$12.50

Proceedings of the
Princeton Symposium on

Mathematical Programming

Edited by
HAROLD W. KUHN

PRINCETON UNIVERSITY PRESS




STOCHASTIC PROGRAMS WITH RECOURSE: SPECIAL FORMS

D. W, Walkup and R, J, B, Wets

I. Introduction

This paper is a sequel to Stochastic Programs with Recourse
[20] in which we defined stochastic programs with recourse and
developed some of their theoretical properties. In this paper we
consider some special forms of stochastic programs with recourse,
which, because they are less general, may prove to be more amenable
to computational solution, We also show how certain problems studied
by others, including the active approach of G. Tintner [15, 17] and the
conditional probability maodel of chance constrained programming
treated by A. Charnes and M. Kirby in [6, 7], can be represented as
stochastic programs with recourse,

In [20] we have defined a stochastic program with recourse to
be essentially

Inf z{x) = E{ cx + Min gy} (. 1a}
x ¥

subject to A =L (1. 1b)

Tx + Wy=p (L 1c)

x>0 vy=0, (1. 1d})

where A and b are fixed matrices of size m x n and m x | respectively
andec, 9, p, T, and W are matrices of size lxn, 1x 1, mxl, mxn,
and m x fi respectively whose elements are components of a random

variable £ defined on RN, N=(m+1l{n+n+1) -1, with an associated
distribution function F. N
Strictly speaking, in [20] we considered the possibility that R

could be replaced by some Borel subset = of RN with probability
measure 1, thus generating an abstract probability space [z, 7, pl,
where ¥ is a r-field on = including the Borel sets, pis the probab-
ility measure defined on ¥ derived from F, and F is completed with
respect to p. As observed in [20], such a replacement has no effect
on the objective function =ix) in (l.la}. When we wish to consider the
case = # RN in this paper we shall use the phrase "relative to ="
where = is some particular set under consideration,

By = we denote the support set of the random variable £, i.e.,

the smallest closed subset of RN {smallest relatively clﬁsed subset =
when speaking relative to =) of measure 1. When = = R any compon-
ent or group of components of £, such as the elements of W or the
elements of p and T, may be considered a marginal random wvariable,

denoted simply by W or (p, T), with an associated marginal distribution
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140 Walkup, Wets

function and an associated support set denoted by =, or = L2 In view
W PT containe
For each value of the decision variable %, and for each value s
of the random wvariable £, the second term on the right in (1. la) is the
optimal value Qix, £) of the second-stage linear program
Minimize qy Howayas
subject tao Wy =({p - Tx) (1. 2) CONVEX S
¥ = 0, Some c
e of all x £
If (1. 2) is infeasible or unbounded below, we set Qfx, £) equal to + = if and o
or - @ respectively, In Section 2 of [20] we give a precise definition
of the expectation cperator E which accommodates values + @ and - o program
for Q(x, £). In particular, E{cx + Q(x,£)}= + % if Q(x,£) = = with any m x
positive probability or if the positive contribution to the integral ; ]
Efcx + Qix,£)} diverges, A wector x is a feasible solution to the points in
stochastic program (L.1) f Ax =band E{cx + Q(x, &)} < + =, As in' of col
[20] we shall agsume that E{c} = & exists and is finite. This allows be rewr:
us to rewrite the objective (L. 1a) as =(x) = ¢x + Q(x), where Q(x) = 9
E{Q(x,£)}. The effect of this result is that it is unnecessary to
consider ¢ as part of the components of £, Essentially this same
observation may be found in [9].
One of the principal results of [20] is that the equivalent
deterministic program 1
be dise
Inf z(x) = ox + Qix)
subject to Ax=b (1. 3)
x> 0

associated with (1.1} i= a convex programming problem, In fact, it
can be shown [21] that Q(x) is a "closed" convex function, i, e, Q(x) is
convex and lower semicontinuous, Thus the set {x| Qx) < + «} is
convex, though it need not be closed. Since the first-stage feasibility
set Kl [x| Ax=b, x> 0} is a closed convex polyhedron, it follows

that { x| Qix) < E'O]- N Kl' i, e., the set of feasible solutions, is convex,

]"ui."hen certain of the matrices ¢, q, p, T, or W e not random we
may continue to define £ as a random variable on R with certain com- |
ponents degenerate, or W mmy define £ as a random wvariable on the |
coordinate subspace of R associated with the random matrices, The |
difference between these two approaches iz that in the former = is a |
subset of a flat parallel to a subspace of R whereas in the latter = i
is the projection of this set into the subspace, In any case we shall 1
speak of the nonrandom parameters of (1, 1) or depenerate components
of £ as fixed, The distinction will not be important in this paper although
it can be in some :ontexts, as in Theorem (3. 14) of [20].

recourse

ZRecall herﬁthat = ietc. ) is not just the projection of = 2 into the devoted %

subspace of R Spanne.d by the coordinates corresponding Yo {he coinia dit'lunalri
ponents of W, but the closure of this projection, 4. Cha
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In view of the two ways in which Q(x) may be + =, {x| Q(x) < + =} is
contained in, but not necessarily equal to, the second-stage feasibility
set

K, = {x| (1.2)is feasible with probability 1} . (1. 4)

However, it can be shown that, unlike {x| Q(x) < =}, K, is a closed

convex set: see Theorem (3. 5) of [ZEI]. In Section II we shall quote
some conditions sufficient to insure that K is actually equal to the set
of all x for which Q(x) is finite. Under these conditions x is feasible
if and only if it belongs to the closed convex set Kl n Kz.

