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STOCHASTIC PROGRAMS WITH RECOURSE* 

DAVID W. WALKUP AND ROGER J.-B. WETSt 

1. Introduction. A number of authors [1], [3], [4], [9], [12] have considered 
a particular form of stochastic linear programing called by Dantzig [3] 
programming under uncertainty. Essentially, the problem considered is that 
of finding the optimum value of the vector x in the program 

z = min E[cx + miti (qy)], v~~~~~~~1 

(1.1) Ax -b 

Tx + Wy= p, 

X> 02 y _ 0 

where E is expectation wvith respect to the random vector of resources p. 
(For a description of problem (1.1) and some of its practical interpreta- 
tions, see [6], or the various papers quoted above.) In this paper we study 
the natural extension of the restricted right-hand side problem (1.1) to the 
general case in which c, q, T and W as well as p are random variables. We 
call this general problem a stochastic program with recourse. The rigorous 
definition will be given in ?2. 

With the generalization of the stochastic program to include random WT, 
the problem of attributing a precise meaning to the stochastic constraints 
Tx + Wy = p becomes significant. One interpretation is to require that 
x be selected so that the equations Tx + Wy = p are solvable in non- 
negative y for all values of the random parameters in the support of their 
joint distribution. This interpretation is computationally convenient and 
reasonable (as we shall see) when W is fixed. A second interpretation is to 
require that x be selected so that the equations Tx + Wy = p are solvable 
almost surely. When W is random these two interpretations can lead to 
materially different sets of feasible values for x. In ?3 we show that these 
two interpretations are equivalent under a rather weak continuity-type 
condition-the W-condition-which includes fixed W as a special case. 
Even when the W-condition is inot satisfied, we show that there always 
exists some subset 2 of this support of the random variables such that for 
any x, Tx + Wy = p is solvable almost surely if and only if Tx + Wy = p 
is solvable for all values of the random variables in I. In the second part 
of ?3 we show that, if W is fixed and the support of the random variables 

* Received by the editors September 7, 1966, and in revised form January 30, 
1967. 

t Boeing Scientific Research Laboratories, Seattle, Washington. 
1299 



1300 DAVID W. WALKUP AND ROGER J.-B. WETS 

is a polyhedron, then the set of feasible values of x is also a polyhedron. 
This follows from a more general result, Theorem 3.14, which shows that 
the set of feasible x is unaffected by a broad class of maniipulations on the 
support of the random variables. 

In ?4 we show without restrictions that the natural equivalent determi- 
nistic form of a stochastic program with recourse is a convex programming 
problem. Moreover, for the case of fixed W we obtain results on the con- 
tinuity of, and the existence of supports to, the functional of the equivalent 
deterministic problem, which generalize and strengthen some of the results 
previously obtained for the case of p random only. 

The fact that the equivalent deterministic problem is convex is en- 
couraging from a computational point of view, but it constitutes only an 
initial step towards solution methods for stochastic programs with recourse. 
In another paper [8] we are able to obtain results for some special forms of 
recourse of more immediate computational significance. 

2. Statement of the problem. We suppose a probability space (:, 5Y, ,) 
is given, inwhich aisaBorel subset of RNN = (m + 1)(n + n + 1) - 1, 
5f is a u-field on Z which includes the Borel sets, ,u is a probability measure 
defined on 5Y, and 5: is completed with respect to ,u. Admittedly the arbitrary 
Borel sets, singular measures, etc., which the generality of this assumption 
allows are not to be expected in practical problems. However, a certain 
amount of nicety must be observed anyway, especially with random W, 
and the additional abstraction is essentially free. We think of the coordi- 
nates of a point t of a as the components of a collection of five matrices, 
c, q, p, T, and W of dimensions 1 X n, 1 X ni, m X 1, m X n, and m X n! 
respectively. Thus c, q, p, T, and W are functions of the random variable 
t (specifically projections) which we may write c(t), q( ), etc. 

A stochastic program with recourse can be formulated as: 

(2.1) z = inf E{c(t)x + [minq(t)y I T(t)x + W(t)y = p(t)]) 
x>O v>o 

where x and y are variable matrices of dimension n X 1 and in X 1 respec- 
tively. > indicates componentwise inequality, and 0 is the appropriate zero 
matrix. The symbol Ee (expectation with respect to t) remains to be de- 
fined precisely. 

