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Approximating the Integral of a Multifunction
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Given a weakly converging sequence of measures, we study the convergence of
the corresponding integrals of a continuous unbounded multifunction. We also
study the implication of these results to variational problems, and provide further
approximating results for the integral of a multifunction, involving both truncation
of the multifunction and measure approximation.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The problems addressed in this work stem from approximation con-
siderations in some variational problems, stochastic optimization in par-
ticular. When dealing with variational problems in practice, one is often
confronted with the fact that the data available provide us with only a
sample of the possible values that could be assumed by the parameters of
the problem. For example, suppose that we are dealing with a stochastic
optimization problem, but a limited number of observations is the only
information we have about the distribution of the random coefficients of
the model. This means that instead of the actual probability distribution of
the random parameters, we can only usc an approximate distribution in
the formulation of the stochastic optimization problem. As more infor-
mation is collected about the random coefficients, we can use a more
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accurate distribution but only in a probabilistic sense. We are thus dealing
with a collection of approximate problems, each one generated by sampling
the space of possible optimization problems of a given type. In an abstract
setting, solving the variational problem often amounts to computing the
integral of a multifunction,

j ) dP(w), (1.1)

with I'(w)= R" and P a probability measure. (The technical framework
and terminology are introduced in the next section, along with some
preliminary results.) See Aumann and Perles [3], Rockafellar [9], or
Rockafellar and Wets [10] and references therein for examples. In the
aforementioned case, where only a sample is given, or when there are limits
on the computational power, the distribution P in (1.1) ought to be
replaced by an approximation or by a sequence of approximations. Then,
instead of computing (1.1) we face a sequence

j Iw) dP" (o). (12)

The measures P are determined typically by samplings, or via
discretization, and hence converge weakly to P. The quality of the
approximation is then reflected in the convergence properties of the sets
determined by (1.2) to the set defined by (1.1). In the case of bounded con-
tinuous and point-valued I, the convergence is guaranteed by the weak
convergence of the P¥ to P. It is the set-valued characteristics of I" that
create the difficulties and the interest. Indeed, in the applications of interest,
the multifunctions have unbounded values. In this work we determine con-
ditions that yield the convergence, and we verify semiconvergence proper-
ties under more relaxed conditions. This analysis is done in Sections 3
through 7, starting with the continuous and bounded case, through coun-
terexamples, lower semicontinuous convergence, and ending with a general
convergence result.

A particular case, and a prime application in optimization problems, is
when I(w) is the epigraph of a normal integrand f(x, w) (the notions
concerning these problems are reviewed at the beginning of Section 8). The
aforementioned integral amounts then to the inf-convolution as

§ /(x, @) dP(o) (13)

(the letter E on the integral sign stands for “in the sense of epigraphs”; see
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Section 8, where we elaborate on the variational problem involved.) The
desired convergence here is the epi-convergence of the functions

£ /(x 0) dP'(o) (14)

to the function determined by (1.3). The particular structure of epigraphs
helps in expressing conditions for this convergence; we do this in Section 8.

Another type of approximation is encountered in optimization
procedures, especially in numerical computation techniques. It involves the
truncation of the values of I, namely, replacing I'(w) by I'(w) n AB with B
the unit ball in R” and A a finite, large enough, number. The analogous
operation for the normal integrand is to perform the inf-convolution only
for x with [x| <. For a fixed probability measure P, the integral

[ () iB) dP(o) (1.5)

v

is a good approximation of (1.1) if 4 is large. If, however, P is replaced by a
sequence FP*, even converging weakly to P, it may not be true that the
approximation provided by 4 is good uniformly for all P*. In Section 9 we
give conditions that guarantee this uniformity. Even more interesting is the
observation, also proved in Section 9, that the sets

[ (I'(w) ~ AB) dP*(w) (1.6)

give a good approximation to (1.1) under very mild conditions, provided
v— oo and 1 — oo in a suitable order; this occurs even in cases when (1.2)
fails to produce good approximations. The results of Section 9, in par-
ticular Theorem 9.4, suggest practical guidelines for the design of numerical
procedures to calculate the integral of a multifunction and how to use the
approximations in a variational setting.

2. FRAMEWORK, TERMINOLOGY, AND PRELIMINARIES

In this section we introduce our terminology and technical assumptions
concerning multifunctions; normal integrands are introduced in Section 8.
In both cases we follow the standard literature, where the basic facts we
quote can be found, e.g.,, in Rockafellar [9], Castaing and Valadier [5],
and Rockafellar and Wets [107.

The norm of a vector x in the n-dimensional euclidean space is |x|, and
x -v denotes the scalar product of x and v. We denote by B the closed ball
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in R” of radius one. For a sequence C; of nonempty subsets of R”, the
topological limit inferior is given by

lim inf C; = {x: x =lim x,, with x,in C, for all i},
and the topological limit superior is given by
lim sup C;= {x: x=lim x,, with x; in C;, a subsequence of C,}.

We say that C; lower semiconverges to C if lim inf C; includes C; we say
that C; upper semiconverges to C if lim sup C, is included in the closure
of C. (These semiconvergences are sometimes called lower and upper
convergences.) We say that C; converges to C if it is both lower and upper
semiconvergent to C; then we write C=1lim C,. Note that the limit does
not distinguish between a set and its closure.

The convergence of sets is metrizable, or rather semi—metrizable since we
allow non-closed sets. The induced topology is the convergence in the
Hausdorff distance for a one-point compactification of R". We seldom need
an explicit metric; when needed, we adopt the stereographic Hausdorfl
distance (see [10, p.25]), denoted by haus*(-, -). The Hausdorfl distance
between two bounded sets is denoted by haus(-, -).

Let 2 be a complete separable metric space, with metric d(-, -). A mul-
tifunction /" is a mapping that assigns to each w in Q a subset I'(w) of R".
The multifunction is upper semicontinuous (respectively lower semicon-
tinuous, or continuous) at w, if w,> w, in Q implies that I'(w;) upper
semiconverge (respectively lower semiconverge, or converge) to I(w,).

Consider now the space Q with its Borel g-field 2. A multifunction I" is
measurable if for every open set G in R" the set I (G)=
{w:Mw)NnG#P} is in 2.