A notion convenient in discussing the feasibility of a linear
program such as (L. 2) is the positive hull operator, "pos" [19]. If W is
any m x fi matrix, pos W is the closed convex cone consisting of all

points in R™ which can be represemed as nonnegative weighted sums
of columns of W, i.e,, pos W {tl:H_'yr‘:-U t=Wy}. Thus (L 4) may
be rewritten

= {x| (p - Tx) & pos W with probability 1}. (1. 5)
E A

Some special forms of stochastic programs with recourse to
be discussed in this paper are stochastic programs with --

(i) relatively complete recourse: K2 ) Kl. This holds if and

only if for all values of x in KI’ p - Tx belongs to pos W
with probability L

(ii) complete recourse: pos W = R with probability 1. This
is a special case of relatively complete recourse.

(iii) fixed recourse: W is fixed, i.e., for all values of £ in "::,
W is constant.

[iv) s:mple recourse: W is fixed and equal to [I, -I], the

m x (2m) matrix formed by juxtaposing an m x m identity
matrix and its negative. This is a special case of both
fixed recourse and complete recourse. (In [23] the term
"complete' was used in connection with this special form
of recourse in recognition of the fact that it is a special
case of (ii). Subseguent development of the subject has
suggested the distinctions given here.)

{v) stable recourse: W is square and nonsingular with
probability 1.

Sections Il and III of this paper are devoted primarily to simple
recourse and stable recourse respectively. Sections IV and V are
devoted to showing how the active approach of G. Tintner and the con-
ditional probability model of chance constrained programming due to
A, Charnes and M. Kirby can be formulated as stochastic programs
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with special forms of recourse, A few properties of fixed recourse
necessary for the discussion of simple recourse appear as introductory
remarks in Section II. The remaining terms in the above list, namely
complete recourse and relatively complete recourse, are used in the
discussion of simple recourse in Section II and the active approach in
Section IV,

For some results on the existence of continuous piecewise linear
decision rules for programs with only right-hand sides random (a special
case of fixed recourse) see [22].

I1. Stochastic Programs with Simple Recourse

By definition a stochastic program with simple recourse reads

1nf zix) = ex + E Minig" y +4” v) (2.1a)
subject to Ax = b (2. Ib)
My o 1o 0 By e B =p (2.1¢)

x>0 ¥y >0,  (2.1d)

where I is an m x m identity matrix; ¢, A, and b are fixed matrices

of dimension 1 x n, m x n, and m x 1 respectively; q S q , b, and T
are matrices of dimensions lx m, lxm, m x I, and m x n respect-

ively whose elements are components of a random variable £ defined
ar RN, N=min+ 3); and E denotes expected value with respect to §,

In [23] the special case of (2.1) in which p is the only random
variable is examined in detail, In Section 2 of [23] theoretical results
are developed for this special case, Other sections of that paper
discuss practical solution methods when the random variables are
discrete or continuous, One of our principal objectives here will be to
show that essentially all the theoretical results obtained in Section 2
of [23] hold for the general stochastic program with simple recourse,
i{2,1)., This success in generalizing the theoretical results suggest that
it may be possible to adapt some of the computational metheds to the
general case also, but we shall touch on this possibility only briefly,

Before beginning our discussion of programs with simple
recourse we list in the omnibus theorem below some of the properties

which (2,1) has in common with all stochastic programs with fixed
recourse,

Theorem (2. 2)., Suppose the stochastic program (L, 1) has fixed
recourse (i.e., W is fixed) and each component E, of £ has finite vari-
ance (i, e, E{EZ} finite). Then:

{a) The second-stage feasiblity set KZ given by (L. 4) is a
closed convex set which may be written
K = {x|p-Txe pos Wforall(p, T)e EPT}

(2.3)
> [{p.T:E Zpr{xlay20, Wy=p-Tx}.
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Moreover, if we have complete recourse, i, e,, if
pos W = R, then K, = R,
(b} The equivalent deterministic form of (1.1} is
inf z(x) = cx + Q(x)
(2. 4)
subject to x g Kl n KE .

where K, is the closed convex polyhedron {x| Ax=1b, x> 0}.
Moreover, - @< Qix) < + @ for all x in KE' Thus x is a
feasible solution to (2. 4) or the original stochastic program
(L.1) if and only if x ¢ K, [ K,

(c) Letxeg R™ and te RN and suppose either x & K, and
Ee £ or we have complete recourse. Then Qix, £} < + =,

Moreover, Q(x,£) > - @ if and only if the vector qT associ-
ated with £ lies in the convex polyhedral cone | = pos[wT,
= WI, 1], where [WT, - "v.'-'”T, I] is the matrix formed by _
juxtaposing the transpose of W, its negative, andanfixn
identity matrizx,

(d} If |, does not contain Eq, then Qfx, £) = - = with positive
probability and Q(x) = - =« for all x in KZ' I J does contain |
Eq, then Q(x, £} is finite for all x in K

and all £ in = and ‘
the restriction of Q(x) to K
function.