For fixed x aind t the expression in square brackets in (2.1) is just the 
value of the linear program 

Q(x, t) = min q(t)y, 

(2.2) W(t)y p(Q) -T()x, 

y _ 0. 
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We shall refer to (2.2) as the second-stage program. Except in trivial cases, 
a value yo of y which achieves the minimum in (2.2) is clearly dependent 
on t. But because (2.2) may be unbounded, infeasible, or have more than 
one optimal solution, it is not correct to speak of YQ as a function of t except 
possibly as a set-valued function. On the other hand, Q(x, i) is a legitimate 
function from > into the extended reals if we let it take the values + oo or 
- oc when (2.2) is iiifeasible or unbounded below, respectively. 

In order to give meaning to Et in (2.1), it is certainly helpful to note 
the following lemma. 

LEMMA 2.3. For fixed x, Q(x, t) is a measurable function from (Z, 5, ,u) 
into (R, 6&, v), where 6s is the Borel algebra on the extended reals R and v is 
the Borel measure extended to R. 

Proof. The value of the linear program (2.2) is given by one of a finlite 
number of algebraic expressions (or 1 X ) subject to a finite number of 
optimality, infeasibility, or unboundedness conditions, each of which is an 
algebraic expression. Thus Q(x, t) is piecewise continuous on each of a finite 
number of subsets D of RN, which are finitely generated by open and closed 
subsets of RN. It follows that each set D is a member of 59 since, in fact, 
it is a member of the Borel algebra on Rg. Since Q(x, t) is continuous on 
each D, the inverse image of an open ray in R is also a member of i, anld 
since the open rays of R generate 33, the inverse inages of members of 6 
are members of i~. 

The foregoing lemma is not quite trivial. There exist functions (see the 
example used by Carath6odory [2, p. 379]) for which the inverse image of 
Lebesgue measurable sets need not be Lebesgue measurable but which can 
plausibly be interpreted as recursively computable functions on the reals. 

There are several possibilities for extending the definition of integration 
to cover the function z(x, t) = cx + Q(x, t), which for each x maps : into 
the extended reals. We define 

(2.4) z(x) = Et{z(x, )} = f z(x, ) d, 

to be the sum of the four quantities: 

A[z(x, )] = J z(x i) dp, 
o z(X tV<+0 

B[z(x, )] = f z(x,i) dcy (2.5)~~~~~~~0< (??Z( t) <0 

C[z(x()] $+?? if z(x,) + o on a set of positive measure, 
C 0 otherwise, 

D[z(xz - )] co{ if z(x,l = --oo on a set of positive measure, Lz\x,,J ~ 0 otherwise, 
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where we adopt the convention ( + oo) + (- '*) = + oo. The formal 
definition of a stochastic program with recourse (2.1) is now complete. 

The practical import of the definition of C and D above is that we are 
willing to ignore an irregular outcome of the second-stage program (namely, 
infeasibility or unboundedness) if it occurs with zero probability. Since 
(2.1 ) is a minimization problem, the convention ( + o ) + (-oo ) = + o 
can be interpreted as taking the conservative view towards "neurotic" 
values of x which lead to both infinitely good and infinitely bad contribui- 
tions to z(x). From the definitions (2.5) it follows that we may replace the 
set : of the probability space (5, i,) p) in the obvious way by RN, or any 
other Borel subset of RN whose intersection with z has measure 1, without 
altering the objective z(x). Thus z(x) and consequently the solution to the 
stochastic program (2.1) depend on the probability distribution given by 
, and not at all upon an a priori choice of a set . 

An altogether different situation arises if we replace the definition of C 
and D in (2.5) by 

C'[z(xl) +f ? if Z(X,) ? oo for some ~ E :5, 

(2.6) ~~~~ 0 otherwise, 

DC[~ ()] {+?? f- if z(X, ) = -?? for some t E X, D'[Z(X, 0 otherwise, 

where , is now interpreted as the set of possible values of the random varia- 
ble t. In this case, z(x) depends crucially on S. In the next section we prove 
that there always exists some set :O of measure 1 so that, on replacing Z 
by Z0 in (Z, 5Y, eu), the resulting z(x) as defined using (2.6) is idenitical to 
the original z(x) as defined using (2.5). A plausible candidate for the set 
?0 is the smallest relatively closed subset 2 of Z having measure 1 (i.e., the 

support set of the measure u). We shall show that this intuitively tempting 
substitution (certainly when a = RN) is correct for a rather broad class 
of stochastic programs with recourse but fails in general. 