For a set D in R” we denote by int D its interior, by cl D its closure, and
by co D its convex hull (namely the set of convex combinations of elements
in D, which may not be closed even if D is closed). We set | D|| =sup{|x|: x
in D} and leas D =inf{|x|: x in D}. If I'" is a muitifunction we write co I"
for the multifunction (co I')(w)=co(l(w)); the multifunctions cl I and
leas I" are defined similarly. We say that /" is bounded if ||/ (w)] is a boun-
ded real function.

The support function of a set D, denoted by s(v, D) and defined for v in
R", is given by

s(v, D)=sup{v-x:xin D}.
The Minkowski sum C+ D of two subsets in R” is {x+y:x in C, y in

D}. A generalization of that is the integral of a multifunction I" with
respect to a probability measure P, introduced by Aumann [2]. We denote
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it by [, I'(@) dP(w), or by | I'dP when no confusion can arise; it is defined
by

f I'dP= {f vdP:y is a P —integrable selection of 1“}

(P-integrable selection means that y is P-integrable and that y(w) is in
I'(w) for P-almost every w).

The multifunction I' is P-atom convex if I'(a) is a convex set whenever
{a} is an atom of P. A basic property is the following:

If I' is P-atom convex, then f I'dP is a convex set. (2.1)

The atomless case is covered in [27]; the integration on the purely atomic
part of P amounts to a summation of convex sets, which obviously preser-
ves convexity. We need also the following property:

If T has closed values and is measurable, and if | I'dP is
not empty and co | I'dP does not contain a line, then
co | I'dP ={co I'dP. (2.2)

The result is a variation of Aumann [2, Theorem 37]. The latter assumes
that /' (w) is contained in the positive orthant of R”, which implies that
co | I'dP does not contain a line, and that the nonemptiness assumption
can be removed. (In our case we cannot remove the nonemptiness
assumption, as the same example that Aumann uses [2, p. 7] shows.) In
fact, (2.2) holds under Aumann’s measurability condition, which does not
require the function to be closed-valued. One way to prove (2.2) is to
mimic Aumann’s proof of [2, Theorem 3], and note that the induction
works. Another possibility is to check that the necessary and sufficient con-
ditions of Wagner [11], for co jfzjco I, hold in our case.

We use, throughout, the weak convergence of probability measures; see,
¢.g., Billingsley [4]. We also need the following modification. Let #(w) be a
measurable real-valued function. We say that the sequence P* of
probability measures is A-tight if, for every &> 0, there exists a compact
subset K, of Q such that 4 is bounded on K, and

f \h(w)| dP*(w) < &
O\K,

for all v. (Note that for A continuous, the boundedness of # on K, is
automatically satisfied.)
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3. CONTINUOUS AND BOUNDED INTEGRANDS

Our first result could be derived as a corollary from later results; a direct
proof is easier.

THEOREM 3.1.  Suppose that I' has convex compact values and that it is
bounded and continuous. If P* — P weakly, then § I'dP* converge to § I'dP in
the Hausdorff metric.

Proof. The convex compact sets in R” with the Hausdorff distance can
be linearly and isometrically embedded as a convex cone in a Banach
space; see, e.g., [7, Theorem 17.2.1]. Furthermore, a uniformly bounded
collection of sets is precompact in this Banach space. Therefore all the
values /(w) and all the integrals j I'dP® and j I'dP belong to a compact set.
Hence convergence in norm, namely in the Hausdorff distance, is implied
by convergence in the weak topology in the Banach space. Let L be a con-
tinuous linear functional. Then L(/{w)) is a continuous bounded real
function, and hence P*— P weakly implies that { L(I(w)) dP* converge to
IL(F(w)) dP. We claim that the integration commutes with taking con-
tinuous linear functionals. The reason is that the integration in our case
coincides with the Bochner integral into the Banach space (see, e.g., [7,
Theorem 17.3.2)]), and all the values are in a compact set. Therefore the
previous convergence implies that L({ I'dP”) converge to L(f I'dP), which
is the desired weak convergence. Hence the strong convergence holds and
the proof is complete.

The conclusion of the previous result may fail if /" is not convex-valued.
Here is a simple counterexample.

ExaMrLE 3.2. Let 2=10,1] and let " be a constant multifunction, in
particular continuous, say I'(w)= {0, 1} for all . Let P be a probability
measure concentrated at one atom, say P{0} =1. Let P* be a sequence of
atomless probability measures converging weakly to P, say dP'(w)=v if
0<w<v ' and dP’(w)=0 otherwise. Then | I'dP*=[0, 1] for all v, by
(2.2). Clearly, | I'dP” do not converge to | I'dP= {0, 1}.

With further conditions the convergence holds as follows.

THEOREM 3.3. Let I be a bounded continuous multifunction with compact
values, and suppose it is P-atom convex. Then P* — P weakly implies that
§ I'dP* converge to § I'dP in the Hausdorff metric.

Proof. Taking convex hulls is nonexpansive, namely haus(co C,
co D)< haus(C, D); see, e.g., [7, Theorem 7.2.5]. It then follows from
Theorem 3.1 that jco I'dPY converge to jco I'dP; the latter being equal to
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{ I'dP in view of (2.1). The result would then follow once we show that the
distance haus(| co I'dP”, { I'dP*) is small when v is large. (This distance is
not zero since we have not assumed that 7" is also P'-atom convex.)

