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RANDOM LSC FUNCTIONS: AN ERGODIC THEOREM 

LISA A. KORF AND ROGER J.-B. WETS 

An ergodic theorem for random lsc (lower semicontinuous) functions is obtained by relying on a 
"scalarization" of such functions. In the process, Kolmogorov's extension theorem for random lsc 
functions is established. Applications to statistical estimation problems, composite materials, and 
stochastic optimization problems are briefly noted. 

1. Introduction. Solution procedures for stochastic programming problems, statistical 
estimation problems (constrained or not), stochastic optimal control problems, and other 
stochastic optimization problems often rely on sampling. The justification for such an 

approach passes through "consistency." A comprehensive, satisfying, and powerful tech- 

nique is to obtain the consistency of the optimal solutions, statistical estimators, controls, 
etc., as a consequence of the consistency of the stochastic optimization problems them- 
selves. To do this, as explained in ?2, one can appeal to the ergodic properties of random 
lsc (lower semicontinuous) functions set forth in this paper. 

A streamlined version of this basic ergodic theorem, see ?8, can be formulated as follows: 
Let (X, d) be a Polish space, i.e., a complete, separable, metric space, with A the Borel 
field on X, (E, S, P) a probability space and, for now, let us assume that S is P-complete. 
A random Isc (lower semicontinuous) function is then an extended real-valued function 
f : x X -- R such that 

(i) the function (5, x) H- f (, x) is Sf ( A -measurable; and 
(ii) for every s E , the function x -+ f (, x) is lsc. 

THEOREM 1.1. Let f be a random Isc function defined on E x X, (p : S -- E an ergodic 
measure preserving transformation. Then, whenever : H-+ infx f (, *) is summable, 

1 f(pk() *) _ Ef, a.s. 
k=l 

DEFINITION 1.2 A sequence of functions {gV: X -- R, v E J} epi-converges to g : X - 
R, written gV -e g, if for all x E X, 

(i) liminf gV(xV) > g(x) for all xv - x; and 

(ii) limsup, gv(xv) < g(x) for some xv - x. 

Epi-convergence entails the convergence of the minimizers of the g' to those of g as made 
precise in ?7. It is so named because it agrees with the set convergence of the epigraphs, 
cf. Attouch (1984), Aubin and Frankowska (1990), Rockafellar and Wets (1984, 1998); the 
epigraph of a function g: X --> consists of those points that lie on or above the graph 
of g. The assumption "inf f(., x) majorizes a summable function" will be considerably 
relaxed and "SPP-complete" will be dropped in the statement of the Ergodic Theorem 8.2. 
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A first attempt at stating an ergodic theorem for stochastic optimization problems goes 
back to Kankova (1978). She relied on classical analytic tools and consequently has to make 
assumptions (strict convexity and deterministic constraints) that seriously limit the range 
of potential applications. A more immediate precursor to our Ergodic Theorem is the Law 
of Large Numbers for random lsc functions (Attouch and Wets 1990, Artstein and Wets 
1995), cf. also Hess (1996), and Castaing and Ezzaki (1995) for extensions, that posits iid 
(independent identically distributed) sampling whereas here only stationarity needs to be 
assumed. 

The argument is built on a "scalarization" of random lsc functions developed in ??3-5; a 
more narrowly focused presentation can be found in Korf and Wets (2000). One also needs 
a generalization of Kolmogorov's Extension Theorem for measures defined on a space that 
is not Polish, viz. the space of lsc functions endowed with epi-convergence. This is covered 
in ?6. 

2. Examples. This section is devoted to three basic examples. We limit ourselves to a 
brief description of the problems and indicate how the ergodicity theorem can be used to 
justify the concerns we might have about "consistency." 

EXAMPLE 1: TIME SERIES. Classical consistency results for certain estimation proce- 
dures of the parameters of a time series can be guaranteed by means of our Ergodic Theorem 
for random lsc functions. But one can deal equally well with "nonclassical" situations as 
would be the case if we wanted to include some information one might have about cer- 
tain relationships between the parameters in the estimation process. We are going to illus- 
trate this by considering the following estimation problem. Suppose that the coefficients 
a0, a, .... ap of the (linear) transfer function of the autoregressive (AR) model, 

Yt = ao+alYt- + -+apYt-p-+-t, t = ..., 0, 1, .... 

are to be estimated given a number of observations, say rl-_p,., r] .. of the process Yt, 
and given that 

a1 > a2 > . > ap, 

i.e., the more distant the past, the smaller the contribution to Yt. This might follow from 
certain physical laws or economic considerations. 

Let us assume, as usual, that the st are independent normally distributed random vari- 
ables with mean 0 and variance a2. They account for the disturbances in the dynamics not 

captured by the transfer function. Assuming that the coefficients of the autoregressive poly- 
nomial 1 - a r - - aprP are such that its roots lie outside the unit circle, this AR-model 
has a solution {Yt, t =..., -1,0, 1,... } that is stationary, cf. for example, Tiao (1985). 

If the monotonicity condition is ignored, one could choose as estimates the solution of 
the following optimization problem: 

min - f .t-X0 t-x-.*-t1nt-pXp12; 
Xo,...,Xp v t=l 

the normalizing factor 1/v does not affect the solution, it just scales the optimal value. One 
would find estimates that minimize the role played by the "disturbances" (innovations), i.e., 
those factors not included in the (linear) transfer function; note that v-1 Et (Yt - ao - 

Yto_lal m t- Yt_pap)2 = v-' Et=l(Et)2. 
To embed this in the general framework of ?1, one defines the vector process, 
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The stationarity of this process is inherited from that of the Yt. An observation of Xt, say 
t, is then a vector of the type et = (it-p, ..., 7t-l, Tt). With 

f (t x) = Ir,- Xo - nt_lx I ..._ nt_pXp |2, 

given the observations s, ..., ., the optimization problem yielding the estimates takes the 
form 

1 v 
min - Ef(t, x). 