Since our principal concern is illuminating difficulties that might arise 
from random coefficients in (2.2) rather than discussing obvious pathologies 
of c(t), we shall assume throughout the rest of this paper that c = Et{c(t)I 
is finite so that (2.1) is equivalent to 

(2.7) z = inf [cx + Q(x)I, 
z?0 

where 
Q(x) = Et{Q(x, t)}. 

We call (2.7) the equivalent deterministic form of the stochastic program 
(2.1). 
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3. Feasibility sets. In the preceding section we defined the objective 
function z(x) for all values of x in Rn. Nonetheless, it seems desirable to 
have specific knowledge about where z(x) or, equivalently, Q(x) is finite, 
and this requires in part a knowledge of where Q(x, t) < + co, i.e., where 
the second-stage program (2.2) is feasible. Accordingly we define the weak 
feasibility set: 

(3.1) K2 {Ix Q(x, ) +o with zero probability}, 

the strong feasibility set: 

K2' = {xjQ(x) < +ool, 

and for each S E RN the elementary feasibility set: 

K2(t) - {xIQ(x,) < +XI}. 

The set K2 consists of exactly those x for which the term C in (2.5) is finite. 
Thus, clearly, 12 D K2'. Like z(x), K2 and K2' are unaffected by replacing 
Z by any set of measure 1, in particular RN, Provided the solution is not 
- o, the equivalent determiinistic problem (2.7) is one of finding the 
infimum of a finite function over the intersection of K2' with the set K, 
- Re = {x I x ? 0}. 

If some of the rows of p, T, and W are nonstochastic with in fact zero 
entries in W, it is natural to write the equations Ax = b corresponding to 
these rows separately as in (1.1) and define K, (as in [9]) to be the set of 
solutions to Ax = b, x _ 0. The remaining equations give rise to new 
functions and sets, Q(x, t), Q(x), K2', and 12. The results which we shall 
derive for the unseparated form (2.1) apply with obvious adaptations to 
the separated form (1.1). 

In order to facilitate our discussion of the relationships between the weak 
feasibility set K2 and the elementary feasibility sets K2( ), we introduce a 
more general setting and attendant notation. Let 61 be a relation between 
points x of a set X and points t of a set Z:. For each subset S of X and 
each subset 2 of X, we define 

K(2) = Ix E X I x6l for all t E 2} = n K(t), 
t2 

K (S) ={I E x | x6for all x E SI = n K, (x). 

It is easily verified that 

KK _(S) :D SI K IK(2) :3 MI 

(3.2) K KK (S) = K (S) and KK K(2) = K(2)* 

For the problem of this section we set X = R' and define the relation 61 
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by setting zRI if and only if Q(x, t) < + o, so that K2(t) = K(t). We 
note the following simple consequence of the definition of K2 and K. 

PROPOSITION 3.3. Suppose 2 is any subset of Z such that u[2] = 1 and 
K2 c K ( 2). Then, in fact, K2 ( -). 

tJnder the possibility formulation (2.6) of a stochastic program with re- 
course the set K2', consisting of all x E R' for which C' 0, would take 
the form 

K2' K(n) = n K2(t) 

rather than (3.1). One of the pr'icipal objectives of this seetion is to de- 
termine conditions under which the analogous expression 

(3.4) K2 = K(2) 

holds in the probability formulation (2.5). We begin with the following 
theorem, the proof of which is given in Appendix A. 

THEOREM 3.5. The weak feasibility set K2 Is closed, convex, and can be 
written in the form K2 = K(s), where 2- K-'(K2). Moreover, [2]j 1. 

Since K2(t) is always a closed convex polyhedron, one obvious coinse- 
quence of the above theorem is that K2 is polyhedral if e is a finite set. 
Moreover, since the intersection of any collectioil of closed sets in a Lindel8f 
space is the intersection of a countable subcollectionl, it follows from 
Theorem 3.5 that K2 can always be represented as the intersection of at 
most countably maniy sets K2( ). 

In order to state the conditions under which (3.4) will hold we must 
consider some further properties of the second-stage program (2.2). The 
columns of the m X Th matrix W span positively [5] a closed convex cone: 

pos W = {It Wy = t, y ? 0} 

in Rm. As in [71, let us consider the space C, whtose points are the closed 
convex cones in Rm with apex at the origin, and define a metric on e by 
taking as distance d(C1, C2) between two members of e the Hausdorff 
distance between their intersections with the unit ball of Rm. In [7] it is 
shown that pos is a continuous map of a subset Z of R"m (considered as a 
set of m X n matrices) into the metric space e if and only if it is a closed, 
lower semicontinuous set-valued mapping of Z into RI. The following 
lemma and theorem show that the appropriate continuity conditions on 
pos W will ensure (3.4). 