To this end let K be a compact subset of £ such that P*(Q2\K) < § for all
v, where 4 > 0 is a small number to be determined later; given §, existence
of such K is guaranteed by the tightness (see [4, p. 37]). For each w in K
let B, be a small ball in 2 around @ such that: If @ is an atom of P then
haus(I'(o), I'(w)) < d whenever ¢ is in B, ; if @ is not an atom of P then
P(B,) < d. Existence of such B, follows in the first case from the continuity
of I, and in the second case from the continuity of P on a decreasing
sequence of sets. A finite number of such balls, say B,,.., B,
corresponding to @, .., w,, cover K. Define C;,=B, and successively
C,=B\B,v ---uUB, ), this for =2,k Then let C,=
N(Cyu --- u ). Then each C,; is measurable, and

[ rap = 5 | rar-
2

i=0"Ci

We claim first that for all i=0, ..., k and for v large enough, haus(jci Irdp,
fc,co I'dP*) <2bd, with b=1+sup(||I(w)|). To verify this consider first
the case /=0. The choice of K implies that all the sets |, I'dP* and
fc,co I'dP* are bounded by bd, hence the inequality. The same estimate,
namely | {, co I'dP’|| < b4, applies also for v large enough when w, is not
an atom of P. This follows from the weak convergence of P* to P. To com-
plete verifying the claim it is enough to check the case where w; is an atom
of P. But then the choice of B, implies that haus(/(s), co I'(5))<20
for ¢ in C; A standard argument implies then that haus(f., I'dP”,
fc co I'dP") < 28 < 238b, and the proof of the claim is complete.

We employ now the Shapley-Folkmann lemma (see, e.g., [1, p. 396]),
which implies in our case that

haus (J co I'dp, J I'dP") < n'? max haus (J co I'dp’, J FdP“> .
Q Q Ci Ci

In view of the previous claim, the right-hand side is less than or equal to
2n'2ps. Since n, b, and 2 are fixed, and since & can be chosen arbitrarily
small, the proof of the theorem is complete.

COROLLARY 3.4. Suppose I' is a bounded continuous multifunction with
compact values, and P is atomless. Then P"— P weakly implies that

haus(| I'dP’, { I'dP) - 0.

Proof. This is a particular case of the previous result.
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Another condition that implies the convergence, and prevents
counerexamples of the type in Example 3.2, is a correlation between atoms
of P and atoms of P*, as follows.

THEOREM 3.5.  Suppose that I is a bounded continuous multifunction with
compact values, and suppose that P* — P weakly. Let ¥ = {a,, a,, ...} be the
set of atoms of P for which I'(a;) is not convex. Suppose that for each v a set
¥Y,.={a,,, as,, ..} exists, which consists of atoms of P*, and such that for
each i we have both that d(a;, a;,) —0 and P*(a; ) — P(a;) as v — . Then
§ rdP* converge to | I'dP in the Hausdor{f metric.

Proof. We write

| rap=Y ra)p@)+| rap 3.1)

(220 4

and likewise

j rap* =y r(a,,) Pa,,)+ |  rap" (3.2)

(248N

The integral part of (3.2) converges to the integral part of (3.1), this in view
of Corollary 3.4. Indeed, on Q\¥ the multifunction I is P-atom convex,
and the conditions on ¥, and P’ imply that P" restricted to Q\ ¥, converge
weakly to the restriction of P to Q\¥. Each of the summands in (3.2) con-
verges as v — oo to the corresponding summands in (3.1), this in view of
the continuity of I" and the convergence of d(a;,a,,) and P*(a,,)— P(a;) to
zero. It is now a simple exercise in converging series to show that the sum
in (3.2) converges to the sum in (3.1), and then the result follows.

4. BOUNDED AND SEMICONTINUOUS INTEGRANDS

If I" is a bounded semicontinuous multifunction, and not continuous,
then the results of the previous section fail, as the following simple exam-
ples show.

ExampLE 4.1. Let Q=[0,1], and let P({0})=1and P*({v~'})=1 for
v=1,2,... Then P"— P weakly. Let I'(0)=[0,1] and I'(w)= {0} for
> 0. Then I' is upper semicontinuous. Clearly { I'dP*, which is equal to
{0}, does not converge to | I'dP = [0, 1]. If we change I'(w) for © >0 and
make it equal to [0,2] we get a lower semicontinuous multifunction.
Again, [ I'dP” = [0, 2] does not converge to [0, 1].
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Note that in both cases of the preceding example the corresponding
semiconvergences hold. This reflects general properties, which we state and
prove next.

THEOREM 4.2.  Suppose that I is a bounded and upper semicontinuous
multifunction with compact values. Suppose also that I' is P-atom convex. If
P* — P weakly, then lim sup | I'dP" is contained in | I'dP.

Proof. We start with the case where the values I'(w) are convex. Con-
sider the support function s(v, I'(w)), which we denote by s(v, w). For each
v the function s(v, -) is an upper semicontinuous real function, namely
s(v, lim ;) = lim sup s(v, w;) whenever w;, is convergent. This is implied by
the upper semicontinuity and the boundedness of I". The weak convergence
of P’ to P implies then that

1imsupj s(v, 0) dP* () < j s(v, @) dP(w). (4.1)

Vv — a0

To verify (4.1) recall that an upper semicontinuous function, here s(v, -), is
the pointwise limit of a decreasing sequence of continuous functions, say
s4{v, ), which can be chosen bounded since s(v, -) is bounded. Let £¢> 0 be
given. The Lebesgue dominated convergence theorem implies that an index
J can be chosen with

[ 50, @) dP(@) [ s(0, 0) aP(w) <

The weak convergence of P* to P implies that for v large enough

U s/(v, w) dP*(w) — J si(v, @) dP(w)‘ <e

The obvious inequality [ s(v, w)dP"(w)< | s,(v, w) dP*(w) with the two
displayed inequalities implies (4.1), smce g is arbltrarlly small. An upper
semicontinuous multifunction with closed values is measurable (see, e.g.,
[10]). Therefore, for any measure @, the equality s(v jI’dQ)—
| s(v, I'(w)) dQ holds (see, e.g., [9]). Applying this with Q being P, P!, P?,
etc., together with (4.1), implies

lim sup s <v, '[ FdP”) <s <v, J FdP) . (4.2)

In the convex case, since | I'dP is closed (see [2]), the inequality (4.2)
implies the desired conclusion of the theorem.
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We turn now to the general case, where I" may not have convex values,
but it is still assumed to be P-atom convex. First note that | I'dP is a
convex set which coincides with { co I'dP (see (2.1) and (2.2)). Since I is
bounded, the upper semicontinuity of I" implies that co I” is upper
semicontinuous (see Remark 4.3). The first part of the present proof then
yields

[im sup I co [dP' f co I'dP. (4.3)

Since { co I'dP = I'dP and since | I'dP” < | co I'dP*, the conclusion of the
theorem follows from (4.3). This completes the proof.

