressed as the sum of a polytope Dp and a convex 
polyhedral cone DC . Let 

DC= {r r = Vcz, z ? O} 

anid 

Dp {s I Vps > f}, 

i.e., y C D if and only if y = p + q where p C Dp and q C DC. Similarly 

W(D) -W(D)p + W(D)c, 

and it is easy to see that 

W(D)p= W(Dp) and W(D)c = W(D,). 
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Also 

-W(D) - [W(Dv) + W(Dc)]. 

If we construct the polar matrix of (WVc), we can find an explicit ex- 
pression for the supporting hyperplanes of W(Dc) [9]. Similarly, the ex- 
treme points of Dp can be found by examining the basis of Vp, see [1]. 
The linear operator W maps the extreme points of Dp into the extreme 
points of W(Dp). From these we can find the bounding hyperplanes of 
W(Dp). It is thus theoretically possible to find an expression for W(D) 
of the form: 

(6) W(D) - {t I Wt < d} 

for some matrix W of dimension m X 1 and some vector d. If 1 = 0, then 
W(D) = nm; if l = 1, then W(D) is a half-space, and so on. 

PROPOSITION 5. L = nfEl {X I X - W(D)} is a convex polyhedron. 
Proof. By (6), 

Lt= {xIl Wx _ a, where &j =i + ifi 
If the linear form WN has no infimum on V, then L -= . 

COROLLARY 1. K2 = {x I Tx = x, x E L} is a convex polyhedron. 
COROLLARY 2. K, the set of feasible solutions of (4), is a convex poly- 

hedron. 
We now apply these results to the followiilg multi-stage programminig 

under uncertainty problem: 

Minimize c1xl + Et2 I min c2(x2) 

(7 ) + E [nin C3(X3) + ( + Em-(min cm(xm)) ... 

subject to 

Alx1 = b, 

A21x1 + A22x= 

A32x2 + A33x3 

Am,m_lxm + Am,mx = m X 

X1 O0 X2 > 0x 3 > O . xm > O 

where the t are independent random vectors for i - 2, i, m and the 
ct(x') are convex functions for i = i, *1 , in. This problem is readily 
seen to be equivalent to the general structure of the multi-stage problem 
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found in [2, Chap. 25]. By Theorem 1, we obtain the equivalent mn- 1 
stage programming under uncertainty problem: 

Minimize c'(x)' + Et{min c2(x2) + EJmin c3(x3) 

+ + E(min cm-(xml) + Qm,(xm')) .} 
subject to 

Allxl b, 

A2ix' + A22x2 = 
A32x2 + A,8 =JX 

Am_l,m2Xm 2 + Aml,milx = 
1 r-1 

x1 > 0, X2 > 0, X3 > 0 xm-2 > 0 Xm-1 Dm,-1 

where Qm-i(xm-l) is a convex function defined on the convex polyhedral 
Dm . Using repeatedly (5) and Corollary 1, we can find the equivalent 
convex program to (7), which reads: 

Minimize c(x') + Q(xl) subject to 

Ax' = b, 

X E 

where D' is a conivex polyhedron and Q(xl) is convex. This completes the 
proof of the following proposition. 

PROPOSITION 6. The equivalent convex program of (7) is of the form: 
Find an x which minimizes a convex function subject to linear constraints. 
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