LEMMA 3.6. Suppose the restriction of pos W(t) to a subset 2 of 5 is con- 
tinuous. Then for any x, K-(X) n l is a relatively closed subset of 1. 

Proof. For any x and t, the second-stage program (2.2) is feasible, i.e., 
E K-'(x), if and only if pos W(t) includes the point z(t) = p - Tx. 
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Thus, t E K-l(x) if and only if the pair (z(t), t) is in the graph of the 
set-valued function pos W. By hypothesis, the graph of the restriction of 
pos W(t) to z is a closed subset of Rm X I. Since z(i), and hence (z(t), (), 
is a continuous function of i, it follows that K-1(x) nf is closed in I. 

THEOREM 3.7. If the restriction of pos W(i) to 2 is continuous, then 

K2= K(z) 

Proof. Let x E K2. By definition of K2 we have u[i1(x)] = 1. Applying 
Lemma 3.6 with 2 = 2, we have that K- (x) n - is closed. But a closed 
subset of 2 of measure 1 is just t; hence K-I(X) D J. It follows that 
K2 C K(t), and by Proposition 3.3, K2 = K(2). 

To see the significance of cointinuity of pos W in the foregoing theorem, 
consider the simple stochastic program: 

minimize 0-x + E.{Y}, 

-x + wy = 0, 

x > 0, y > 0 

where w has a distribution with support tw = [0, 11 aid wO 0 with proba- 
bility zero. It may be seen that K2 = {x I x > 03 but K(Z-) = {x I x = 01. 
Note that pos w is the half-line [0, oo ) so long as w > 0, but at w = 0, 
pos w abruptly collapses to the origin. 

So far the present section has been concerned exclusively with the valuie 
+ oo for Q(x, t), which corresponds to infeasibility of the second-stage pro- 
gram. We turn now to an examination of the dual of that program, since 
the dual is infeasible when Q(x, t) = - oo. The dual program may be 
written in the form of equality constraints in noinnegative variables: 

Q* (x, ) max [(p - Tx)T, -(p - Tx) , OIu, 

(3.8) [WIV M -TWT, l- q 

u > 01 

where u is a columni vector of lenigth 2m + n, [WT, - WT, I] is the matrix 
formed by juxtaposing the transpose of W, its negative, and an A X A 
identity, etc. By direct analogy with the treatment of Q(x, t), we may 
define a dual relation 6R* given by 

x5R% if and only if Q*(x t) > - t0, 

dual operators K* and K*-1, dual feasibility sets K2*(Q) and K* and obtain 
dual results leading up to the following corollary. 

COROLLARY 3.9. If the restriction of pos [WTT(), -_ T(), 1| to ; is con- 
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tinuous, then 
K2* - K( ) 

However, since the feasibility of (3.8) is independeint of the value of x, for 
each t the set K2*(i) is either empty or R'. Thus Corollary 3.9 is actually 
less substantial than comparison with Theorem 3.7 might suggest. 

The hypotheses of Theorem 3.7 and Corollary 3.9 taken together con- 
stitute an important regularity colndition for stochastic programs which 
we formalize as follows. 

DEFINITION 3.10. A stochastic program with recourse (2.1) is said to 
satisfy the W-condition if the restriction to 2 of pos W(i) and 
pos [WT(), - WT(q), I] are continuous in the sense of [7], where v is the 
smallest relatively closed subset of Z of measure 1. 

Thus Theorem 3.7 and Corollary 3.9 mnay be restated as the following 
theorem, which shows that for stochastic programs with recourse satisfying 
the W-condition, the probability formulation is equivalent to the possibility 
formulation using the intuitively appealing and convenient set t as the 
set of possible values of the random variable t. 

THEOREM 3.11. If a stochastic program with recourse (2.1) satisfies the 
W-condition, then K2 = K(2) and either Q(x) = -oo for all x E K28 or 
Q(x, t) is finite for all x E K2 and all E 

It is not very clear from Definition 3.10 just how restrictive the W-coin- 
dition may be. In Appendix B we give a proof of the following theorem, 
which in conjunction with certain remarks below suggests that many prac- 
tical stochastic programs satisfy the W-condition. (We remark that alge- 
braic characterizations of hypotheses (i) and (ii) can be obtained from 
the results in [11].) 