Remark 4.3. We have used the fact that co I" is upper semicontinuous if
I" is upper semicontinuous and bounded. The proof is simple: If x; are in
co I'(w;) then each x; can be written as a convex combination Y. a«; ; y, ;
with j=1, .., n+1 (n being the dimensionality of the space) and y,; in
I'(w,). A subsequence of {i}, which we denote by {k}, exists such that y,
and a, ; converge as k — oo, say to y, and a,. This follows from the boun-
dedness. If w; converges, say to w,, then by the upper semicontinuity each
y; is in I'(w,), and the corresponding subsequence of x, converges, say to
Xo with x4 =3 a, y;. The latter belongs therefore to co I'(wg). This verifies
the upper semicontinuity of co I. The argument fails if /" is unbounded;
then co I" may not be upper semicontinuous. Here is a counterexample:
IN'w)={0, "'} for @>0, and I'(0)={0}. For lower semicontinuity the
situation is different, and /I lower semicontinuous implies co /" lower
semicontinuous regardless of whether " is bounded. Indeed, if x=32 a,y;
with y; in I'(w,), then [x—3 a; y; | is small when [y, —y, [ are small,
and such y, , exist if I" is lower semicontinuous.

Remark 44. The assumption that 7' is P-atom convex cannot be
dropped from the statement of Theorem 4.2, as Example 3.2 shows. The
assumption can, however, be replaced by a correlation between atoms of P
with nonconvex values of /" and atoms of P*, exactly as is stated in
Theorem 3.5. The proof is also the same (only using Theorem 4.1 instead of
Theorem 3.3). We leave out the details.

The assumption of P-atom convexity is not needed for the lower
semiconvergence part, as follows.

THEOREM 4.5. Suppose that I is a bounded and lower semicontinuous
multifunction with compact values. Then P*— P weakly implies that
lim inf | I'dP” includes | I'dP.

Proof. Consider first the case where for each o the set I'(w) is convex.
For each vector v the support function s(v, w)=s(v, I'(w)) is a lower
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semicontinuous function of w, namely lim inf s(v, w;) = s(v, lim w,;); this
follows immediately from the lower semicontinuity of I. Since P*— P
weakly it follows that

lim infj s(v, ) dP" (@) > j s(v, @) dP(w). (4.4)

v — QO

To verify (4.4) recall that a lower semicontinuous function is the supremum
of a sequence of continuous functions, say s,(v, ), and if s, replaces s in
(4.4), then equality holds. In the limit we get the inequality (4.4) for s
(compare with the verification of (4.1)). A lower semicontinuous mul-
tifunction with closed values is measurable (see [107]). Therefore
| s(v, w)dP”=s(v, | I'dP*), and likewise for the measure P. Hence (4.4)
implies that for all v,

lim inf s <v, j FdP“) >s <v, j FdP) . (4.5)

Vo oo

The latter inequality is equivalent to the desired conclusion for the convex
case.

The next case that we examine is that of P atomless. Then | IdP=
[co I'dP (see (2.2)). Since co I is also lower semicontinuous (see Remark
4.3) it follows from the first casc that we examined that lim inf | co I'dP’
contains | I'dP. Therefore, in order to verify the present case, it suffices to
show that for v large the Hausdorfl distance between | I'dP” and | co I'dP”
is small. To this end we partition  into a finite number of disjoint sets, say
Q,, such that P(£2,)<0; this can be done since P is atomless. Then
P(Q)<25 if v is large enough. In particular | {, I'dP"|| <26b with
b=max |I'(w)|. By the Shapley—Folkmann lemma, see [1], the Hausdorf
distance between 3. (o I'dP” and ¥ [, co I'dP’ is less than 2n'28b. If § is
then small, the Hausdorff distance is small, and the case of P atomless is
also covered.

To cover the general case let ¥ = {a,, a,, ...} be the collection of atoms
of P. Then for each v there are a number N(v) and disjoint neighborhoods
B, of a; for i=1, .., N(v) such that: For each / the restrictions of P" to,
respectively, B, , converge weakly to the restriction of P to the atom g, and
the restrictions of P* to Q\(B,,uU --- U By ,) converge weakly, as
v — o0, to the restriction of P to Q\¥. The existence of such partitions is
implied by the weak convergence of P’ to P.

When we apply the atomless case, which was verified carlier, to the
restriction of P to Q\¥, we get

lim infj

Voo YON(BY, v s W BN, )

IdP’ includes j IdP. (4.6)

o\
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On the other hand, the lower semicontinuity of I implies that for each i,

lim infj I'dP* includes P(a) I'a). (4.7)

v — O B\

Summing together the expressions in (4.6) and in (4.7) for each i yields the
desired conclusion and completes the proof.

5. Two COUNTEREXAMPLES WITH UNBOUNDED SETS

The convergence results of Section 3 fail if /™ is allowed unbounded
values. The upper semiconvergence result of Section 4 fails then as well,
while the lower semiconvergence result extends to the unbounded case
under an additional mild condition, which we display in the next section.
In this section we wish to identify two sources for the failure of the
convergence. By excluding these two possibilities we get, in Section 7, our
convergence result.

ExampLE 5.1. Let 2=[0,1] and I(w)=[0,w" '] for w>0, and
I'(0)=[0, ). Then I is continuous. Let P({1})=1 while P*({1})=
1—v~'and P’({0})=v~". Then | I'dP=[0, 1] while | I'dP" = [0, ), this
despite the weak convergence of P' to P. A variant that does not use
unbounded sets explicitly is to let the preceding /" be defined on (0, 1] and
let P({1})=1—v~"and P({v~'})=v""; then | I'dP"=[0, 2], and does
not converge to | I'dP.

ExaMmpLE 5.2. Let 2=1[0, 1] and let the values I'(w) be subsets of R?
defined by I'(w)= {(¢,, &,): &, 2 max(—wé,, —1)}. Let P be determined
by P({0})=1. Let P* be defined by P*({0})=1% and P*({v '})=14. Then
{I'dP=I(0) and it is the upper half plane. The set |IdP' is the
Minkowski sum of 477(0) and /°(v ). The latter, although converging to
I'(0) as v — oo, contains the point (v, —1). Since I'(0) contains (—v, 0), it
follows that for every v the set contains (0, —4); the latter point does not
belong to | I'dP.