/ t=l P-il 
With (3, Y9, P), the (common) probability space on which the random variables Xt are 
defined, it is easy to verify that f : x Rp+l -> 1R is a random lsc function. By appealing 
to the Ergodic Theorem 8.2, the consistency of the proposed estimates (x , x, ... . x) can 
be settled by showing that almost surely, 

(ao, a, ..., ap) E argmin Ef(x) := E{f (, x)lJ}, 

where e is a random vector with the same distribution as Xt = (Y_p, Yt_p+, ..., Y,), and J 
is the invariant a-field of the stationary process {Xt t = ... ,, 1,... }, cf. ?4. Uniqueness 
of the solution and almost sure epi-convergence, which implies the almost sure convergence 
of the optimal solutions, yield 

(x x, .., x 
-*, (ao, a, ... ap) a.s.; 

for a detailed derivation, see ?2.1 of Korf and Wets (2000). 
The standard approach to obtaining the consistency of these or related estimates is usually 

tied to the specific form of the selected criterion. For example, Box and Jenkins (1970) 
obtain consistency for the minimizers of the conditional likelihood function. In contrast, 
the approach suggested by our Ergodic Theorem for random lsc functions is not restricted 
to a specific criterion function. The same arguments, up to certain calculations, can be 
used if rather than the e2-criterion above, one chooses, as in Bloomfield and Steiger (1983, 
Chapter 3), the 1-criterion, 

1 
~.~t--Xo Tit-IXI t-lPX ' 
t= 

which, by the way, is not differentiable. More significantly, one can include restrictions in 
the formulation of the optimization problem used to obtain the estimates. This is particularly 
useful, and potentially important, if the number of samples available is small. In particular, 
one can include monotonicity restrictions on the choice of the coefficients, similar to those 
analyzed in Barlow et al. (1972) and Robertson et al. (1988), by modifying the function f 
as follows: 

f(t, X) = [ 
-- 

XO -_- _t- . .... XI t_pXp 
2 if X1 

* * > 
Xp oo otherwise. 

Also for such a criterion function, the same arguments yield the consistency of the estimates 

1 v 

(x x, *,., vp) E argmin - t f(, x). 
t=1 

From an operational viewpoint, the advantage lies in having estimates that satisfy a rela- 
tionship that is known to hold for the coefficients (a, ... , a), even when only a small 
number of samples can be collected. 

The Law of Large Numbers for random lsc functions, mentioned in ?1, allows us to work 
with an equally rich collection of criteria but because of the lack of independence between 
the observations, it doesn't apply in this context. 

423 



L. A. KORF AND R. J.-B. WETS 

EXAMPLE 2: NONHOMOGENEOUS MATERIALS-POROUS MEDIA. Modem technology 
relies extensively on composite materials. In particular, this has led to the study of the 
properties and the behavior of random media. Given a composite material, its complex 
structure, whether fully known or not, typically renders the study of its behavior compu- 
tationally intractable. Methods of homogenization are useful to deal with the complexity 
of the microscopic make-up of the material. These methods work by essentially replacing 
the material with an averaged one, whose properties are "close" in a certain sense to those 
of the original model. In particular, stochastic problems study the behavior of a material 
whose structure is only partially known (e.g., composed of two or more materials in a fixed 
proportion). Stochastic homogenization approximates such a problem by replacing it with 
a deterministic, homogenized, one, which basically preserves the behavior of the original 
material. 

To illustrate, let us consider the example of a conductor occupying a region f in R3. 
Suppose that the conducting material is an inhomogeneous composite of two or more com- 
ponents, each with a different conductivity. One may model the conductivity as a random 
function of position, of the form a({, x), where a(~, x) is stationary with respect to spa- 
tial location, positive and bounded. Associated with this function is the stochastic partial 
differential equation, describing the temperature u(S, x) by 

-V. (a(~, x)Vu(~, x)) = h(x) for x E f, 

u(, x) =0 for x E bdry l. 

The goal is to obtain the homogenized equation, which can be accomplished by comput- 
ing the appropriate (deterministic) effective coefficient, a(x), of conductivity. The resulting 
homogenized equation would then be given by 

-V. (a(x)Vu(x)) = h(x) for x E 2, 

u(x) = 0 for x E bdry f. 

Taking into account that the inconsistencies of the material occur at a microscopic level, it is 

accepted that the behavior of the solution, u, of the homogenized problem will approximate 
that of the original problem if u(x) = E{u( , x)} for x E fl. Note that contrary to first 
intuition, setting a(x) = E{a(4, x)} does not generate a homogenized equation with the 
desired properties. 

Procedures that have been suggested for solving such a stochastic homogenization prob- 
lem rely on scaling the material by a parameter, e, and employing methods such as asymp- 
totic analysis to find the limiting problem, see e.g., Papanicolaou and Varadhan (1981) and 
Kozlov et al. (1994). However, there are many problems to which these methods cannot be 

applied due to the complexities and randomness of the materials being studied. The fol- 

lowing numerical methodology based, instead, on sampling, attempts to provide a means 
to approach a much broader class of problems. For a full discourse, consult Attouch et al. 

(1999). 
To cast this question in the framework of ?1, let us reformulate the inhomogeneous 

problem in its variational form. The function g(L, -): L2 - (-oo, oo] is to be minimized 
for each 5: 

min g(, u):= f a(, x)IVulIdx- (h, u). 
u ho' (n) 2 

The goal is to find the homogenized functional, ghom such that 

E{u(S, -)} = u(-) E argmin{gh?m(u) u E H1 (f)}. 
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Given the samples a(s1, -),... , a(5, -), it is easy to check that only exceptionally can 
u be an approximate solution of the optimization problem whose criterion function is the 
"mean" criterion function, 

'1 V 
min ig(k,u) u E Ho(fl)^. 