THEOREM 3.12. Any one of the following constitutes a sufficient condition 
for a stochastic program with recourse to satisfy th-e W-condition: 

(i) For each t E X, pos W(t) is a pointed cone and no column of W(t) 
has zero norm. 

(ii) There exists an integer k such that for each t G , pos W( ) is a (not 
necessarily fixed) subspace of R"' of dimension k. 

(iii) W(Q) is constant throughout . 
COROLLARY 3.13. A stochastic program satisfies the W-condition if there 

exists a linear combination of the rows of W which is strictly positive on J, in 
particular, if every component of some row of W is strictly positive for all t 
in '. 

Proof. If r is a linear combination of the rows of W, then r = rW, where 
r is a row vector of length m. But if r is strictly positive, then every column 
of W has a positive inner product with ir and hypothesis (i) of Theorem 3.12 
holds. 
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An important special case of hypothesis (ii) is the case pos W(4) = R" 
(or its variant pos W(O) = pm, where in is the number of rows of W in the 
separated form (1.1)). We shall say in this case that the stochastic pro- 
gram has complete recourse. In case hypothesis (iii) holds we shall say the 
stochastic program has fixed recourse. 

In the remainder of this section we assume that W is fixed and develop 
some of the resulting properties of the feasibility set K2. We also assume, 
as we may, that $ = RN. Since feasibility of (2.2) depends only on the 
(p, T, WT) components of g, we can define a as a relation between elements 
of Rf and 3pTW . All the results from Proposition 3.3 through Corollary 3.13 
remain valid. Note that by replacing Z by' 2pTW (the support of the margi- 
nal distribution) in the definition of the W-condition, we impose a stronger 
condition since 2pTW always contains the projection of 2 into gpTw. In 
Pct, whenT W is fixed we can replace 2 by ZpT T In this case it follows from 
the modified version of Lemma 3.6 that any set K(i), 2; c Zpr is un- 
altered by the operation of replacing 2; by its closure or by any dense sub- 
set of Z. Also, it is easy to see that if Tx + Wy = p, y > 0, is feasible 
for two values of (p, T), then it is also feasible for any convex combination 
of them or any positive multlple of one of them. Thus we have shown that 
the following theorem holds. 

THEOREm 3.14. If W is fixed, then K2 = K(2;), where 2; s any set obtained 
from pr by applying the operations: topological closure, eonvex closure, posi- 
tive hull closure, positive scalar multiplication, or any of the (not necessarily 
unique) inverses of these operations. 

It should be borne in mind that there is a differectee betweetn the action 
of the positive hull or positive multiplication operationis on the set 2pT and 
the action of the same operations on Wp X T considered as a set of values 
of (p, T, W). From Theorem 3.14 now follows the next proposition. 

PROPOSITION 3.15. If W is fixed and 2, the closure of the positive hull of 
pr, is polyhedral, then K2 is polyhedral. 
Proof. Note that K2 is polyhedral whenl 2 is finite anid apply Trheorem 

3.14. 
PROPOSITION 3.16. If W is fixed, p and T are independent, and ZT (or the 

closure of its positive hull) is polyhedral, then K2 is polyhedral. 
Proof. Since p and T are independent, T = tp X T. For each T in 

ZT let K2( T) denote the set of x such that 

Tx + Wy =p 

y > 0 

is feasible for all p in t p . By Theorem 13 of [101, K2( T) is the set of feasible 
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x for the equations 

W*Tx + Iz =* 
(3.17) 

where W* is the so-called polar matrix of W and a* is a vector depeindinig 
on W and 2p only. By Theorem 3.7, 

K2 - n K2(?) 
r E 8pT 

= nf 12(T) 
TCFr 

= {x I equations (3.17) are feasible for all Tl E 2A. 

Since ZT is polyhedral, so is W*( or) ={ W*T I T C T}. Thus, by Propo- 
sition 3.15, K2 is polyhedral. 

In general, K2 need not be polyhedral even if 
(i) W is fixed and -, and 2T are polyhedral, or 
(ii) T and p are fixed, 2w is polyhedral, anid the W-condition is satisfied. 

4. Properties of Q(x). Since the functions Q(x, t) and Q(x) have been 
defined with the extended reals R for range, we will need to adapt the usual 
definition for convex functions. 