We wish to identify here the causes of the phenomena in the two exam-
ples. What makes the first example work is that although P — P weakly,
each P can draw a sizable contribution to the integral in directions
unrelated to the set j'FdP. The reason the second example works is the
possibility of a summation of large quantities, ie., 4(v, —1) and {(—v, 0),
that results in small vectors. This possibility is reflected in the integral
§ I'dP which contains a line.
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6. LOWER SEMICONVERGENCE

In the two examples of the previous section, liminf | I'dP” includes
jI"dP. We show in this section that this inclusion holds in general,
provided that leas I is bounded, i.e., provided that there is a bounded set
D in R” such that I'(w)n D+# @ for all w. Without a condition of that
type, semiconvergence may fail. For example, let I'(w)= {w '} on (0, 1],
P({1})=1,P({1})=1—v Y and P'({v'})=v~"' In this example leas I"
is not bounded. We can also sec from this example that the boundedness of
leas I" plays a role similar to the boundedness of continuous functions in
the theory of weak convergence of probability measures (but in the present
case only lower semiconvergence can be deduced). We need the following
two lemmas. Recall that int 2B is the interior of the ball of radius A.

LEMMA 6.1. Let I' be a lower semicontinuous multifunction and suppose
leas I' is a bounded function, bounded say by . Then for any A > f3, the mul-
tifunction

I' (w)=cl{I'(w)Nint 1B)
has nonempty values and is lower semicontinuous.

Proof. I',(w)is clearly nonempty. To prove lower semicontinuity, sup-
pose x belongs to I'j(w,) and |x| < A. Then for @ near wg, the set I'\(w)
contains elements near x. This follows from the lower semicontinuity of 7.
If x is in I'y(wy) and |x| =4, then I'(w,) contains elements near x, say y,
with | y | </ (from the definition of I';) and we can repeat the previous
argument with respect to y. This completes the proof.

LEMMA 6.2. Let I' be a closed-valued measurable multifunction with
leas " bounded. Let P be a probability measure. Then

lim j (I'(@) A AB) dP(w) =cl j () dP(w).

A= 0O

Proof. This is basically the content of Theorem 5 of Jacobs [6]. Here is
an outline of the proof: A measurable multifunction I, with leas I boun-
ded, has a bounded measurable selection, say y,. If y is an integrable selec-
tion, then | ydP is approximated, for A large, by [ 7,dP with y,(w)=y(w) if
[y(w)| <4, and p(w)=ys(w) otherwise. The sequence {[ (I"nAiB)dP} is
increasing, and for all 1 we have | (I'n AB)dP ccl | I'dP. Moreover, by
the preceding argument any point in ¢l { I'dP can be approximated
arbitrarily close by points in [ (/" AB) dP for 4 sufficiently large.



298 ARTSTEIN AND WETS

THeEOREM 6.3. Let I’ be a closed-valued lower semicontinuous multi-
function with leas I bounded. Then P* converging to P weakly implies

lim inff IdP" includes frdp.

Va0

Proof. Let ¢>0. By Lemma 62 there exists a J,>0 with
haus®(f I'dP, | (I'~ AB)dP) < ¢. In particular, if I'(w)nieB < I'\(w) < INw),
then haus®(f I'dP, {I' dP)<e. A multifunction that satisfies these
inclusions is

I'(w)=cl(I'(w) N int(1B)) for 4> A,.

The latter multifunction is lower semicontinuous and has nonempty values,
as Lemma 6.1 implies. Then Theorem 4.4 implies

lim inff I, dP" includes f r,dp.

¥ —r OO

Since ¢>0 is arbitrarily small and liminf, | 7'dP” includes
liminf, , ,, | I',dP", the proof follows.

7. A CONVERGENCE RESULT

We start this section with the statement of the main convergence result.
Some of the conditions we use have an implicit form; we therefore accom-
pany the main result with some more explicit alternatives and particular
cases. Only then we proceed with a lemma and the proofs. Recall that
s(v, C) denotes the support function of the set C, and when I(w) is a multi-
function then we write s(v, w) for s(v, I'(w)).

TueorREM 7.1. Let I" be a multifunction with closed values and let P* con-
verge weakly to P. Suppose that the following conditions hold.
(1) I is continuous, and leas I'(w) is bounded.
(1) [ is P-atom convex.
(iii) | I'dP does not contain a line.
(iv) For each v with s(v, | I'dP) < oo, the sequence P* is s(v, -)-tight.
Then lim | I'dP* = { I'dP.
We need to comment on the conditions. The boundedness of leas I'(w)

was already needed in the semiconvergence result of the previous section;
without it the rcal-valued counterexample given at the beginning of Section
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6 applies. Condition (ii) was needed already in the bounded case {see
Theorem 3.3); without it, Example 3.2 furnishes a counterexample. We
comment later, in Remark 7.6, on the impossibility of extending the present
result along the lines of Theorem 3.5.

Condition (iii) is needed to prevent the phenomenon demonstrated in
Example 53. We may wish to know that this condition holds without
necessarily computing | I'dP. Here are some sufficient conditions that may
be of help.

PrOPOSITION 7.2. Let C be a convex cone which does not contain a line.
Let I'y(w) be a multifunction with || I'o(w)| being P-integrable (in particular,
I'y bounded suffices). If I'(w) < Fy(w)+ C then j]"dP does not contain a
line.

Proof. | I'dP is contained in C + [ I', dP. The latter is a sum of a boun-
ded set with a set that does not contain a line; therefore the sum does not
contain a line.

ProrosITiON 7.3.  If the support function s(v, w) of the multifunction
I'(w) is P-integrable for an open set of vectors v, then j I'dP does not contain
a line.

Proof. This follows from the equality s(v, | TdP)= | s(v, ®) dP(w).

Condition (iv) prevents the occurrence of the phenomenon in Example
5.1; indeed, in this example the measures P’ are not s(1, -)-tight. It is an
implicit condition; here is a geometrical condition, often encountered in
applications, that guarantees s(v, -)-tightness.