V k=l 

It cannot serve as an approximation for the homogenized problem; it would correspond to 
averaging a(4, x), and thus there is no way in which we can assert that the solution of this 
problem could provide a (consistent) approximation of u. 

To derive ghom, we rely on some facts from conjugate duality. To approximate it, we 
appeal to our ergodic theorem for random lsc functions. 

Let (X, r) be a Banach space and X* its topological dual; here X = Ho with r the norm 
topology. The conjugate function q* : X* -> of a function q: X -+ R is 

q*(v) := sup{ (v, x) - q(x)}, 
x 

and q** = (q*)* is the biconjugate to q. The mapping q e-* q* is called the Legendre-Fenchel 
transform. The epi-multiple of q by A > 0 is the function A * q: X -?R defined by 

(A *q)(x):=Aq(A-lx) for > O 

I0 if x=O, q oo 
(0. q)(x) :=, ( *q)(x)r oo otherwise. 

For functions p, q: X - R, the epi-sum is the function p#q: X -> R, defined by 

(p#q)(x) := inf {p(z) + q(x - z)}. z 

The epi-integral of a random lsc function q: E x X -> l with respect to a probability 
measure P is the function e- f q(S, -) * P(d), defined by 

e- q(, .)* P(d)) (x) = inf q((, z(6)) P(d e) = x , 

where it is understood that z is an integrable function from 5 to X. 
It is straightforward to verify that 

u = E{u(?, )} E argmin ghom (u):= (e--f g(, .)*P(dg))(u)u 
E HJ , 

and one might reasonably expect that for v sufficiently large, 

V E argmin{(v-1 * [g(se, .)#.. #g(v, .)])(u)lu e Ho} 

would approximate i. 
Let us now proceed and sketch out a justification that will also suggest a way to actually 

carry out these calculations. The following two theorems focus on some relevant properties 
of the Legendre-Fenchel transform. Theorem 2.1 emphasizes, in (ii)-(v), the duality between 
the epi-operations above and the standard operations of addition and multiplication; for 
the proofs one could consult Castaing and Valadier (1977), Rockafellar and Wets (1998), 
and Attouch (1984). Recall that an extended real-valued function q is called proper if 
-oo < q oo. 
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THEOREM 2.1. Let p, q: X - R be Isc, proper, and convex, where X is a reflexive 
Banach space. Then 

(i) p** = p; 
(ii) (p#q)* = p* + q*; 

(iii) (A *p)*= Ap*; 
(iv) If dom p - dom q is a neighborhood of 0, then (p + q) = p*#q*; 
(v) (Ap)* = p*. 

If q : x X -> R is a random lsc function, convex on X for all E 5, and such that its 

epi-integral with respect to the probability measure P is a (well-defined) proper, lsc, convex 
function, then 

(e- J q(, .)*P(de) = q* *(:, .)P(de), 

where q*({, ) is the conjugate of q(:, .). 

The next theorem focuses on the bicontinuity of the Legendre-Fenchel transform under 
epi-convergence; refer to ?1. A sequence of functions, qv :X ->R is equicoercive if for all 
{x^ v E N}, sup q" (x) < oo implies sup, Ixvl < oo. 

THEOREM 2.2. Let q : X -> I be Isc, proper, convex, and equicoercive, where X is a 

separable, reflexive Banach space. Then q = w-e- limv qV if and only if q* = e- limV qv*. 

qv w-e 
q~ -_ q 

*l t* 
v* e * 

q _-+ q 

Here, w-e-limv refers to epi-convergence with respect to the weak topology on X, 
whereas e-lim, refers to the epi-limit with respect to the strong topology on X*. This last 
theorem leads to a dual method of analyzing a limit function q. Namely, given a sequence 
qV, one may first pass to the conjugate sequence, qV*, find its epi-limit q*, then compute 
the conjugate again to arrive back at q. 

Now let us return to the problem at hand. For k = 1,..., v, let 

uk E argmin{g((k, u)lu e Ho}. 

By the definitions of epi-addition and epi-multiplication, 

v-l(u +... + u) = E argminHo v-l *[g(1, u)# . #g( , U)]. 

Moreover, assuming that the conditions laid out in Theorem 2.1(ii) and (iii) are satisfied, 
one has 

v- * ?[g(l, .)#. .#g(, *)] = ( E ( )) k 

where f(k, .)= g*(k, .) for k = 1,.., v. 
As expected, when the sequence of random lsc (convex) functions {g(k, .), k = 1,... } 

is ergodic, so is the sequence of random lsc (convex) functions {f(k, *), k = 1,... }. This 
allows us to apply our Ergodic Theorem to conclude that 

_E>f ' .)4Ef, E,P-a.s., 
V k=l 

where 
Ef= f f(, ) P(d:). 
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Assuming again that the conditions laid in Theorem 2.1 are satisfied as well as ghom Isc, 

(Ef)* = ghom =e- fg(, .) * P(d). 

There now remains only to appeal to Theorem 2.2 to obtain 

ghom = w-e - lim (- * [g(', .)#.. #g(W%, .)]) 

= w-e- lim (v-l[f (, .)+... + f(. , )])*. 

Following this procedure, the homogenized functional may be evaluated (numerically) and 
its properties can be analyzed, and this for a much larger class of problems than is possible 
via other suggested methods. Moreover, the convergence of minimizers of epi-convergent 
functions (Theorem 7.2) implies the (weak) convergence of solutions u' to the homog- 
enized solution u. Similar techniques may also be employed to compute the effective 
coefficient a(.). 

EXAMPLE 3: SOLUTION PROCEDURES FOR STOCHASTIC OPTIMIZATION PROBLEMS. 