DEFINITION 4.1. A function f with convex domiain SC aind range X is convex 
if its epigraph { (x, z) I x E S, z e R, z > f(x)} is a convex set, or equiva- 
lently, if 

f(Xx) = f[(1 - X)xo + Xxii < (1 - X)f(xo) + Xf(x1) X C [0, 1], 

where we adopt the conventions 0 oo = 0 and (+00) + (-c ) = + oc. 
If the epigraph of f is a convex polyhedron we say that f is convex poly- 
hedral. 

In Appendix C we develop some of the consequences of this definition of 
convexity and the definition (2.4) of integration for functions into the ex- 
tended reals, including the following proposition. 

PROPOSITIoN 4.2. Suppose f(x, t) is a function from Rn X RN into R, 
convex in x and measurable in t with respect to A on RN. Then 

F(x) = ff(x, t) du is also convex in x. 

We now turn to the examinatio3n of the specifie properties of Q(x, t) 
and Q(x). 

PROPOSITION 4.3. Q(x, () is convex polyhedral in x, convex polyhedral in 
(p, T), and concave polyhedral in q. 

Proof. Since the right-hand sides of the program (2.2) are linear in x anid 
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linear in (p, T), the proposition follows immediately from the properties 
of the optimal value of a linear program as a function of the right-hand 
sides and the coefficients of the objective function summarized in the 
Appendix to [9]. 

Thus from Lemma 2.3 arid Propositions 4.2 and 4.3 we have immediately 
the following theorem. 

THEOREM 4.4. Q(x) = E#JQ(x, ()} is convex. 
From this theorem and the properties of convexity it follows that, like 

K2, the set K2' and the set {x I Q(x) = - oo are convex and either Q(x) 
is finite oni K28 or Q(x) = - oo on the relative interior of K28. In general, 
K2' is not closed and Q(x) may be discontinuous on K2%, even when Q(x) 
is finite on K28. 

We obtain additional regularity conditions for Q(x) if we impose the 
plausible assumption that each component of t is square integrable (Q C L2) 
and the more stringent requirement of fixed recourse, i.e., W fixed.' 

THEOREM 4.5. If W is fixed and t E L2, then K2' = K2 and either Q(x) 
- oo on K2 or Q(x) is finite and Lipschitz on K2. 

Proof. It suffices to consider x in K2 and t in X, and by Theorem 3.7, 
Q(x, t) < + oo for these values. Let 2= f j- n { -00 < Q(x, o) < + 0 
for all x E K2}. For any given x in K2 and t in 2, Q(x, t) can be expressed 
in terms of a basic solution of a linear program by writing 

Q(x, 0) = q -(0(p Tx), 

where W(i) is a nonsingular m X m square submatrix of W and q(t) is the 
corresponding subvector of q. (Here we have assumed that W is of full 
rank; if it is not, we make it so by eliminating the dependent rows. Since 
we have restricted our attention to feasible x and i, dependence in W im- 
plies dependence in the augmented matrix [W, p - Tx].) Thus for any 
fixed x, z may be partitioned into a finite number of (Borel) subsets on 
each of which Q(x, t) is quadratic in t. Since t is square integrable it follows 

that Q2(x) = f Q(x, t) d,u is finite for all x in K2. If x, x? are distinct 

points of K2, then since Q(x, t) is polyhedral in x, 

(4.6) N (x, xo; IQ(xl - Q(x0I 
jj x - xojj1 

achieves a maximum for each t when x, x? belong to the same region of 
linearity of Q(x, t). For x, xo in the same linearity region we have Q(x, t) 

1 Added in proof: In "Qualitative Aussagen zu einigen Problemen der stochasti- 
shen Programmierung", Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 6 (1966), 
pp. 246-272, Peter Kall has obtained related results for stochastic programs with 
complete recourse with q and W fixed. 
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-Q(x?, o) = q(2) W-T2T(xo - x) for some i. Hence for any x0, x in K2, 

(4.6) I Q(x, t)-Q(x0, <)j < i q(t)WW-')T(x() -x) ? M. jj 0j2 * x1 - x f 
where M is a bound that is independent of i. It follows that Q; (x) is 

Lipschitz with constant M 11 112 d1u. But by Proposition 4.3, Q(x, () 
- -c for some x in K2 if and only if Q(x, ) = -cc for all in K2. 

Thus Q jz- Q(x, t) d,lu is either identically - co or zero on K2. The 

theorem now follows from a simple application of Lemma Cl in Appendix 
C. 

