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1. Introduction.

To solve the stochastic program

(1.1) minimize

∫

f(ξ, x)P (dξ) := Ef(x), over all x ∈ lRn,

it is frequently necessary to solve instead an approximating problem,

(1.2) minimize
1

ν

∑

f(ξi, x) := Eνf(x), over all x ∈ lRn,

where the probability measure P is replaced by an empirical measure derived from an

independent series of random observations {ξ1, . . . , ξν} each with common distribution P .

Generally speaking, this arises for one of two reasons: either the measure P itself is known

only through the observations; or the numerical solution of (1.1) requires the discretization

of P , and one very simple technique is to generate a set of “pseudo-random observations”

from the distribution of P . As the number ν of sample observations grows large, we demand

that the approximations (1.2) approach the true problem in the sense that the functions

Eνf be epi-consistent with limit Ef — that is, Eνf epi-converges to Ef almost surely.

This would imply the essential property that cluster points of sequences of minimizers

(or εν -minimizers, for εν → 0) of the approximate functions Eνf are, with probability

one, minimizers of the function Ef and the corresponding subsequences of values of Eνf

converge to the minimum value of Ef . As is usual in optimization, we allow f to take

values in the extended reals lR to include the possibility that f can equal +∞ or −∞.

In this paper, we present an epi-consistency theorem based on the strong law of large

numbers for sums of independent and identically distributed random closed sets of Artstein

and Hart [1]. The idea is simple: we apply the strong law to the sums of the conjugate epi-

graphs and then use standard epi-convergence and convexity procedures in order to obtain

epi-consistency. The requirement of the strong law as applied to our problem is that

there exists an integrable selection of the random epigraph epi f(ξ1, ·)—an attractively

simple assumption that can be implied by readily verifiable conditions on f(ξ1, ·) and

its subgradient, as we shall see. This argument is extended virtually without change to

reflexive Banach spaces, based on the strong law of Hess [5] and Hiai [4], but the conditions

placed on f will be less simple.

Readers familiar with the the strong law for sequences of random closed sets, {Ai},

will recall that the pointwise convergence of the average of the support functions 1

ν

∑

σAi

is used to demonstrate the limsup inclusion

lim sup
1

ν

∑

Ai ⊂ EA1,
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and then the liminf inclusion

EA1 ⊂ lim inf
1

ν

∑

Ai

is proved by directly constructing a converging sequence of selections to every point in EA1.

Now, of course, the strong law is equivalent to the epiconsistency of the support functions;

however, at this writing, there does not seem to be a direct proof of epi-consistency that

avoids this excursion into the strong law for random closed sets.

Epi-consistency results have appeared in Dupačová and Wets [3], Kall [6], and Robin-

son and Wets [7]. These papers present sufficient conditions on P and f such that P 7→ Ef

is continuous as a map from the space of probability measures topologized by conver-

gence in distribution into the space of lower semicontinuous functions topologized by

epi-convergence. Since the empirical measures converge in distribution to P , then epi-

consistency would follow from such assumptions. However, the continuity requirements

of this approach are so strong that most practically formulated stochastic programs—

including, especially, the linear recourse problems—cannot meet them. We demonstrate

the scope of our theorem by proving a new epi-consistency result for stochastic linear

programs with recourse under more realistic assumptions than can be managed using con-

tinuity techniques.

The situation considered in this paper has much in common with estimation problems

in statistics, where xν would be called a statistic and one would try establish the consistency

of xν , i.e. the existence of a constant x̄ such that xν → x̄ with probability one. This concept

does not transfer very well to optimization, where a unique minimizing x̄ is unlikely due

to the presence of constraints. In such cases, epi-consistency is the only possibility. A

detailed discussion of these similarities and contrasts is given in [3].

2. Epi-consistency

For background on lower semicontinuity and measurability, we refer the reader to Rock-

afellar [10], and for epi-convergence Attouch [2].