PrOPOSITION 7.4.  Suppose there exist a convex cone C and two bounded
multifunctions T'g(w) and I (w) such that I'y(w)+ CcI(w)cI'(w)+ C.
Then for each v with s(v, C) < o0, the function s(v, I'(w)) is bounded; in
particular, if P* is a tight family then it is s(v, I'(w))-tight.

Proof. The result follows directly from the obvious inequality

s(v, €) = s(v, I'@))| < fo] - max([|[Fo(e)] + [ (@)]).

LEMMA 7.5. Let C be a closed convex set in R", containing no lines. Then
the effective domain of s(-, C), or equivalently the barrier cone
ba(C) = {v: s(v, C)< o0} of C, has a nonempty interior. In addition, if x is
not in C then there is a vector v in the interior of ba(C) with v-x > s(v, C).

Proof. ba(C) contains the interior of the polar of the recession cone of

C; see Rockafellar [8, p. 1237]. Since the recession cone has no lines, its
polar has a nonempty interior (see [8, p. 126]) and the first claim follows.
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The vector x can be separated from C, namely, there exists v, such that
vy - X > 5(vg, C). The inequality is maintained if v, is replaced by v, + ev,
with & small and v, in the interior of ba(C). Then v =v,+e¢v, is in this
interior, and this verifies the second claim.

Proof of Theorem 7.1.  In Theorem 6.3 we have established the inclusion

lim inf j I'dP" includes j I'dP. (7.1)

We therefore have to verify only that

lim sup j I'dP* is included in cl j rdp. (72)

We assume that (7.2) is false and reach a contradiction. The set on the
right-hand side of (7.2) is convex, as implied by conditions (i) and (ii), see
(2.1). Suppose that (7.2) is false, then there exists a vector x, which does
not belong to cl | I'dP, but such that x,=1im x, with vectors x, belonging
to | I'dP” for v=1, 2, .... It follows then from condition (iii) and Lemma 7.5
that for some v,,

s<vo,'[FdP><vo-x0, (13)

and that v, can be chosen an intcrior point of {v:s(v, | FdP)< o0} =
ba(| I'dP). We plan to show that (7.3) is impossible; this would mean that
such an x, cannot exist and hence (7.2) is not false. In order to show that
(7.3) is impossible we prove that

'[s(vo, w) dP’(w) converge to '[s(vo, w)dP(w) as v-o oo, (74)

This would indeed contradict (7.3) since | s(vy, @) dQ = s(v,, | I'dQ) for
Q=P, P', P?, .., and therefore | s(vy, ®) dP” > v, X, ; the latter numbers,
however, converge to v, -x,, hence the reverse of inequality (7.3) holds.

We now start proving (7.4). Let vy, ..., v, be vectors in ba(j I'dP) that
form a simplex containing v, in its interior. Such v, exist since v, is in the
interior of ba(f I'dP). For each one of the v, we use now the s(v,, -)-
tightness guaranteed by condition (iv). Since the support function is convex
in the v-variable, it follows that for any given &¢>0 there is a compact
subset K < £ such that (a) s(v, ») is uniformly bounded for @ in K and v in
CO{Vy, «s Uy )y and (b)

j s(v, ) dP* <& (7.5)
[22V.¢
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for all v and all v in co{v,, .., v, }. We plan to prove that s(v,, -) is con-
tinuous on K. To this end, note first that the continuity of I” implies that

5(vg, I'(wy)) < lim inf s(vy, I(w;)) when o; - w,. (7.6)

Therefore the continuity of s(v,,-) on K would follow if we show that
w; > g In K implies that

$(vg, INwe)) = lirp sup s(vg, I'(w;)). (7.7)

t — o0

If (7.7) fails, then for some x; in I'(w;) we have lim sup v, - x; > 5(vo, I'(@y))-
Then x; is an unbounded sequence, since otherwise a subsequence of x;
would have a limit point, say y,, and y, is in [(wy) (by the continuity of
I'). Then vy -yo> s(vy, I'(w)), a contradiction. Unbounded x;, however,
imply that the numbers v - x; cannot be bounded for v in co{v,, .., v,,}.
Indeed v, - x; is bounded from below, therefore a perturbation of the form
vo + v, within the interior of co{v,, .., v,,,}, can be formed so that ev - x;
tends to infinity, at least on a subsequence. But this contradicts the boun-
dedness of s(v, w) for w in K and v in co{c,, .., v, }. Therefore x; cannot
be bounded and cannot be unbounded; hence such a sequence does not
exist and (7.7) holds.

Once it is proved that s(v,, @) is continuous for w in K, the weak con-
vergence of P” to P implies that (7.4) holds when the integration is done on
K. But on Q\K the estimate (7.5) holds, with ¢ arbitrarily small. Hence
(7.4) is valid and the proof is complete.

Remark 7.6. The P-atom convexity in condition (ii) cannot be replaced
by the compatibility of atoms of P* with those of P, as was sufficient in
Theorem 3.5 for the bounded case. Here is a counterexample: Let
Q2=1[0,1TJu{2}. Let I" have values in R*> and define I'(2)={(&,, &,):
&:20, £,-£,=0}, I'(0)={(0,0)}, and I'w)={(0,jo""), j=0,1,2,..}
for 0<w<l. Let P({2})=1 and define P’({2})=1—v~' and
P'({v7'})=v " It is easy to see that conditions (i), (iii), and (iv) of
Theorem 7.1 are fulfilled, as well as the compatibility condition in Theorem
3.5. Yet [ I'dP=TI7(2) is not the limit of | I'dP’; the latter sets are identical,
and equal to I'(2) U {(£,,&,):¢,20, ¢, =1,2, ..}

8. THE CASE OF EPIGRAPHS

As mentioned in the Introduction, a prime example and an application
of the analysis of multifunctions is the case of epigraphs; see Rockafellar
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[9] and Rockafellar and Wets [107]. We start this section with recalling the
basic notions. Then we interpret some of the general results of the
preceding sections within the framework of epigraphs, adding also some
new results which exploit the particular structure of epigraphs.

Let g: R" - (— o0, oo ] be a lower semicontinuous real function, namely
g(lim x;) < lim inf g(x;). The epigraph of g is the set in R”*' given by

epig={(x, 0): x>g(x)}.