COROLLARY 4.7. Theorem 4.5 remains true if the hypothesis t E L2 is re- 
placed by any of the following: 

(i) qis fixed and t E L1, 
(ii) p and Tare fixed and L i 
(iii) z is bounded. 
We remark that (ii) of Corollary 4.7 constitutes a generalization of 

certain results of a previous paper [9]. Proposition 24 of [9] asserts the 
existence and continuity of Q(x) under the assumption that p C L1 and 
all other parameters are fixed. Proposition 27 of [9] shows the existence of 
(nonvertical) supporting hyperplanes to the epigraph of Q(x) by giving 
an explicit formula for them. But Corollary 4.7 shows that Q(x) is 
Lipschitz anid, therefore, there exists a bound N such that for each x E 
K2 there exists a hyperplane supporting the epigraph of Q(x) at (x, Q(x)) 
with slope less than N. 

COROLLARY 4.8. If p only s random, then either K28 is empty, Q(x) - 

on K2 = K28, or Q(x) is finite and Lipschitz on K2= K28. 
Proof. The right side of (4.6) can be replaced by a bound independent 

of t. Thus Q(x) is Lipschitz where it is finite. But by Proposition C4 of 
Appendix C, if xo, x E K2 and Q(x?, 0) C Li, then Q(x, 0) C L1. 

Finally, we note the following supplement to Proposition 4.3. 
PROPOSITION 4.9. For fixed W, Q(x, t) is Lipschitz in (x, (q, p, T)) 

on every bounded set on which Q(x, t) is finite. 
Proof. By (4.6), Q(x, t) satisfies a Lipschitz condition in x on each 

bounded subset of Rn X RN on which Q(x, t) is finite. Similarly, since 
Q(x, t) is polyhedral in (p, T) and q, it follows that Q(x, t) is Lipschitz 
in (p, T) and q separately on bounded sets where Q(x, t) is finite. The 
conclusion is immediate. 

Appendix A. Proof of Theorem 3.5. The theorem follows from the fact 
that K2 (t) is closed and convex, and the slightly more general result, 
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Proposition Al. A topological space is hereditarily separable if every sub- 
set with the induced topology is separable. 

PROPOSITION Al. Suppose X is a hereditarily separable topological space, 
(=, 3Y, ) is an abstract probability space and 61 is a relation between X and 
g such that 

K(0) = I xix} is closed for all E e E, 

K-'(x) = I xSj} is a member of iYfor all x E X. 

Suppose further that 

K2 = {xl jI4K(x)J = II. 

Then 

K2 K() n K(w), 

where 

K (Kf2) = K, (x). 
x: K2 

Aioreover, A( 2) = 1. 
Pr-oof. If K2 is empty, then 2-K (0) , whence ,(2) 1. Com- 

parison of the definitions of K2 and( v() shows that K() ) =K(3 0. 
Now suppose that K2 $ 0 and let xi , X2, ... be a sequence of points dense 

00 

in K2, and let 2' = nK- (xi). From the properties of K and K-' it follows that 
i=1 

K(t) z Uxi for each t E L', and since K(t) is closed, K() z K2 for each 
t E f', whence it follows that 2' = z and K12 C K(:). But since Z' is 
the intersection of countably many sets of measure- 1, ,(2 ) = 1, and hence 
K2 D K( 2). The proof is complete. 

The fact that we can use this abstract method of proof for Theorem 3.5 
(without introducing any but the simplest of the properties of the second- 
stage program) suggests that Theorem 3.5 may not be as strong as possible. 

Appendix B. Proof of Theorem 3.12. The result is clearly trivial when 
hypothesis (iii) holds. Moreover, by Corollaries 1 and 2 of [7], hypotheses 
(i) and (ii) imply that the restriction of pos W(t) to 2 is continuous. The 
following two lemmas will be required to complete the proof. 

LEMMA BI. POS [WT, -WTV I] = R' if and only if pos W is a pointed 
cone and none of the columns of W is zero. 

Proof. Suppose pos [WT, TWT, I] = R;. Then some positive combination 
of the columns of [WT, - WT, I] is a strictly negative vector; in fact, some 
positive combination of the columns of [WT, - WTI, or equivalently, some 
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linear combination of the columns of WT is a strictly negative vector. 
But this last condition is equivalent to saying that some vector has a 
strictly negative inner product with every column of W, which implies 
that pos W is pointed and no column of W is zero. A converse argument 
shows that if pos W is pointed and no column of W is zero, then 
pos [WT, -WT] contains a strictly negative vector, from which it follows 
immediately that pos [WT, _ WT, I] = Rt. 