2

PR finite, Lipschitz, convex

Proof, In Theorem (3, 14) of [20] it is shown that the expres-_
sion ''with probability 1" in (1. 5) can be replaced by "for all (p, T) e = T
if W is fixed. We have already remarked in Section I that K, is alway
closed and convex, but this follows easily in this case from the second
line of (2, 3) and the fact that {x|gy >0, Wy =p - Tx} is a closed con-
vex polyhedron, The rest of the proof of (a) is easy. Theorem (4. 5)
of [20] establishes (b}, Now consider (c), If we have complete recourse
the second-stage program (L 2) is always feasible, On the other hand,
ifxe K, and £e =, then(p, T)e = .., and in view of (2. 3} the second-
stage program is apgain feasible, Thits in either case QI(x,£) < + o=,
Since the second-stage program (1, 2} is feasible, it is not possible that
(l. 2} and its dual are both infeasible. Thus Q(x, £) is the value of the
dual. The natural dual of (L, 2) iz 2 maximization subject to inequality
constraints on unconstrained variablee; it may be rewritten as a maxi-
mization subject to equality constraints on nonnegative variables,
namely

Maximize [ip - TK}'T. - (p = TX}T; 0Ju

subject to [‘.'-"T, i T

Ilu=g

¥

ux0,
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The remainder of (c¢) is now obvious., Now comnsider (d). Since J is
a closed and '—:'q is the smallest closed set of measure 1, the statements

concerning Q(x, £) alone are immediate, The remainder of (d) follows
from Theorem (4, 5) of [20]. ||

The hypothesis of this theorem that each component of £ has
finite variance is a very weak one from a practical viewpeoint, However,
it is still stronger than absolutely necessary. What is needed, as an
examination of the proof of Theorem (4, 5) of [20] will show, is that
certain bilinear forms f(q;(p, T)) must have expected values, Thus an
alternate hypothesis is that the components of q, p, and T have expected
values and q is independent of (p, T). In particular, existence of the
expectation of (p, T) will suffice if q is fixed, see Corollary (4.7) of [ZG],

We return now to a discussion of programs with simple recourse
Asg in Theorem (2. 2) we shall suppose where necessary that £ satisfies
suitable moment conditions, Sewveral properties of the program (2. 1)
can be deduced directly from Theorem (2. 2). Since pos W = pos[l, -I]

= r™ s we have complete recourse, and K Thus by (b) of
Theorem (2, 2), the equivalent determinist Z;c prugram of (2.1) reads

Inf z{x) = cx + Q(x)
subject to Ax=b (2. 5)
x>0,

with Q(x) < + @ for all x, As in [23] and [25] where the case p only
random is considered, we see that it is possible to attribute portions
of the quantit}" Q(x, £) to different rows of (2. 1lc). Specifically,

Qlx, £) -z Q,%, &) Where
i=1
+

Y L CHEEE W
Q, (=, §h}] = Min 9 ¥;t ey

subjectto  y; - ¥ =p; - Tyx (2.6)

+ -

b 0 ¥; 20

and g{ ) is the ran:{ﬂm in + 3)-vector whose components consist of the
i-th components of q . 94, p and the components of the i-th row, T,

of T. Note that (2. 6) may itself be considered the second-stage pro-
gram of a stochastic program with recourse, to which Theorem (2. 2)
may be applied. The cone & ; obtained in applying part (c) of Theorem

'[2 2} to this program is Just the set of values of q and q such that
q + q > 0. Thus, 1fq + q > 0 almost surely, then

Qifx]‘ = E{Qi{X, E{l}}}

iz a finite, Lipschitz, convex function defined for all x, Now the cone
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obtained in applying part (c) of Theorem (2. 2} to the whole program
(2.1) is the product of the cones "l"i' Also, since each Qi[x] is finite,

expectation and suwmmation on 1 may be interchanged to yield
= Zi Qi{z) :

(This may fail if the Qi{xJ are not finite, It is easy to construct ex-
amples of distributions without finite variances such that the integrals
Qi{x} = EE, Qi{x_ £)= 'Eg{i] Qi{x, gm] diverge variously to + «© and - =

o

but such that Q(x, £) = El Qil:x, E)=0forallxandallt ¢ = ., Inthis

case Q(x) = 0, but according to the definition of the expectation operator
and the conventions introduced in [20], Ei Qiﬂx} =+ 9, ) Thus we have
proven:

Proposition (2.7). Suppose (2.1) is a stochastic program with

. + - ‘o,
simple recourse such that q. + g, > 0 almost surely, 1< i< m, and
i i = = he—

each component of £ has a finite variance, Then (2. 5) is the equival-
ent deterministic program for (2.1), where

is a finite, Lipschitz, convex function defined for all x.

The importance of the representation of Q(x) as a sum of func-
tions Q. (x) = E{Qi:x,g{.l]]} lies in the fact that the Q.(x, gm] and hence

(x} depend only on the marginal distributions of the random variables
E‘[i]' By no means a trivial part of the problem of obtaining a practical

solution of a general stochastic program would be the experimental
determination of the joint distribution of the random variables, Ewven
the specification and manipulation of the resulting joint distribution
function would be extremely difficult for a very few wvariables, But it
might not be too much to hope for that a practical simple recourse
problem would inveolve only one or two random components in each £ ...
The case studied in [23] in which p only is random is just one exampi]é]
of 2 simple recourse problem in which each £, has only one random
component, (1)
In Section 4 of [23] it is shown how a descent method can be
used to solve a stochastic program with simple recourse when p is the
only random variable and each of its components has a continuous
distribution. The algorithm makes use of the fact that in this case
2(x) has a continuous gradient, When the distribution contains points
of positive mass, so that at certain values of x the graph of Q(x) has
more than one supporting hyperplane, a descent algorithm which uses
the gradient of an arbitrary supporting hyperplane can run into serious
difficulties. The following proposition shows that the result on the
existence of a continuous gradient has a natural extension for the
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general stochastic program with simple recourse, In view of this
result, there would appear to be no serious obstacle to adapting the
algorithm of [23] to the general case provided each random vector g{i]
has one (or very few) random components,