A function g is called lower semicontinuous (lsc) if its epigraph

epi g := {(x, α)
∣

∣α ≥ g(x)}

is a closed subset of lRn × lR, convex if epi g is convex, and proper if epi g is neither the

empty set nor the whole space. The domain of g, denoted dom g, is the set {x
∣

∣ g(x) <

∞}. Let (Ξ,A, P ) be a probability space completed with respect to P . A closed-valued

multifunction G : Ξ →→ lRn is measurable if for all closed subsets C ⊂ lRn one has

G−1(C) :=
{

ξ ∈ Ξ
∣

∣ G(ξ) ∩ C 6= ∅
}

∈ A.



3

Following usual practice, we shall also call G a random closed set. A function f : Ξ× lRn →

lR is a normal integrand if the epigraphical multifunction ξ 7→ epi f(ξ, ·) is closed-valued

and measurable. A convex normal integrand is one whose epigraph is almost everywhere

convex; a proper normal integrand is similarly defined. If the probability space is implicit,

then we shall call f a random lower semicontinuous function (random lsc function). Thus,

if f is normal and ξ1 is a random variable, then f(ξ1, ·) is a random lsc function.

Let {Aν} be a sequence of subsets of lRn. We define the (Painlevé-Kuratowski) set

limits:

lim sup
ν

Aν = {x = lim
ν

xν

∣

∣xν ∈ Aν for infinitely many ν},

lim inf
ν

Aν = {x = lim
ν

xν

∣

∣ xν ∈ Aν for all but finitely many ν}.

This sequence converges to A = limν Aν if both limits are equal to A. A sequence {gν} of

extended real-valued functions epi-converges to g if

epi g = lim
ν

(epi gν).

This is the property we wish to prove for the sequence {Eνf}. The objective functions

Eνf are random lsc on the sample probability space. Epi-convergence, therefore, need

only take place on a set of probability one. We formalize this in a definition.

Definition. A sequence {hν} of random lower semicontinuous functions is epi-consistent

if there is a (necessarily) lower semicontinuous function h such that {hν} epi-converges to

h with probability one.

The importance of epi-consistency is summarized in the following proposition.

Proposition 2.1. ([2], Theorem 1.10) Suppose the sequence of random lower semicontin-

uous functions {hν} is epiconsistent with limit h. Let {εν} be a sequence of non-negative

numbers converging to 0, and {xν} a sequence of points such that

hν(xν) ≤ inf hν + εν .

If there is a subsequence {xνk} converging to a point x̄, then, with probability one, x̄

minimizes h and limk hνk (xνk ) = inf h.

We will need the following (epigraphical) operation: by +e we denote the epi-sum

defined by the identity:

(f +e g)(x) = inf{f(u) + g(v)
∣

∣u + v = x}



4

with, as usual, ∞−∞ = ∞. In the literature one also finds the epi-sum f +e g denoted by

f g (or f∇g) and called the inf-convolution of f and g. By [8], Theorem 16.4, if f and

g are proper convex functions such that ri(dom f) and ri(dom g) have a point in common

(for a convex set C, riC is the interior relative to the smallest affine subspace containing

C; it is always nonempty by [8] Theorem 6.2), then we have

(2.2) epi(f + g)∗ = epi[f∗ +e g∗] = epi f∗ + epi g∗,

where f∗ : lRn → lR is the conjugate function

f∗(x∗) = sup
x∈lRn

{〈x∗, x〉 − f(x)} .

The next lemma shows that the (Eνf)∗ are random lsc functions such that the epi-sum

formula (2.2) holds.

Lemma 2.2. Let f : Ξ × lRn → lR be a proper convex normal integrand, and suppose

that there exists a point x̄ in lRn such that

(2.3) x̄ ∈ ri(dom f(ξ, ·)) a.s.

Then for all ν = 1, 2, . . . the functions Eνf and (Eνf)∗ are random lower semicontinuous

proper convex functions and, moreover,

(2.4) epi(Eνf)∗ =
1

ν

ν
∑

i=1

epi f∗(ξi, ·) a.s.

Proof. The assumption (2.3) implies that with probability one

x̄ ∈
ν
⋂

i=1

ri(dom f(ξi, ·))

for all ν, since the random sets dom f(ξi, ·) are independent and identically distributed.