Then epi g is a closed set and this set is unbounded if g is not identically
equal to +oo. We denote by Dom(g) the effective domain of g, namely
{x:g(x)<o0}.

We say that the sequence g, epi-converges to g (or converges in the sense
of epigraphs) if epi g, converges (o epi g as sets in R"*'. (The convergence
of sets was introduced in Section 2.) We write then g=epilim g,. This
notion of convergence of functions plays an essential role in variational
problems; see [10] and references therein. Note, however, that epi-con-
vergence is not comparable to pointwise convergence. A normal integrand
(see [9, 10]) is a mapping f(x, w): R"x 2 — (— o0, oo ], such that f(x, -) is
measurable, /(- w) is lower semicontinuous, and w —epi f(-, ) is a
measurable multifunction. We say that a normal integrand is epi-continuous
if w—epi f(-, w) is a continuous multifunction.

In analogy with the multifunction case, we denote by leas f the function
(leas /)(w)=inf{|x| + | f(x, @)|: x in R"}. Note that (leas f)(w) is bounded
when there exists a compact set D such that inf{|f(x, w)|: x in D} is a
bounded function.

Let P be a probability measure on £2. The inf-convolution of the normal
integrand f(x, w) with respect to P is denoted by §/(x, w)dP, and it is a
function, say F(x), of the variable x given by

#f(x, w) dP=inf {J.f(y,-(w), w) dP: J.y,-(w) dP — x} .
The function F(x)=§f(x, w) dP is related to the variational problem
(VP) minimize j f(y(@), @) dP subject to j y(@)dP=x.

Indeed, F(x) is the relaxed optimal value of (VP) (relaxed since we allow
small perturbations in the constraint x). This variational problem is com-
mon in stochastic optimization and in applications; see [3, 9, 10]. There is
a very useful relation between the inf-convolution operation and epigraphs:

epi{ i f(x, w)dP)=cl| epif(x, w)dP, (8.1)
(st wyar) e,
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where the integration in the right-hand side is of the muitifunction as
recalled in Section 2 and used throughout. (Relation (8.1) is the reason
why we choose to denote the inf-convolution operation by a letter E on the
integral; indeed, this is integration in the epigraph sense.) This relation
between the variational problem and the integration of epigraphs has been
an important tool; it was introduced by Aumann and Perles [3]; see also
Rockafellar [9].

Motivated by the analysis of previous sections we say that the normal
integrand fis P-atom convex if (-, a) is a convex function whenever {a} is
an atom of P. A consequence of (2.1) and (8.1) is then: If f is P-atom
convex then F(x)=4§/dP is a convex function.

In the sequel we are interested in convergence properties of
F(x)=§fdP’ to F(x)=§fdP when P’ converges weakly to P. As
explained in the Introduction, the motivation is that in solving the
variational problem (VP), one sometimes has to replace the underlying
measure P by an estimate P*. It is desirable then to know to what extent
this changes the value of the problem. We plan to employ the results of the
previous sections. Note, however, that epi f is never a bounded set (unless
empty). In particular, the two counterexamples of Section 5 can be
modified to counterexamples for epigraphs as follows.

Let f(x, w) be defined on R?x 2 such that f(x, ®)=0 if x in (@) and
J(x, w)= oo otherwise. Then § fdQ is equal to 0 if x is in cl j IdQ, and is
equal to oo otherwise. In particular, if we apply this to Q =P, P!, P?,... in
the two examples of Section 5 we get that § fdP* do not epi-converge to
{/dP.

We can, however, draw positive conclusions, using the results of Sections
6 and 8.

We say that epi lim sup g*(x) < g(x) if lim inf epi g* contains epi g. This
semiconvergence has a clear interpretation in the variational framework
(VP). Indeed, if g* are values of variational problems then, in the relaxed
sense, limits of g* are not inferior to g. Note that epi lim sup g"(x) < g(x) is
implied by the pointwise condition lim sup g*(x)<g(x), but does not
imply it.

THEOREM 8.1. Let f be an epi-continuous normal integrand such that
(leas f)(w) is a bounded function. If P* — P weakly then

epi lim sup ﬁ 1 (x, @) dP*(w) 4 f(x, @) dP(w).

Proof. The result is a translation of Theorem 6.3 to the language of
epigraphs (and in particular the epi-continuity of f can be eased and
replaced by epi-lower semicontinuity; we leave out the details).
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Note that f in the previous result can be quite general, and it is not
difficult to find examples in which the epi lim sup cannot be replaced by
pointwise lim sup. Further conditions yield such a condition for the
pointwise lim sup, as follows.

THeEOREM 8.2. Let f be an epi-continuous normal integrand, with
(leas f)(w) bounded. Suppose that P*— P weakly and that f is P-atom
convex and P'-atom convex for every v. Then

lim sup 9C:f(x, w) dP*(w) <¢f(x, w) dP(w)

for every x in the interior of Dom(} f dP).

Proof. With the P’-atom convexity, the functions F*(x)=§f(x, w) dP*
are all convex functions, therefore the result follows from Theorem 8.1.

For epigraphs of functions it is convenient to use the conjugate function
instead of the support function that we have used for multifunctions; see
[10]. Recall that if g(x) is a function of x then its conjugate function g*(v)
is a function of v defined by

g*(v)=sup(v-x —g(x)).

X

(Note that g*(v)=s((—v, 1), epi g). In particular Dom(g*) is a convex set,
and a vector v is in its interior if and only if (—v, 1) is in the interior of the
barrier cone of epi g.)

THeOREM 8.3. Let f be a normal integrand and suppose that P'— P
weakly. Suppose also that the following conditions hold (we write F(x) for

§ fdP).
(i) [ is epi-continuous and (leas f)(w) is bounded,
(i) [ is P-atom convex,

(1) Dom F does not contain a line and F is proper, namely,
F(x)> —o0 and Dom F is not empty, and

(iv) for all v with F*(v) < co, the sequence P is f*(v, -)-tight.
Then epi limit § /(x, @) dP"=§ f(x, @) dP.