Proposition (2. B). Suppose in addition to the hypotheses of
Proposition (2, 7) that each of the marginal variables £ i has an abso-
lutely continuous distribution. Then Q(x) has bounded égntinuous first
partial derivatives and

vap =28@ 28K iy e, (2.9)
1 n
where w(x, £) is the row m-vector whose i-th component is
+ .
q; if I:[;:ni - 'I'_lx} =0
Witx,gl' = Tri{:':-:'g{ij} = [zrln:l
-4, if I:pi - I'ix]--: 0.
Proof, The second-stage program is
+

Qx, £} =Ming y +q y
I}r+- Iy =p=Tx
}r+>§} }r->0

and its dual is

Q(x, £) = max 7 - (p - Tx)
1 + (2. 11}
g -0
The primal problem is always feasible, hence Q%(x, £) = Q(x, ). By

Pt

assumption, - q =< q+ almost surely; and hence - q° < q+ for all £ &
Thus, provided £ & = so that (2, 11) is feasible, the optimal value of
in (2. 11} is given by (2. 10}, with ambiguity only when some Pior Tix is

zero, On differentiating the objective in (2, 11) we find vxtl{x, £l =

- w{x,E) - T for all x and all £ & E such that no component of p - Tx
is zero. The same argument applies to each of the functions Q. (x, £),
so that vai[x* El == 'Tl'.l{'-":-a E}Ti == ﬂitx: g[l]} . Ti provided E‘{l',l 1z a

mermber of the set O (x) = F::“} n {gm| (p; - T;x) # 0}, where = (i) is
the support of E{i}' Now since E{i] has an absoclutely continuous distribu

tion, 82 i_{:-;] has measure 1, Thus

V. Q. (=, E‘{i]] = - mylx, gmn - T, almost surely. (2.12)
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Alse, for each value of gm, Qiix, E[i]} iz a continuous piecewise linear
function satisfying the Lipschitz condition in the direction of %, with

: g + - - i
Lipschitz constant Bij{g{i]} = max { | a, 'lijl i qy Tijl }. Since each

component of ., has finite variance,
(i)

E{ Bm{g[il}} is finite 2,13}

It follows from (2,12) and (2. 13) that the interchanpge of expectation and
partial differentiation in

VQ,(x) = VE{Q,(x, £ ;))} = E{VQlx, &)} = - E{mlx gy - T
(2. 14}

iz valid and all quantities are finite; see for example Cramer [8], who
treats the case in which the parameter x and the random wvariable gm
are both one-dimensional, Summing (2.14) on i1 and interchanging

the summation with ’C’,{ and E we get (2.9). From (2, 13) it also follows

that Q%) has bounded partial derivatives. Continuity of the partial
derivatives can be proven by a similar method (see Cramer [8] again)
or deduced from the fact that a convex function with partial derivatives
has continuous partial derivatives [12].

It iz easily verified that Propositions (2.7) and (2, 8) remain
true when the alternate moment conditions discussed in connection with
Theorem (2. 2) are used, An alternate version of Proposition (2. 8) in
which it is assumed g is fixed and (p, T} has an expected value has been
obtained by Kall, who gives a detailed proof in [13].

Rather than sesking to define stochastic programs with simple
recourse as the most general programs having the properties exhibited
in Propositions (2, 7) and (2. 8), we have tried to give the simplest
definition consistent with the spirit of these results, Naturally there
are a number of miner generalizations possible, For example, we
could take any recourse matrix W obtained from [I, -I] by permutation,
positive scalar multiplication, or duplication of columns, One such
generalization of simple recourse has been mentioned in the literature;
it is discussed in the following paragraph.

In Case (B) on page 99 of (5] it is shown (using different termin-
ology)} that under certain conditions the optimum value of the second-
stage linear program can be expressed in closed form (using the
absoclute-value function) as a function of the random variable £ and the
decision variable x. (It is supposed that p is the only random variable,
but the same argument applies obviously so long as W is fixed, ) The
condition imposed is that there exist square nonsingular matrices D,

F and a nonnegative real number h such that W can be partitioned in
the form W = [D, -F], o-lr is a nonnegative matrix, and

1

o lr = 7oy T (2.15)

We shall show here that these conditions are equivalent to a more
explicit condition which is only slightly less stringent than simple
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recourse, Let G = D-lF. Then G is a square, nonnegative, non-

l:F'l

singular matrix, Moreover, since G~ D), we have from (2. 15)

that G_l is nonnegative. DBut it is eagily proven that if 2 matrix and its
inverse are nomnegative then G = AP, where P is a permutation matrix
and & is a diagonal matrix with positive elements on the diagonal. In

fact, substituting AP for D-lF l1'.n (2.15) we readily clonclude. that & = h™-1

Thus we have that ¥ = DG = h™2DP, or W = [D, -h"2DP]. Now recall
that W is the recourse matrix of a stochastic program. By reordering
the components of g and v associated with the second half of the colurmns
of W and multiplying these components by hZ, we obtain an equivalent
stochastic program

Minimize cx+ E{q' y' + q" v"} (2. lba)
Ax =h {2.16b)
Tx + Dy' = Dy''=p (2. lbe)
x>0 yr>0 y'>0, (2. 16d)

Note that this permutation and multiplication in no way increases the
difficulties of sclving a practical problem. We can now multiply

through the equations (2. l6c) by Dl to obtain an equivalent stochastic
program with simple recourse in which the second-stage constraints

read

(O 4+ Tyt - Ty wi DT (2. lbc')