This allows us to invoke the epi-sum equality (2.2). Applying the conjugacy formula and

this equality, we find that

(Eνf)∗(x∗) =
1

ν
[f∗(ξ1, ·) +e · · · f∗(ξν , ·)](νx∗) a.s. ,

and also,

epi[f∗(ξ1, ·) +e · · · +e f∗(ξν, ·)] =
∑

i

epi f∗(ξi, ·) a.s.
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All the conclusions of the lemma follow from these equalities.

The strong law of large numbers of Artstein and Hart states that if {Aν} is an inde-

pendent and identically distributed sequence of random closed sets in lRn such that the

distance function d(0, A1) is integrable, then one has with probability one

EA1 = lim
ν

1

ν

ν
∑

i=1

Ai

where

EA1 = co{Ex1

∣

∣ x1 is an integrable selection of A1}.

Imposing an appropriate integrability condition on the random epigraph epi f ∗(ξ1, ·) and

applying the strong law would yield convergence with probability one of the sets on the

right-hand side of (2.4) to some closed convex epigraph. This would be epi-consistency

of the random lsc functions [f∗(ξ1, ·) +e · · · +e f∗(ξν , ·)], but not epi-consistency of the

Eνf . Our main result spells out the conditions under which the strong law implies the

epi-consistency we are after.

Theorem 2.3. Let f : Ξ × lRn → lR be a convex normal integrand such that there is a

point x̄ with

(2.5) Ef(x̄) finite,

and a measurable selection ū(ξ) ∈ ∂f(ξ, x̄) with

(2.6)

∫

‖ū(ξ)‖P (dξ) finite.

Then the function Ef is proper, convex, and lower semicontinuous, and {Eνf} is epi-

consistent with limit Ef .

Proof. The existence of a measurable selection ū(ξ) ∈ ∂f(ξ, x̄) is assured by assumption

(2.5), which implies that f(ξ, x̄) is finite and ∂f(ξ, x̄) is nonempty for P -almost all ξ.

Thus condition (2.6) only requires that among the measurable selections there exists one

that is integrable. Assumption (2.5) also implies that f is a proper normal integrand,

and x̄ ∈ dom f(ξ1, ·) almost surely. If x̄ is the only point in dom f(ξ1, ·) a.s. , then with

probability one limEνf(x) = +∞ for every x 6= x̄. The ordinary strong law of large

numbers implies limEνf(x̄) = Ef(x̄) and epi-consistency follows from [2], Proposition

1.14. On the other hand, if there are points other than x̄ in dom f(ξ1, ·) a.s. , then with

probability one ri(dom f(ξ1, ·)) is nonempty ([8], Theorem 6.2) and Lemma 2.2 implies that
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the epi-sum equality (2.4) holds. We apply the strong law of large numbers to the sets

in (2.4). The random closed sets epi f ∗(ξi, ·) are independent and identically distributed

subsets of lRn. We have

d(0, epi f∗(ξ1, ·)) ≤ ‖ū(ξ1)‖ + |f∗(ξ1, ū(ξ1))|;

the first term is integrable by (2.6), and by convex analysis ([8], Theorem 23.5) we have

f∗(ξ1, ū(ξ1)) = 〈ū(ξ1), x̄〉 − f(ξ1, x̄)

which is integrable by (2.5) and (2.6). Thus the strong law of large numbers of Artstein

and Hart implies that the sums 1

ν

∑

epi f∗(ξi, ·) converge almost surely to the set co F ∗,

where

F ∗ =
{

E(u(ξ1), α(ξ1))
∣

∣ (u(ξ1), α(ξ1)) is an integrable selection of epi f ∗(ξ1, ·)
}

.

We now show that co F ∗ = epi(Ef)∗ or, equivalently, that

Ef(x) = sup{〈x∗, x〉 − α
∣

∣ (x∗, α) ∈ F ∗}.

Let L1 be the space of integrable functions from Ξ into lRn. We may rewrite the right-hand

side as

sup

{
∫

[〈u(ξ), x〉 − f∗(ξ, u(ξ))]P (dξ)
∣

∣u ∈ L1

}

.