Stochastic programming models deal with decision making under uncertainty. We consider 
the following simple, but quite general, formulation of a stochastic programming problem: 

min E{f (, x)} = Ef(x), 

where 
* f : x Rn" - R = [-o0, o], f(S, x) is the "cost" associated with a decision x when 

the random variable g takes on the value s; 
? S is a RfN-valued random variable with possible values in S C IRN; and 
? Ef : Rn -* R, the function to be minimized, 

is defined by 

Ef(x= ( (, f( x) P(d(). 

The standard two-stage and multistage stochastic programs with recourse (Kall and Wallace 
1994, Birge and Louveaux 1997) can be recast in this format; cf., Wets (1989) for details. 

Minimizing Ef on IR is basically a nonlinear programming problem, but to evaluate 
the function, to obtain its gradients or subgradients, requires N-dimensional integration. 
Except when N ; 1, the N-dimensional integration can be a real challenge. Moreover, 
this integration should not involve an unreasonable amount of computational effort since 
evaluating the function f(., x) might itself require extensive computations. 

One way to proceed is to replace the given problem with a sampled one. Suppose 
I,..., s" are samples of :. One can view 

1 v 
min - f (6k, x) such that x R 

V k=l 

as a "sample" of the stochastic optimization problem. Hopefully, the solution xv of such a 
problem will provide an acceptable approximation of a solution x* E argmin Ef. To justify 
such an approach, one might appeal to the Law of Large Numbers for random lsc func- 
tions (Arstein and Wets 1995), provided the samples are iid. But there are some instances 
when one cannot assert independence. At best, one might be able to claim stationarity. This 
is typically the case when dealing with applications where the uncertainty comes from the 
environment, cf., King et al. (1988) for an application dealing with lake eutrophication man- 
agement and Salinger (1997) for an application involving the control of water reservoirs to 
generate hydropower. In this more general situation, one can appeal to our ergodic theorem 
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and the convergence of the minimizers of epi-converging functions (Theorem 7.2) to claim 
(under certain additional conditions) that 

^x(^ 4{V) E argmin - i f(k x) 
v k=l 

converge almost surely to x* E argmin Ef, assuming that argmin Ef is nonempty. 

3. Scalarization of random Isc functions. The setting in which we work is that intro- 
duced in ?1: (X, d) is a Polish space with a the Borel field on X and (5, 5, P) a prob- 
ability space, but we do not assume, as in ?1, that YS is P-complete. The definition of a 
random lsc function needs then to be slightly more general; the definitions coincide if YS is 
P-complete, see below. Now it will be shown that in this setting, a random lsc function f 
is completely identified by a countable collection of extended real-valued random variables 

f <> {rrx,p lx E R, p E Q+}, where R is a countable dense subset of X. 

We shall refer to such a vector {7r ,p, x E R, p E Q+} as a scalarization of f. Vogel (1995) 
already recognized that scalarization, to which she refers as "the approach via pointwise 
convergence," could play a role in obtaining a Law of Large Numbers for random lsc 
functions. 

We begin with the notion of a random set. A set-valued mapping S: 3 = X is a random 
set if it is a measurable mapping, i.e., for any open set O C X, 

{ E Sls()no 0} =: s-l(o) E. 

It is a random closed set if, in addition, it is closed-valued, i.e., for all s E 5, S(s) is closed. 
One can then also view S as a function from 5 to cl-sets(X), the (hyper)space of closed 
subsets of X. The Effrds field on cl-sets(X) is the r-field W(X) generated by all sets of the 
form 

= {C E cl-sets(X)|CnO o0}, O X, open; 

cf. Effris (1965) and Beer (1993). It is clear that the closed-valued mapping S: E =4 X 
is measurable if and only if it is (S?, W(X))-measurable when viewed as a function from 

(S, 5) to (cl-sets(X), W(X)). 
We will need some known properties of random sets (Castaing and Valadier 1977, Him- 

melberg 1975, Salinetti and Wets 1986) listed here below. The first one follows directly 
from the definition of a random set. 

PROPOSITION 3.1. Suppose S: 5 = X is a random set and for all E , let cl S() = 
cl (S(5)). Then cl S: =4 X is a random closed set. 

PROOF. For O C X open, clearly 0 n S(:) : 0 if and only if O n cl S(:) $ 0. o 
That measurability is preserved under projections might not be surprising, but it is a 

nontrivial result: 

THEOREM 3.2: MEASURABLE PROJECTION THEOREM (Castaing and Valadier 1977, 
Theorem III.23). Suppose Y is P-complete and G is an Y 0 a-measurable subset of 
3 x X. Then, prj? G E SY, i.e., the projection of G on S is Y measurable. 

And finally, a series of measurability criteria for closed-valued mappings that will set the 

stage for our scalarization result. 

PROPOSITION 3.3. A closed-valued mapping S 5: =s X is a random-closed set if and 

only if S-1 (D) E Y for all D E a, where 95 is any one of the following collections of subsets 
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of X: 

(a) 9 = the open balls B?(x, p) = x' e X d(x', x) < p}; 
(b) a = the open rational balls B?(x, p) with x E R, a dense countable subset of X, and 

P E Q+. 
Moreover, if X is a-compact or if YS is P-complete, then a5 can also be any one of 

the following collection of subsets of X: 

(c) 5 = the closed sets C; 
(d) a = the closed balls B(x, p); 
(e) 5 = the closed rational balls B(x, p) with x E R, a dense countable subset of X, 

and p e Q+. 