We remark that the reduction from (2. l6c) to (2, l6c') is not as
trivial as the elimination of P and h™2, Far simple recourse, a know-
ledge of the distribution of each of the marginal variables E{i} is suf-

ficient in theory to obtain a solution, But, a knowledge of the marginal
distribution of the variables associated with each row of (2. l6c) is not
sufficient to solve (2.16) even if q and T are fixed; the marginal dis-

tributions of the components of Dﬂlp cannot be deduced from the mar-
ginal distributions of the components of p. Of course if p is the only

random variable and its components are independent, the marginal -
]

distributions of the components of D-]'p can be obtained with a moderate

amount of effort from the marginal distributions of the components of p,
A model of stochastic programming related to the simple

recourse model considered in this section has been studied by Evers

[l1]. In the terminclogy of this paper, his model assumes W = [I, -IJ,

q fixed, and (p, T} random, but includes as well interrelated chance

constraints and set-up costs,
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II1, Stochastic Programs with Stable Recourse

A stochastic program is said to have stable recourse if the
matrizx W is square and W iz nonsingular with probability one, An
assumption frequently encountered in papers devoted to the so-called
distribution problem is that the optimal basis is stable, i.e., the same
set of colurmns is an optimal basis with probability one, see e.g., [1],
[3], [4], [15]. Obviously there is no material difference between
stochastic programs satisfying such a condition and stochastic programs
with stable recourse. This observation is behind our choice of the term
"stable',

Even the simplest stochastic programs with stable recourse
may have some unpleasant properties, Consider for example the
program

Minimize ® + E{v}
= +x =1
g iR (3.1)
X + Wy =1
Eiy =0 o 2 0 yz20,

where w is the only element of a 1 x 1 matrix and has a distribution with
support ?w = [0, 1]. Provided w = 0 with probability zero, this is a

stochastic program with stable recourse. The second-stage program
for (3.1} is just

Minimize ¥

w'gr:l-xl

¥ 0.

If ® < 1 this program is feasible for all w > 0, if x = l it is feasible for

all w, and if x> 1l it is feasible for w < 0 only. Thus from (l. 4) we have
K, = {x|x, <1} . (3.2)

Note that (3.1) is an example of relatively complete recourse, since
K, = {x|£l£x151, ¥, =1 -:-cl] _ ¥,

A first unpleasant property of (3,1) is that the expected value
may all too easily fail to exist, The uniform distribution on [0, 1] is
absolutely continuous and possesses all moments, yet if w has this
distribution and x; #Z 1, then E{v} is + @, On the other hand, if the

2

distribution of w on [{J, 1] is triangular, i.e., given by Fi{w < b s N
then E{ v} is finite for all values of x in K,.
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A second unpleasant property of (3.1) is that it does not satisfy
the W -condition. A stochastic program with recourse is said to satisfy

= . db X .
the W -condition if pos W and pos [W, -W", I], considered as set-
valued functions of £, are continuous on =; see definition (3. 10) in [20].

Here Wr, -WT, I] is the matrix formed by juxtaposing the transpose

of W, its negative, and an n x i identity: it is associated with the dual

of the second-stage program (l. 2) in the same way W is associated

with (L. 2). A discussion of pos W as a set-valued function and the mean-
ing of continuity for such functions can be found in [19]. It is readily
seen in example (3,1} that the restriction of pos w to the set [0, 1] is not
continucus: for all w in the half-open interval (0, 1], pos w is the non-
negative reals, but pos w abruptly collapses to the origin when w = 0,
One of the values of the W -condition, as shown in Theorem (3.7) of [200
is that when it is satisfied we may write

K, = {x| (L.2) feasible for all § ¢ = }
(3.3}

N _{=x=| (L 2)feasible for £}
£e

i

in place of (1. 4). This identity is not valid for (3.1), since the right-
hand side is { x| X, = 1}, contradicting (3. 2).

The following two theorems show how (3, 3) can be reclaimed
under certain conditions even if the W-condition is not satisfied. The
proof are given at the end of this section,

Definition (3.4). A collection W, ..., W™ of n points (oz

column vectors) in R are said to be in linear general peosition if none
can be expressed as a linear combination of fewer than m of the others_

Obviously, if the columns of a matrix W are in linear general
position, then W has the maximum rank consistent with its size, bu:
the converse need not hold, Howewver, if W is square then the colurmns
of W are in linear general position if and only if W is nonsingular,

Theorem (3. 5). For any stochastic program with recourse, let

Z denote the subset of RN consisting of all points £ such that the colum=s
of the recourse matrix W are in linear general position. Then the set

Z is open, and if the marginal distribution of W is absolutely continuoms_
Z has probability measure 1,

Theorem (3. &). If for some stochastic program with recourse
the set = defined above has probability measure 1, then the stochastic
program satisfies the W -condition relative to £ and (3. 4) hold with =
replaced by Z = E M=

As a corollary to Theorem (3. 6) we have that a stochastic pro-
gram with stable recourse satisfies (3, 3) with = replaced by £, For
the example (3.1) Z= {w |w #0} and Z ={w|w e (0, 1]}. Substituting
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¥ into (3. 3) correctly yields (3. 2).
We now observe that any stochastic program with stable
recourse can be rewritten in the equivalent form

Minimize cx + E rn;n qQy (3. 7a)}
Ax =b (3. 7h)
=1 -1
W Tz + Iy =W 'p (3.7¢)
x>0 y=0, (3. 7d)

where £ is considered to be defined on £ only. An expression for KZ

is readily obtained from (3. 7c) and (3. 3). Specifically,

KZ = ﬂ'__ {x| I'W-I'I] x :lw“lp} "
£e
From (3.7c) the optimal vy is uniquely determined for all £ in £ as

y = W'l{p - Tx). Thus the original stochastic program with stable
recourse is equivalent to

Minimize z(x) = E{qw'lp} + (¢ - E{qw'lr}}x

subject to Ax="h
(3. 8)
X E KZ

x>0,
{provided of course that the necessary interchanges of expectation with
finite sum and multiplication by components of x are wvalid--a provision

clearly satisfied if E{ qw"ip} and E{qW‘IT} are finite, ) Note that
(3.8) is a minimization of a linear function over a closed convex set.