LEMMA B2. pos W is a subspace of dimension k if and only if 
pOS [WT, -WTI is a subspace of dimension Ic supporting pos I at the origin 
only. 

Proof. Clearly, pos [WT, - WT] is always a subspace. Now subspaces are 
characterized among the convex cones in that every linear form on the con- 
taining space is either zero on the cone or takes on both positive and 
niegative values there. In other words, pos W is a subspace if and oily if 
7rW > 0 implies 7rW = 0, where 7r is a 1 X m matrix. Thuis pos W is a 
subspace if and only if every linear combinationI of the columns of W" 
which lies in pos I is actually the zero column. Finially, we observe that the 
dimeiision of pos W, the rank of W, the raiik of WT, anid the dimenision of 
pos [WT, - WT] are all equal. 

Lemma Bl shows that if Theorem 3.12(i) holds, then pos [W() T, 
-W() T, I] is continuous in t since it is constant. If (ii) holds, then it 
follows from Lemma B2 that 

(a) dim ? pos [WT, -WT, I] = dim pos [WT, - WT] =k 
(b) a column of [WT, - WT, I] lies in 2 pos [WT, - WT, I] if and only if 

it is a column of [WT, -WTI, 
for all W = W(t), t C 2, where SC denotes the maximal linear subspace 
contained in the cone C. From [7, Theorem 2], we have that pos [WT, 
-WT, I] is a continuous function on the set {[W(t)T, -W()T, I] I C E}. 
It follows then that pos [W( ) T _ W( ) T, I1 is a -continuous function on 
This completes the proof of Theorem 3.12. 

We do not know whether the hypotheses of Theorem 3.12 can be replaced 
by the more general hypotheses of [7, Theorem 2]. 

Appendix C. Properties of the integral (2.4). 
LEMMA Cl. If f( ) is any measurable function from RN into the extended 

reals R, then 

(C2) f f(t) d,u = f f(t) d1A + f f(t) d,u, 
s1us2 S1 2 

where S1 and S2 are disjoint measurable subsets of RN and f d,u is defined 

as in (2.4). 
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Proof. The definition of addition on the extended reals is commutative 
aiid associative; thus it suffices to show that an equality of the same form 
as (C2) holds for each of the four terms (2.5) defining the itntegral (2.4). 
From the stanidard properties of the Lebesgue-Stieltjes initegral it follows 
that Asius2f] = AJf[fl ? As2[fl ad = Bsl[f] + Bsjf], where 

As[f] dj,u etc. 
{o<f(U<+-i}ns 

The equality for the terms C and D follows from the fact that the unioni of 
two disjoint measurable sets has positive measure if anid only if one of them 
does. 

PROPOSITION C3. The integral (2.4) is order preserving, i.e., if f and g 
are measurable functions from RN into R, and f( ) ? g(t) for all t in RN, 

then fi ( ) dA c g( i, dju 
Proof. By Lemma Ct it suffices to show Fs = f f( t) d1 ? G8 

= f g(e) du for each set S in a finite measurable partitioni of RN. Note 

that for any set S of measure zero, Fs = Gs trivially. If 4[S1 {f( ) 
= - OC I > 0, then -oo = Fs, < Gs,. If 4[S2 = {f(Q) = +- I I > 0, 
then F', ?+ 00 . If [S3 = {-c <f( ) < +x, g(0) = +X}] 
> 0, then Fs, _ Gs = + oo. For the remaininig set S4, on which f and 
g are finite, Fs4 ? Gs4 by the order-preserving properties of the Lebesgue- 
Stieltjes integral for finite-valued functiorns. 

PROPOSITION C4. The integral (2.4) is subadditive, i.e., if f and g are 
measurable functions from RAX into R, then 

f [f(t) + g(t)] d ? ff(t) dA + f g(t) dA 

with equality if either of the integrals on the right is finite. 
Proof. The proof is similar to that for Proposition C3. 
Proof of Proposition 4.2. If f(x, t) is convex in x, then by definiition, 

f(x, ) = f[(1- X)Xo + xx1,I < (1-X)f(xo, ) + Xf(xl, ), 

XE[0,1], A ERN. 

From this it follows by Propositions C3 and C4 that 

F(xx) < (1 - X)F(xo) + XF(x1), 

where F(x) f f(x, ~) dy, which is exactly the condition of convexity 

for F(x). 
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