PROOF. Clearly, S measurable ===(a) ==- (b). Since X is Polish, every open set O can 
be written as the countable union of open rational balls: With xv E R and pv E Q+, one has 

00 00 

0 = U B?(XV, pV), S-1l() = U s-l(o(x p)) e Y. 
v=1 v=l 

Also, (c) ==- (d) == (e) does not need proof. An argument similar to the one above 

yields (e) == S measurable. 
Now let us assume that X is r-compact and show that S measurable ==- (c). Every 

closed set C C X can now be written as the countable union of compact sets {BV, v E j} 
from which follows that S-'(C) = U,, S- (B). It now suffices to observe that for all 
v E N, S- (B") E YS. Indeed, even with X just a metric space, given any nonempty, compact 
set D C X, define the open sets D" := {x E X I d(x, D) < l/v} for v E N. Since S(S) nD D 
0 if and only if S() n D" # 0 for all v E N, we have S- (D) = nV S-I(D"). Hence, 
S-1(D) is the intersection of a countable collection of measurable sets, and therefore is 
itself measurable. 

Finally, let us assume that S is P-complete and again show that S measurable == (c). 
Let R be a countable dense subsets of X. Since S is closed-valued, x E S(() if and only if 
for all p E Q+, there exists xp E R, such that x E B?(xp, p) and S(:) n Bo(xp, p) 7 0. This 
means that 

gphS = {((, x) E x Xlx E S(s)} 

= n U[s-l( (x, ))x B(x, p)]. 
peQ+ xeR 

is a 5 0 X -measurable subset of E x X, where a is the Borel field on (X, d). Indeed, by 
(b), each set S-1(Bo(x, p)) x B?(x, p) belongs to SF x a and gph S can be written as the 
countable intersection of a countable union of sets of this type. To complete the proof, one 
appeals to the Projection Theorem 3.2 which yields 

S- (C) = prj (gph S n (5 x C)) E so, 

since gph S ( x C)E S 0 ?&. 1 
Let lsc-fcns(X) denote the space of extended real-valued, lower semicontinuous (lsc) 

functions from X to R. A random Isc function is a function f: -> lsc-fcns(X) such that 
the associated epigraphical mapping, 

Sf : 3 = X x R with Sf(:) := epif(), ) = {(x, a) E X x [R a > f (:, x)}, 

is a random closed set. Note that a necessary (but not sufficient) condition for a function f: 
5 -* Isc-fcns(X) to be a random lsc function is that for each fixed x E X, the function - 
f(,, x) is measurable (Rockafellar and Wets 1998, Proposition 14.28). It will sometimes 
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be convenient to identify an lsc function f(e) with its bivariate representation (,, x) - 

f(S, x). If f is a random lsc functions, then (,, x) H f (, x) is 50 ( A-measurable. On 
the other hand, if the bivariate representation of a function f: -- Isc-fcns(X) is such that 
(6, x) H f (, x) is S 0 a-measurable and (H, 5e) is P-complete, then f is a random lsc 
function (Rockafellar and Wets 1998, Proposition 14.34). 

The concept of a random lsc function is due to Rockafellar (1976), who introduced it 
in the context of the calculus of variations under the name of "normal integrand." Further 
properties of random lsc functions are set forth in Rockafellar and Wets (1998, Chapter 14), 
Vervaat (1988), and here in ?4-6. 

In view of the definition of a random lsc function, there is a one-to-one correspondence 
between the lsc functions on X and the closed subsets of X x R that are epigraphs. The 
Effros field on lsc-fcns(X), simply denoted 2, can be identified with the restrictions of the 
Effr6s field on cl-sets(X x R) to the closed subsets of X x R that are epigraphs. e not only 
includes all sets of the form 

(o,a) := {f lsc-fcns(X) I inff < a, 0 C X, open, a ER, 

but also can be generated by these sets; simply observe that info f < a if and only if epi f 
misses the open set O x (-oo, a), cf. Salinetti and Wets (1986) for example. 

As mentioned at the outset of this section, random lsc functions can be characterized in 
terms of certain random vectors (with entries in Ri), to which we refer as "scalarizations" of 
the random lsc functions. The following theorem equates the measurability of lsc-fcns(X)- 
valued random mappings (implying that these mappings are random lsc functions) with the 
measurability of the corresponding scalarizations. Further probabilistic properties attainable 
through scalarization will be uncovered in ??4-5, and exploited later in ?8 in the proofs of 
the ergodic theorems. 

THEOREM 3.4: SCALARIZATION OF RANDOM LSC FUNCTIONS. Let f : -> lsc-fcns(X), 

and for D C X: let rrD(S) := infED f (, x). 

Then, f is a random Isc function if and only if for all D E a, TD is measurable where 5 
is any one of the following collection of subsets of X: 

(a) 9 = the open sets O; 
(b) a = the open balls B?(x, p) = {x' E X I d(x', x) < p}; 
(c) 9 = the open rational balls B? (x, p) with x E R, a dense countable subset of X, and 

p E +. 
Moreover, if X is o-compact or SY is complete, then a5 can also be any one of the 

following collection of subsets of X: 

(d) 5 = the closed sets C; 
(e) 95 = the closed balls B(x, p); 
(f) 5 = the closed rational balls B(x, p) with x E R and p E Q+. 

PROOF. Let (m) stand for the property: f is a random lsc function. We show that 

(m) = (a) == (b) == (c) = (m). 

Only the implications (m) == (a) and (c) == (m) need proof. 
(m) == (a): For any open set O C X and a E lR, 

'To((-o, a)) = {( E |info f(, ) < a} 

= { E ISf() n (o x (-o0, a)) Z} = Sfl(0 x (-00, a)) E S 
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since O x (-oo, a) is open and Sf is a random closed set. In particular, it implies Tr = ITx 
measurable. 

(c) ===- (m): Because for each 4 E 3, Sf(f) is an epigraph, for any set D C X. 

{( E I | TD() <) } = {( E I sf() n (D x (-oo, I)) ) 0} 

= { E I Sf(3)n (D x (a, 0)) o0} V a < . 