A particularly simple special form of recourse occurs when W
is fixed, square, and nonsingular., This form of recourse has been
discussed in detail in Section 3, Case 2 of [24] for the case p only
random, This is a special case of both fixed recourse and stable re-
course, and we have

K, = n. {x|wlp-1x>0). (3.9)
I::p'T:l EEPT

It can be shown that an analogue of (3, 9) holds for any fixed recourse

matrix whether stable or not, but with W-l replaced by a typically very

large matrix, -W¥*, the (positive) polar matrix of W. This and related

results will be discussed in [2&]. B.Wes: 5.P.w Fored Recowrse : The Egucvatnt 8Fogram,
We conclude this section with the proofs of Theorems (3, 5) and

(3. 6).
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Froof of Theorem (3. 5). The theorem is an immediate
consequence of the intuitively obvious fact that the set T of all m by
n matrices whose columns are in linear general position has a closed
complement D in R of Lesbegue measure zero. The set D is a (not
necessarily disjoint) union of a finite number of sets D, a typical one

of which consists of those matrices such that a particular column is a
linear combination of a particular set of m-1 or fewer other columns.
Each set D, may be parametrized by n-l arbitrary column vectors of

length m and m-1 or fewer scalars acting as coefficients in the expres-
sion for the selected dependent colurmn, The dimension of the param-
etrization space is at most mn-1, and the mapping of this space onto D

is of class C {in fact bilinear). Hence Di is a closed set of Leshegue
measure Zero, ||

Lemma (3,10). The set Tof all m x n matrices W whose columns
are in linear general posgition is the disjoint union of two open subsets
=N El and = N EZ of Rm'n, where

= {W| pos W = Rm]

and
z, = {W| pos W is a pointed cone and no column of W is
zero}
are also disjoint open subsets of R

Proof. Clearly El and I, are disjoint. Consider the proposi-
tion that Z

W be a particular point of El. Then some set of m columns of W consti-
tutes a nonsingular submatrix B of W. For the convenience of notation
assume B consists of the first m columns so that W = [B C]. For W

within a sufficiently small neighborhood ?{ about W, the matrix B in the

is open. IIn< m+ 1, then 2:1 is empty. Otherwise, let

partition W = [B, C] is nonsingular and B~ 1 is a continuous function of
W. Thus Bnl W = [I, D] is continuous in W on ?2 Since pos W = R

there exists some vector d such that the vector Dd has strictly negative

entries, For a sufficiently small neighborhood ??EC n 1 about W,

Dd < 0, If follows that post B IW = pos W = R™ for all W in /2 20
Zl is open. Next consider the proposition that 5 is open. If W is any
point of z, then post W is contained in some halfspace {z| hz < l:ll]- whose

bounding hyperplane supports pos W at the origin only, i, e., hW is a
strictly negatlve vector. (Recall that no column of W is zero. ) It fol-
lows that there is a nelghborhood 77 about W such that hW is strictly

negative for all W in 7 Thus X E and hence ZZ is open, Since I

is open by Proposition (3. 5), all that rema.ins to be shown is that El
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and I, together cover . Suppose, therefore, that Weg I but pos W

is neither pointed nor all of R™. Then the lineality space XL pos W of
pos W has dimension k, 0 < k< m. It is readily shown that the columns
of W contained in pos W are a positive basis for L pos W, and hence
some nonempty set of k + 1 or fewer of them are linearly dependent,
Since k <« m, this contradicts the assumption that the columns of W are
in linear general position, ||

Proof of Theorem (3. 8), We must show that the restrictions

of pos W and pas[w-r, - ‘i.-‘ir'T, I] to the set T of Lemma (3.10) are

continuous set-valued functions in the sense of [19], From the proof
of Theorem (3.12) of [20] it is apparent that the restrictions of these

functions to = M = and = N EZ are separately continuous, But since
z N L, and I N I, are open, the restrictions of pos W and pas[WT,

- Wl, I] to their union are continuous. ||

IV. Tintner's Active Approach

In his paper "A Note on Stochastic Linear Programming' [16],
Tintner formulated a model for stochastie programming which was
later [17] given the name of active approach. The typical problem can
be summarized as follows: A decision-maker has n activities in which
he may engage and has m resources to allocate to them, The amount
d, of resource i may be known or known only in probability, He must
deécide upon a fixed fraction X of each resource i to allocate to each

activity j. The level Y; of activity j actually achieved when the values
di a re known must satisfy

< Min (d; x,, e, (4.1)
1

0<y; ij "ij

J

where T is a techmolopgy coefficient relating the activity j to the re-
source i, Again rij may be fixed or known in distribution. The ob-

jective of the decision-maker is to select the allocation coefficients x_,
g0 as to optimize a given criterion on the distribution of the return
z2 = Ej qj. ?j' Once more the q.'s can be random or fixed. One of the
possible criteria considered by Tintner is the expected value of =z, We
shall consider this criterion only, although there are ways of handling
certain other criteria within the framework of stochastic programs with
recourse,