This is equal to (Ef∗)∗(x), considering (Ef∗) as a function on the decomposable space

L1. By [10], Theorem 3C, (Ef∗)∗ equals Ef—which must then be a proper convex lower

semicontinuous function. (The integrability of f ∗(ξ1, ū(ξ1)) is used here.) We conclude

that the (Eνf)∗ epi-converge almost surely to (Ef)∗. The bi-continuity of the Fenchel

transform ([2], Theorem 3.18) implies that the Eνf epi-converge almost surely to Ef .

The setting of this theorem can be extended to a reflexive Banach space X with sep-

arable dual X∗ by applying instead the strong law for random closed sets of Hess [5] and

Hiai [4]. (Examples of estimation problems demanding such generality are provided by

non-parametric statistical estimation.) We provide the details in a separate theorem. Ev-

erything goes through as above, using Rockafellar [9] as a guide for the infinite-dimensional

convex analysis, but with one important exception: the argument used to establish the

epi-sum equality (2.4) has to be adjusted to reflect the greater complexity of the notion of

interior in infinite dimensional spaces. Mere finiteness of Ef(x̄) no longer suffices.
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The definitions also must be slightly modified to accomodate the greater number of

possible topologies for X. A sequence of subsets of a Banach space {Ci} converges in the

Mosco sense to a set C if

C = s- lim inf Ci = w- lim sup Ci,

where the prefix w- or s- causes limits to be taken in the weak or strong topology, re-

spectively. This Mosco-limit is denoted M - limCi. A sequence of extended real-valued

functions {gν} Mosco-epi-converges to g if

epi g = M - lim
ν

(epi gν).

Mosco-epi-consistency is defined analogously to the finite-dimensional case, and in this

case, the conclusions of Proposition 2.1 will hold for weak cluster points of εν -minimizers.

The strong law of Hess and Hiai states that if {Aν} is a sequence of independent and

identically distributed random sets in a separable relexive Banach space (which, in our

application, will be X∗ × lR) with d(0, A1) integrable, then

M - lim
ν

1

ν

∑

Ai = EA1,

where EA1 is defined just as for the finite-dimensional situation.

Theorem 2.4. Let X be a reflexive Banach space with separable dual X∗, and let f :

Ξ × X → lR be a convex normal integrand with a point x̄ in X such that Ef(x̄) is finite,

and a measurable selection ū(ξ) ∈ ∂f(ξ, x̄) such that
∫

‖ū(ξ)‖∗P (dξ) is finite (‖ · ‖∗ is the

dual norm on X∗). Suppose, moreover, that there is a point x̂ such that

(2.7) x̂ ∈ int dom f(ξ1, ·) a.s.

Then {Efν} is a sequence of random lower semicontinuous proper convex functions that

is Mosco-epi-consistent with limit Ef .

Proof. Condition (2.7) allows us to apply [9], Theorem 20, to determine via the argument

of Lemma 2.2 that the Eνf are random lower semicontinuous proper convex functions such

that epi(Eνf)∗ = 1

ν

∑

epi f∗(ξi, ·). Now apply the strong law of Hess and Hiai just as in

Theorem 2.3; then apply [9], Theorem 21(a), to get (Ef ∗)∗ = Ef , and conclude that

co F ∗ = epi(Ef∗) = epi(Ef)∗. This shows that the (Eνf)∗ epi-converge to (Ef)∗ almost

surely. The bi-continuity of the Fenchel transform ([2] Theorem 3.18) applies once again

to complete the proof.

Remark. Condition (2.7) is only the most easily stated one of the many that could be

invoked in order to obtain the conclusions of Lemma 2.2. See [9], Theorem 20, for more

ideas.
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3. Application to Stochastic Linear Recourse Problems.

In this section, we show how the conditions of the epi-consistency theorem may be satisfied

in the important class of stochastic linear programs with recourse:

minimize c′x +

∫

Q(ξ, x)P (dξ) over all x ∈ lRn(3.1)

subject to Ax = b,

x ≥ 0,

where the function Q : Ξ × lRn → lR is the minimum value in the second stage linear

program

(3.2) Q(ξ, x) = inf{q′y
∣

∣ Wy = Tx − h, y ∈ lRm, y ≥ 0},

and ξ is the vector consisting of the vectors and matrices in the second stage program, i.e.