It is assumed that these sets belong to Y when D is an open rational ball. Since every open 
set O C X x R can be written as the countable union of sets of the type O = B0?(x, pV) x 

(a", /3) and Sf (Ov) E S, it follows that 

Sf'() = U Si'(OV) E Y, 
v=1 

which, by Proposition 3.3(b), implies that Sf is measurable. It is a random closed set since 
the lower semicontinuity of f implies that Sf is also closed-valued. 

Now, let us assume that X is (-compact or 5 is P-complete and let us show that under 
either one of these additional assumptions, 

(m) == (d) == (e) -== (f) == (m). 

Again, only the implications (m) == (d) and (f) ===( (m) need proof. 
(m) =- (d): It has already been established that if f is a random lsc function, r = rx 

is measurable. Given any closed set C C X, the function g with 

g( x)=f(: x) if xC, 
g(,X) 0oo otherwise, 

is again a random lsc function, since, in view of Proposition 3.3(c), when X is (r-compact 
or Y5 is P-compete, for any closed set D c X x R, 

Sg (D)= { E I Sf() n(C x R )nD z 0} = Sf'((C x R) n) E 

and thus Sg is measurable and clearly closed-valued. Hence, 4 e- infg(c, ) = rrc(:) is 
measurable as noted at the end of the proof that (m) == (a). 

(f) ==> (m): It suffices to show that (f) = (a) since (a) ==> (m). Every open subset O of 
X can be written as the countable union of closed balls: With x" E R and pv E Q+, one has 

00 

0 = U (xv, P'), To = infv TB(xv ,p), 
v=1 

i.e., 7rO can be obtained as the infimum of a countable collection of measurable function 
and consequently is measurable. O 

COROLLARY 3.5: COUNTABLE SCALARIZATION. Let f: - lsc-fcns(X). For x E R, a 
countable dense subset of X, and p E Q+, define 

,x, p(S) := ITBo(x,p) () = infx,Eo(x, p f (, x'). 

Then f is a random Isc function if and only if the countable collection of functions 

{r7Tx,-: * R | x E R, p E Q+} 

are measurable. 
When either X is a-compact or 5Y is P-complete, such a countable collection can also be 

obtained by replacing the open balls {B?(x, p) I x E R, p E Q+} by their closed counterparts. 

PROOF. This is just a reformulation of parts (c) and (f) of the theorem. O 
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4. Lower semicontinuity of conditional expectations. We still work with (X, d), a 
Polish space, and (5, S, P), a probability space. We are going to show that given a random 
lsc function f: E -> Isc-fcns(X) and any a-field R c Y, there always is a version of the 
conditional expectation of f with respect to 9 that is lsc for all 6 E E. The proof relies 

heavily on the scalarization results of the previous section. 
Recall that a function g: X -> R is Isc at i if for all xv -- , lim infv g(xv) > g(x). Equiv- 

alently, g is lsc at x if for some (decreasing) sequence {Vv C X, v E N} of neighborhoods 
of x such that V" D Vv+l and n,EN V = {x} 

pv(x) := infxEV g(x) / g(x). 

Furthermore, g is Isc if and only if epig C X x R is closed. 

PROPOSITION 4.1. Let R be a countable dense subset of X. A function g: X --* R is Isc 
at x if and only if there exist xv E R and pe E Q+, such that xv -> x, p" \' O, d(x', x) < p" 
and 

inf g(x) =: px,, p / g(x). 
XEBO(XV, pV) 

PROOF. Simply observe that one can then choose a decreasing (sub)sequence, 

{vv := B(x", p'), xv E R, p E Q+}, 

of neighborhoods of x, such that nO V' = {x}. And g is lsc at x if and only if inf,, g / g(x), 
as recalled above. O 

The existence of an lsc-version of the conditional expectation will be proved under a 
technical assumption that is also required to obtain the Ergodic Theorem 8.2. 

DEFINITION 4.2. A random lsc function f: -- Isc-fcns(X) is locally inf-integrable if 
for every x E X there is a closed neighborhood V of x such that for the (scalar) function 

F rrv(t ) := inf f (, x'): E{7rv} > -Co. 
x'EV 

From f a random lsc function, it already follows that for any closed set V, the function 

s infv f(, *) is S-measurable (Rockafellar and Wets 1998, Theorem 14.37). 

THEOREM 4.3. Let f : E -- Isc-fcns(X) be a locally inf-integrable random Isc function 
and R C SF a a-field. Then, there exists a version E f of the conditional expectation of f 
that is lsc-fcns(X)-valued, i.e., for all : E 5, E~f(5) is an lsc function. 

Moreover, there is an Isc-version with the following property: For all 4 E 3' with 5' C 3 

of P-measure 1, and x E X, 

Eaf(~, x) = lim irx,p (0), 

where xv -> x, p" \ 0 and 7rT p, is a version of the conditional expectation of the scalar 

function, 
,XV p (() = inf{f (, x') I' E Bo?(x, pp)} 

for B?(xp, p"), the open ball centered at xv of radius p'. 

PROOF. We actually prove the second assertion which implies the first one. Let R be a 

countable dense subset of X and define 

{rx,p() = infBo(x,p) f() | x E R, p E Q+}, 

a scalarization of f. Let rrf := E{rx ,p} be a version of the conditional expectation of 

'x,p with respect to R. 
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If rx,p < 7rx,p, P-a.s., then rrP < r Tp, P-a.s. The inequality might fail on a set of 

measure 0. Since there are only a countable number of possible pairs (x, p, x', p'), the union 

of all such sets, i.e., on which the inequality does not hold, is of measure 0. So, let E0 be 

the subset of E of P-measure 1, such that 

Tx,p - Trx,' on o whenever x,p < rx, p,P-a.s. 