Fromthe statement of the problem given above we see immedi-
ately that we have a stochastic program with recourse. The decision
process occurs in two steps: First the xi.'a are selected, then the

values of the random wariables di’ rij' and gq. are observed and values

of H minimizing ZJ 2. ¥, subject to (4, 1) are selected. Moreover, the
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constraints are linear., Thus the problem can be given in the form

n
Minimize Qx) = E { Min y -q. ¥, (4, 2a)
Lj=1 J 7]
11
subject to Z - i =dp i
pi=] M Ay
; (4. 2b)
-dixij. + rij}rj < 0,
(4. 2c)

X2 =
o J (4. 2d)
leiem, 1< j<mn

Not the least significant fact to be derived from this representation of
an active-approach problem as a stochastic program with recourse is
that the active-approach problem has an equivalent deterministic pro-
gram which is a maximization of a concave objective,

When (4, 2) is written out completely in the form (1. 1), the
matrix A is a sparse matrix of zeros and ones with m rows and mn
columns, T is a diagonal matrix of size mn by mn with d's as diagonal
elements, and W can be arranged as a block-diagonal matrix, whose
j=th block has the form

EAT
1 a4 ]
:rZj L
0 :
T =1
| mj =

In an example considered by Tintner; the v.'s are the amounts of various
crops raised on a farm, the qj's are their market prices, and the d.'s

are the amounts of labor, land, etc, available, In this case it is reas-
cnable to assume that the qj's, d_l's, and rij's are nonnegative, and we

shall make this assumption in the rest of this section. Under this as-
sumption, (4. 2) is an example of relatively complete recourse as defined
in the introduction. That is, if the xi.j satisfy (4. 2b) and (4. 2d) then

(4. 2¢) is solvable in nonnegative y.'s almost surely. It is apparent from
our initial description of the problem that the choice of y, depends only
on xlj" «+ss X_. and the value of a random wvariable E‘f' whose compon-
ents are the components q_; dl' LEEE d_m; Tios wes rrnj of £. This is
reflected in the block structure of W and the consequent fact that the
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second-stage program for (4. 2) is essentially a collection of independent
subproblems, The optimum value of the j-th subproblem is

Qj{:-clj, s X gm] = Min { - 9, yj1yj satisfying (4. 1)} (4. 3)
and if we write
Qj[xlj, - xmj] = E{Qj[xlj, . xmj; gm:} (4, 4)

then (provided the expectations in (4, 4) are finite)

T
=) :_Z ﬂj{xlj, R xmj]'
J:

and the equivalent convex program for (4. 2) may be written

n
Minimize ? e, g ]
TR mj

(4. 5)

i=l
n

subject to Z xij=l' lei<m,
=1

» . >0,
ij —
Obviously only the marginal distributions associated with the variables
E—'{l]’ oy g{n} are needed in solving the problem.

We conclude this section by showing that under certain moderate
assumptions a numerical solution of an active-approach problem is
possible, We suppose henceforth for each j, 1< j < n, that (i) dj. is

fixed and positive, (ii) rij.’ S rmj are positive random variables so
1

that T .y «eea r;,]l'j are also positive random wvariables, (iii} the distrib-

ution function Fi' of r].;il is absolutely continuous, and (iv) qj', r;jl; L,
rx-ri' are independent and have finite expected wvalues. Then from (4, 3)

it follows
F -1
%pj) = = P{y 2 0} E{minix;; d; r)}.
(4. &)

If ¥, denotes the distribution function for rn_in{x_]_j d‘l r'i_..j }, then
i

Qj{xlj‘ <ivn Ry

: -1
1 - Fj{t] P{n‘{].nfx.lj di rij} >t}

1

-1
NP{x.d r.. >t}
i ij "1

= F f1- Fij{tfxi.j d,)]
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and
1'. o0
E{min(x,, d, r.. = - F.(t}]dt
{min(x,; d; r.)) S‘{, [l - F,t)]

{(4.7)

Lral

= S‘Q 111 [1- Fij{tjx.lj d,)]at

Of course (4, 7) is finite since each r:.:jl has finite expected value. |

Equations (4. 7) and (4, 6) together give an expression for Qj[:-zlj, R xmj‘,i
which involves only a one-parameter integral. Thus the numerical I
evaluation of the objective of (4. 5) is within practical limits of difficulty.
Moreover, it is not difficult to see that the partial derivatives of

Qj{xlj’ —_— xmj} exist and are given by

E—Q.{x.,...,x ,}=—J—-S’ 0 11 1-
¥ J 13 ] 2 . xkjd #x

\] xkj dl-; 0 kj i
F L dt
ijl =.. d. )
ij i

Thus an active-approach problem satisfying the assumptions given
above when written as a minimization has a deterministic equivalent
(4. 5) which is a convex programming problem with linear constraints
and a convex objective whose value and gradient are computable at
any point,

V. The Conditional Probability (E-) Model for Stochastic Programs
with Chance Constraints

In this brief section we show how a problem formulated using
the conditional probability (E-) model for stochastic programs with
chance constraints can be reduced to a stochastic program with re-

course. 1 For this point it suffices to consider a two-period model,
The generalization to an n-period model does not present any theoret-
ical difficulty but it is notationally cumbersome and does not provide
any additional insights,

The conditional probability (E-} model for stochastic programs
with chance constraints defined by Charnes and Kirby in [#, 7] may be
written for the special case of two-periods in the form