ξ = (q, W, T, h). This class of problems models decisions that must take into account future

costs Q(ξ, x), represented as linear programs, responding to presently uncertain values of

ξ; see, for example, [11]. As in the introduction, we suppose that (3.1) cannot be solved

as stated, because either P is not known or must be made discrete. Instead, one solves

the problems

minimize c′x +
1

ν

ν
∑

i=1

Q(ξi, x) over all x ∈ lRn(3.3)

subject to Ax = b

x ≥ 0,

where the ξi are independent random vectors distributed according to P .

We shall show that the problems (3.3) are epi-consistent with limit equal to (3.1),

under fairly weak assumptions that are prevalent in the stochastic programming literature.

The perspective afforded by the strong law in Theorem 2.3 leads to a better theorem than

can be derived from the epi-consistency results in [3], [6] and [7]—which are intended

to apply to more general perturbations of probability measures than considered here. In

particular, we do not need restrictive assumptions concerning continuities of Q. All the

above papers require the function ξ 7→ Q(ξ, x) to be continuous for every x, because the

common theoretical approach is via the weak-convergence of probability measures. While

this is an unnatural assumption, it is not necessarily a burdensome one. More seriously,

they also all require continuity in x: [3] requires that for all ξ the function x 7→ Q(ξ, x)

satisfies a lower Lipschitz continuity property on the entire feasibility region; [6] and [7]
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demand that for all ξ the function x 7→ Q(ξ, x) is continuous on an open set containing

the minimizers of (3.1). In effect these assumptions all insist that (3.1) include constraints

that force the feasible region to be strictly contained within the domain of finiteness of

Q(ξ, ·) for all ξ. The only way such a condition could hold in a practical situation is when

the second stage linear program (3.2) is known to be feasible for any choice of x—this is

called complete recourse. If not, one would then have to employ feasibility cuts to detect

the domain of finiteness and try to make sure that the explicit constraints of (3.1) define

a region in the interior of this domain. The theorem we state allows us to remove all such

requirements on the second stage linear program.

A comprehensive review of the properties of Q may be found in Wets [11]. Denote by

K1 the set of x satisfying the constraints of (3.1), i.e.

K1 = {x ∈ lRn
∣

∣ Ax = b, x ≥ 0}.

When the matrix W is fixed, i.e. nonrandom, the problem (3.1) is said to have fixed

recourse. When the random vector ξ1 satisfies the condition

(3.4) For all i, j, k the random variables qihj and qiTjk have finite first moments,

then ξ1 is said to posses the weak covariance property. This is obviously satisfied if ξ1 is

square integrable. Let us define the essential integrand as

f(ξ, x) = c′x + Q(ξ, x) + δK1
(x)

where δK1
(x) = +∞ if x is not in K1 and zero otherwise. Clearly, minimizing (3.1) is

equivalent to minimizing Ef and minimizing (3.3) is equivalent to minimizing Eνf . Epi-

consistency can therefore be proved by showing that f satisfies the conditions of Theorem

2.3.

Theorem 3.1. Suppose that the stochastic linear program (3.1) has fixed recourse and

that the random elements satisfy the weak covariance condition (3.4). If there exists a

point x̄ ∈ K1 with EQ(x̄) finite, then the Eνf are epi-consistent with limit Ef .

Proof. The function Q is normal, since it is the infimum of a normal integrand, and convex

([11] Proposition 7.5). Hence f is a convex normal integrand ([10] Proposition 2M) and

we are in the setting of Theorem 2.3. We need only establish (2.6). By [11] Proposition

7.12, since x̄ ∈ dom Q(·, ξ) for P -almost all ξ, there exists a measurable selection π̄(ξ) from

the solutions to the dual of (3.2) at x̄, as ξ varies over the support of P , and moreover,

π̄(ξ)′T is a subgradient of Q(·, ξ) at x̄ for P -almost all ξ. Thus

ū(ξ) = π̄(ξ)′T + ā
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is a measurable selection of ∂f(x̄, ξ), where ā equals c′ plus a fixed element from the

normal cone to the contraint set K1 at x̄. This ū(ξ) is integrable by the weak covariance

assumption and Theorems 7.7 and 7.15 of [11].
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