Given x E X, choose xv -> x with xv E R and pV \ 0 with pv E Q+, such that B?(x, p^) 
is a neighborhood of both xv and x, and B?(x+l, pV+l) C B?(xV, pV). By the lower semi- 

continuity of f(c, ) at x, we know from Proposition 4.1 that vx,,pv() / f(:, x) for all 
4 E . In view of the above, for all E E 0, the sequence {X,pv (6), v E N} is monotone 

increasing. For : E , define 

f )(:= X) lim Xv () V_-)00 

Let us first observe that the value assigned to f (, x) is independent of the choice 

of the sequences xv - xg and pv \ 0. Indeed, let xv - x and /V \ 0 be another pair of 

sequences satisfying the conditions: x" E R, pV E Q+, B?3O(, p") is a neighborhood of both 

xY and x and BO?(x+l, pv+l) C BO?(x, pV). Because both sequences of balls are decreasing 

neighborhoods of x, for v sufficiently large, B?(xV, pV) D B?(x^, pt) for some /u > v and 

vice-versa. This implies that on 0o, o ,pv <rr 7r, for some ,u > v and vice-versa. Thus, 
both sequences must have the same limit. 

Since rTXV,pv / f (, ), the Monotone Convergence Theorem for conditional expectations, 
appealing here to local inf-integrability, implies that f is actually a version of the condi- 

tional expectation of f. 
We show next that for all E E S0, f/(, *) is lsc. Consider a sequence xv -> , x" E R, 

and pick a subsequence and pv \ 0, p" E Q+, such that B?(xV, pV) is a neighborhood of 

both xv and x, and B3(xV+l, pv+l) C B?(x', pV). Then, 

f (., x) > Tr p, on So. 

Taking liminf of both sides yields liminf, f (., xV) > f9(., x). Since this holds for any 
such subsequence of x" -> x, it must hold for the sequence as well. 

So far, we only considered sequences xv -- x with xv E R. In the case of an arbitrary 

sequence x" - x with x" E X note that it is always possible to find a sequence xv -- x 
with xv E R, d(xV, x") going sufficiently rapidly to 0 so that with an appropriate choice 
of pv \ 0, for all v, B?(xV, pV) is not only a neighborhood of xv and x but also of x. 
The same type of argument then yields liminf fN(), xV) > f9(-, x). Thus, for all s E 0, 
f (, ) is lsc. 

Finally, for s E So, set (E-f)(i) = f(: , ) and otherwise simply set (Elf)(:) = 

clf/(:, .), where clf/(:, .) is the lower semicontinuous closure of f(: , .). The function 

E'f : S -- Isc-fcns(X) is then an lsc version of the conditional expectation of f. D 

5. Probabilistic framework. The examples of ?2 all rely on certain "stationary" and 

"ergodic" properties of random lsc functions. We will now make these properties precise 
with a description of a probabilistic framework for random lsc functions. 

To every random lsc function f one associates its distribution Pf defined by 

Pf (d) := P({( e ES | f(, ) E s`}) for s e ; 

here s4 is a collection of lsc functions. Two random lsc functions, f and g, are identically 
distributed if for all s4 E , Pf(s) = Pg(s4). The joint distribution of a finite collection 

{f1,..., fn} of random lsc functions is given, for sAl..., s, E e, by 

P{ fn(S,....fl , n) := P({A E S I fl(, ) E s l..., f (, ) E n}). 
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For a sequence {fV, v E N} of random lsc functions, let us denote by P? the probability 
measure on the sequence space (lsc-fcns(X)?, W??) that is consistent with the joint distri- 
bution of the f". The existence of such a measure follows from Kolmogorov's extension 
theorem for random lsc functions, and the fact that the Effros field is the Borel field asso- 
ciated with a topology r,c on lsc-fcns(X) that makes (lsc-fcns(X), rcw) a Polish space, as 
covered in ?6. 

Properties such as independence, stationarity and ergodicity of sequences of random lsc 
functions may now all be defined in a straightforward manner. Random lsc functions are 
said to be independent if their distributions are independent. A sequence of random lsc 
functions {f , v E N} is pairwise independent if for any pair k, I E N and s1, s2 E , 

Pfk,(fl(s , 2) = 
Pfk(= )Pfl(2)? 

The sequence is independent if for any finite subcollection, {f"l,.... f , k E NJ}, 

PfVl,...,fvk (S1,* * ... k) = ilPfVi (Ai) for any sets AI,. .., k E e. 

DEFINITION 5.1: IID AND STATIONARITY. A sequence, {fV, v eE J} of random lsc func- 
tions is iid (independent and identically distributed) if it is independent and for any k, 1 e N, 
fk and f' are identically distributed. The sequence is stationary if its joint distributions 
are invariant under shifts in the sequence, more precisely, for any finite subcollection 

{f"V,..., fk }, k E N, any 1 E N and any s1,.... sk E ', one has 

Pfvl ...fvk (sl, . ., s k) = fPf+., vk+' (A1 . - . ,k)- 

Stationarity can also be characterized in terms of a measure preserving transformation. 
Recall that a function p : S --> is measure preserving if for all A E X9, P((-1 (A)) = P(A). 
If f is a random lsc function, one verifies easily that the sequence {f, fo?p, fo/o2,. .. } is 

stationary. In fact, every stationary sequence of random lsc functions can be redefined in 
terms of a (single) random lsc function and a measure preserving transformation: 

Say {f", V E f} is a stationary sequence of random lsc functions and P? the measure 
induced on (lsc-fcns(X)<, W). Redefine the fv as follows: 

f : lsc-fcns(X)` -> sc-fcns(X) with fv(.) := =. 