Proof. It is straightforward to check that conditions (i)—(iv) of
Theorem 7.1 hold when the multifunction is generated by the epigraphs of
the normal integrand. Taking into account also (8.1), the proof is complete.

COROLLARY 84. Let f be an epi-continuous normal integrand such that
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Dom(f(-, w)) is a bounded multifunction, and inf,f(x, w) is bounded.
Suppose that P* — P weakly and that f is P-atom convex. Then

epi lim ﬁ f(x, ) dP" =$ f(x, ) dP.

Proof. Conditions (i) and (ii) of Theorem 8.3 are assumed. Condition
(ii1) follows from the boundedness of Dom f and inf f(-, ®). The last con-
dition of Theorem 8.3 follows from the boundedness of Dom(-, w) and
Proposition 7.4, where in applying the latter we use C = {(0, r): r > 0}. This
shows that all the conditions of Theorem 8.3 hold; hence the corollary
follows.

9. APPROXIMATION BY TRUNCATION

As explained in the Introduction, when the integral (1.1) is computed, it
is very often approximated by

j (I'(w) ~ AB) dP(w) (9.1)

with 4 a number, usually large. The analogous truncation for the inf-
convolution is to replace (1.3) by

£ /3(x, @) dP(w) (92)

with  fi(x,0)=f(x,w) if |x|<A and [fi(x,w)=0c0 if |x|>4
Approximations of the type (9.1) were studied by Jacobs [6]; here is one
useful result.

LEMMA 9.1. If I has a bounded selection then (g (I'(w)n AB)dP con-
verge 1o {o I'(w) dP as 1 — o0.

Proof. See Jacobs [6, Theorem 5]. A similar result holds for the
approximations in (9.2).

The first question that we take on in this section is whether this
approximation, determined by A, holds uniformly for all elements in a
sequence P' which converges weakly to P; namely, we wish to know
whether in a situation when P has to be approximated, say by P*, the
approximation by truncation, (9.1), holds for the approximation P* as well.
Without some additional conditions the approximation is not uniform. As
a counterexample consider Example 5.1; there, for any given A, the
integrals { (/(w)n AB)dP" cease to furnish good approximations for v
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large. In this counterexample, however, the integrals | I'dP” do not
converge to [ I'dP. With such convergence we do get a positive result, as
follows.

THEOREM 9.2.  Suppose that I satisfies all the conditions of Theorem 7.1
and that P — P weakly. Then for every ¢> 0 there exists a Ly> 0 such that

hausSO( I'(w) A AB) dP*(w jr ) dP"(w ))<a (9.3)

Sor all v and all 3= .

Proof. Let A, be such that haus’(| I'dP, [I',dP)<e/4 whenever
I'w)nA,BcI'\(w)c I'(w); such 4, exists by Lemma 9.1 and a simple
observation concerning the haus® metric. Define I,(w)=cl({(w)N
int(Z,+ 1) B) and I';(w)=I'(w) n A, B. By Lemma 6.1, the multifunction /",
is lower semicontinuous, and it is clear that /'y is upper semicontinuous.
Using Theorems 4.5 and 4.2, respectively, we get that for v large enough,
say v=v,, the set | I", dP” contains an ¢/4-steoreographic neighborhood of
[ I',dP, and | I'ydP" is contained in an e/4-stereographic neighborhood of
| I',dP. Since, however, I'(w)n i, BcI'(w)c I(w)< INw), it follows
from the choice of 4, that for v v, the set | I's(w) dP” is within /2 — haus®
distance of | I'dP. Since the conditions of Theorem 7.1 hold, there is a v,
such that v>v, implies that | I'dP" is within /2 — haus® distance of | I'dP.
If we choose A,=4,+1 and v,=max(v,, v,), we get from the inclusions
I'w)cI'w)niBcI'(w) for A>1,, and from the aforementioned
estimates for v>v,, that haus’([ (I"nAB)dP’, | I'dP*)<¢ for A= 1, and
v = v,. This verifies the claim for all but a finite number of P, but since for
a single v the result holds, by Lemma 9.1, the finite number of v=1,.., v,
can be accounted for by an appropriate increase of 1,. This completes the
proof.

A similar result holds for normal integrands, assuming the conditions of
Theorem 8.3. We leave out the details.

Our next step is to verify the observation promised in the closing
paragraph of the Introduction. We consider approximations that involve
at the same time approximations of the measures and truncations of the
multifunction.

THEOREM 9.3. Let I'(w) be a continuous multifunction with closed values
and such that leas I'(w) is bounded. Suppose that I' is P-atom convex and
that P* — P weakly. Then

lim hmj ®) (" AB) dP”—'wa)dP( ) (9.4)

Ay OO W 0O
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Proof. We note from Theorem 4.2 and the observation that I'(w)n AB
is upper semicontinuous that

lim sup j (I'()~ AB) dP” is included in j (Mw)N AB)dP.  (9.5)

vV — o0

We conclude from Theorem 4.5 and Lemma 6.1 that

lim inf j (I (®) ~int AB) dP” includes j l(I(w) ~int 1B) dP. (9.6)

Vv — 00O

Using the trivial observation that cl(/(w)nintAB) includes
I'(w)~(A—1) B, we can conclude from (9.6) that

lim inf j (I'(w) ~ AB) dP includes j (M) (A—1)B)dP. (9.7

v — 00

Relations (9.6) and (9.7) together with
lim j (I'(®) AB) dP = j I'(w)dP (9.8)

(Lemma 9.1) imply (9.4) and complete the proof.

As already mentioned, the previous result has an immediate and
significant interpretation in the approximation procedures for variational
problems. We therefore state the analogous result for the inf-convolution of
normal integrands; the proof is very similar and is omitted.

THEOREM 9.4. Let f(x, w) be an epi-continuous normal integrand, with
(leas f)(w) bounded. Suppose that f is P-atom convex and that P*— P
weakly. Then

epl 11m epi llmﬁf;(x w)dP'= ﬁf(x w)

vV — 00

We finally note that the counterexamples given before (Example 3.2 and
Section 6) show that neither of the, rather weak, conditions of Theorems
9.2 and 9.3 can be dropped, nor can the order in which the limits are taken
be reversed.
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