I'Ihis result should not be taken as implying that the two models
have the same economic interpretation or that they arise from identical
practical situations. In this connection see [2].
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Minimize =z =E '[c:l:-;-I-M'lnE{czy | El}]- (5. la)
subject to Pr{A x > bl } > c.'rﬂ (5. 1b)
Pr{T x+ wy> bl el sal (1)

x>0 y>0,

where A, T, and W are fixed matrices of size mxn, m xn, and

- = ; 1 2

m x n respectively; ¢ and ¢ are random row vectors of length n and
- ; 1 2

n respectively; b and b~ are random column vectors of length m and

m respectively; qﬂ is a fixed column vector of length m; and al is a
random column vector of length m. The expressions of the form
Pr{b<t} > o in (5.1b) and (5, lc) are intended as abbreviations for the
cnmponentwm& expressions Pr{b. < t. ] = al For brevity we write

g fnr the random variables icl . .;:;1‘,| and E for the random variables

[c z b ). The model may be interpreted briefly as follows: First, the

decision maker selects his first-period decision x subject to (5. lb).

Second, he uhse rves the values of the random wvariables cl, bl, and r:rl

making up g Third, with .ﬁ known and x already chosen, he EEIE{:t%
the second-period decision y subject to (5. lc] sa as to minimize E{ ¢ y[g L

We assume that the joint distribution of [§ , g ) is awvailable, the con-

ditional distribution of Ez given gl is available or computable, and all
random components have finite expectation. A description of the n-
period model can be found in [14] as well as in [6, ?]_

Much the same type of reasoning used in [20] on the recourse
model applies to the conditional probability model described above, Thus
we may define a second-period problem:

Q(x, &) = min E{ c%y| 1) (5. 2a)

1

Pr{Tx+‘-‘-"y3b2|§,l] > o (5. 2b)

y=0,

. : 1 ; i 8
and as in [20] we define Q(x, £ ) to be + ® or - = if (5, 2) is infeasible
or unbounded below. We also adopt the definition of the integral (expect-
ation) E given in [20] which accommodates infinite integrands, Since we

. 2 S ;
assume that ¢ has finite expectation, ql[gl} = E{cz| gl} is finite for
almost all §1 and hence E{czy| gl} = q{gljy for almost all gl_ Also,
(5. 2b) is equivalent to
1
Wy >z plg) - Tx (5. 3)

where
py(£") = min {t| F2(t| £) > ol )
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and Ff’ (t] l_?,l}l is the (right-continuous) conditional distribution function

given by

Pr{bf <t] g} = Flt] Bk

In the event .:r: = 0, this gives Py ug }) = - @ and the i-th constraint 0.{'
(5. 3) is satisfied for all 1,r In t'he event r,:r!' l and the support of |:h | g )
is not bounded above, Py I[§ } =+ = and (5. 3} is infeasible, In what fol-

lows we make the as su.tnptmn that neither of these events occcur with
positive probability, Under this assumption we may define functions g%
and p¥* which are finite and dl er from q and p at most on a set of
measure zero, Then Qx, £7) is equal almost surely to Q%(x, gl} where

Q*(x, £!) = Min g*(Ehy
Wy = prigh) - Tx
y20.

The same procedure used in converting (5.1c) to (5. 3) can be applied
to (5. 1b) to obtain the equivalent constraint

Ax > b*
where b¥ is the fixed vector given by
s A 0
biw = mm{t| Fi[t} ?ia’i]
and F:_{til is the marginal distribution function for h:, Apain we assume

that af‘ # 0 and if aiD = 1l then the support of bi’ iz bounded above, It is

now apparcnt that (5, 1), subject to the given assumptions, is equivalent
to a stochastic program with fixed recourse:

Minimize E{clx + Min g#y) (5. 4a)
A x > b (5. 4b)

T %+ Wy = pi (5. 4c)

x>0 y >0. (5. 4d)

Note that the same matrices A, T, and W given in the stoch-
astic program with chance constraints (5.1) are involved in the eguiv-
alent stochastic program with recourse (5. 4). Note also that it is not
really necessary to assume af # 0. The stochastic program with

recourse (5, 4} will still be equivalent to (5, 1) if the i-th row of (5, 4h)
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is deleted when ai':' = 0. Of course the matrix A of (5, 4) will be
different from the matrix & of (5, 1), but this is no handicap., Howewver,
the requirement that pi{E,l} = - = with probability zero is not so easily

overcome. In this case we could replace the i-th row of (5, 4c) by a
trivial equation satisfied for all x > 0 and all y > 0, but the resulting
equivalent stochastic program with recourse would have a nonconstant

g S L
recourse matrix W, The conditions b%‘_‘ = + o0 and pi{E ) = 0 are of less

concern gince they cannot occur without leading to infeasible programs,
In deriving the stochastic program with recourse (5. 4) from the
stochastic program with chance constraints (5,1) we have spoken of

pigl] as a function of El and defined pﬂigl] by altering p[&lj on a set of
measure zero, But in order to solve the stochastic program with re-
course (5,4) it suffices to know the expected value of ¢ and the joint
distribution of g% and p* which in theory are computable from the joint

distribution of cz, @ l, and bz. Where it is possible to perform these

computations, the solution method developed to solve stochastic programs
with recourse will apply as well to the solution of programs of the form
(5.1); see e, g. [10, 18]. In fact, the inequality form of the second-stage
constraints of (5, 4) may allow for substantial simplifications; see

section 2B of [24].
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