i.e., the vth element of the sequence ; = (I, t22,... ) E lsc-fcns(X)-. The new sequence 
{f , v E N} is stationary and has the same joint distributions as the original one, but now 
with respect to a new probability space. Letting p : lsc-fcns(X) -- lsc-fcns(X)I be the 
shift operator, 

p(?;l, ;2,...):=(2, b3 ...), 

and defining f :lsc-fcns(X)? -+ Isc-fcns(X) as f(S) = 1, one has f(qpV(r)) = v+l', so that 

f, fop, fo(2, ... , defines the same stationary sequence on lsc-fcns(X)? with respect to the 

measure preserving shift transformation rp; it is easy to check that Cp is measure preserving. 
If p : -> 3 is measure preserving, then A E &S is an invariant event if p- (A) = A 

almost surely, i.e., in terms of the symmetric difference, P(p-1 (A) A A) = 0. 
DEFINITION 5.2: ERGODICITY. Let J C ' denote the a-field of invariant events and call 

it the invariant a-field. A measure preserving map po: 5 - 3 is ergodic if J is trivial, i.e., 
for all A E J, P(A) E {0, 1}. For f, a random lsc function, the sequence {fV = f (pv(.)), v 
N} of random lsc functions is ergodic if the associated (measure preserving) shift operator 
(p on the sequence space (lsc-fcns(X),, <T, P') is ergodic. 

In the remainder of this section, we show that stationarity and ergodicity properties 
of sequences of random lsc functions are inherited by the sequences of corresponding 
scalarizations. 
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Thus, given a sequence of random lsc functions {fv : - Isc-fcns(X), v E N}, one 
can always associate, by scalarization, a corresponding sequence of vector-valued random 
variables 

{7Trp, 
v E r I x e R, p E Q+}. 

As we demonstrate next, independence, stationarity, and ergodicity properties of the 

sequence of the random lsc functions are inherited by these sequences of vectors generated 
by scalarization. To do so, we rely on Dynkin's 7r-A theorem and some of its consequences, 
which are briefly reviewed in Theorem 5.4, for details, cf. Durrett (1991). 

Instead of restricting ourselves to scalar functions obtained via minimization over balls, 
we derive the results for minimization over arbitrary open sets. 

DEFINITION 5.3. For a set fl, ?P is a r-system (of subsets of fl) if fI E P and 9P is 
closed under intersections. _ is a A-system (of subsets of fl) if it satisfies: fl E 2, B\A E Y 
for all A, B E $2, such that A C B, and A E SY whenever A = U, An for a nested sequence 
Al C A2 C *- such that An E S. 

THEOREM 5.4: DYNKIN'S 7T-A THEOREM. Let (f, s?, /-) be a probability space. 
(a) If 9P1, 2,... , Pk are independent rT-systems, then the (generated) a-fields 0r-(S9), 

oa-(3s2), .*. , a-(Sk) are also independent. 
(b) If 9 is a 7r-system and Y is a A-system that contains 9P, then o-($P) C -E. 
(c) Let 9P be a Tr-system, P1 and P2 probability measures that agree on ~9. Then P1 and 

P2 also agree on o-(P). 

For Ov open subsets of X and aC E R U {oo}, let 

?- :s = { f E lsc-fcns(X) ,ro-0 < av, Vv E N}}. 

Observe that 9P is a generating class for the Effr6s field 6 on lsc-fcns(X). Also define, the 
classes of product sets: for k E N, 

9pk=px x...xP (k times), 

and observe that 

a- (gk) = k = .. , 

the r-field generated by the product of k copies of W. 

LEMMA 5.5. For all k E , gpk are ir-systems on (lsc-fcns(X))k. 

PROOF. For any k E N and i E {1,...., kone has 

4i := {f E lsc-fcns(X) I rT, < oo V v E N} = lsc-fcns(X), 

and isi E P whenever {O^, v E N} are open subsets of X. So, Hik=1 i = (lsc-fcns(X))k. 
whereby (lsc-fcns(X))k E 5k. Now, for arbitrary collections of open subsets of X and scalars 
in 1 U {oo},{(Ol, a, a, v E } and {(Ov, a'), v e }, let 

si := {f E lsc-fcns(X) I| Tt < a', Vv E NM E , 

g2 := {f E lsc-fcns(X) I rro < a", Vv E Ni} E 9. 

Then, 
sI nAs2 = {f E lsc-fcns(X) I T,O < av, V v E , i = 1,2} E a, 
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whereby $3 is a iiT-system. For k E R, i = 1,... k, let S, E e9P and W1':= r1ks'J 

similarly 2d2 H/k sV2 Then, using the fact that 9 is a iiT-system, we obtain 

k 

,41 ~~2= n ff(sl n j 
E 
~ jk 

as claimed. E 

THEOREM 5.6. Let (X, d) be a Polish space, (E, SY, P) a probability space, and f1, f2 
random lsc fuinctions defined on t. Then, f' and f2 are identically distributed if and only 
iffor all 0" open subsets of X, a" E R U {oc}, v E N: 

P{6 E A I T(O ) 6 a", Vv E NJ =Pie E I ( <a", V V E NJ. 

PROOF. Suppose f' and f2 are identically distributed. Then, for all S4 E W, 

P{i E J f ' (Y, ) E sWJ = P{5 e f2(E,E) e 

hence this holds in particular for the sets 

Si = {f E lsc-fcns(X) I 7T,, < a", Vv E RI. 

For the reverse direction, suppose that for all V E N, 0" open subsets of X, a" E RW U {oo, 
one has 

P{l e E I i1 7T' ) < a", Vv E NJ =P{e E T (e) a', VVE NJ. 

For i = 1, 2, let p1t be the measure induced by fi on e, i.e., for .W E W, Ai (Sd) = P{ E 
02 41 fi5, -)e sdl. Then, by supposition, /pt = Ak on 93. Since P 

generates the Effr6s field, 
applying Theorem 5.4(c), yields AI = A 2 on W. L 

THEOREM 5.7. Let (X, d) be a Polish space, (,Sf, P) a probability space, and 
{f", v E NJ a sequence of random lsc functions defined on '. Then, the sequence 
{f", v E I] is independent if and only if for all k E R, indices f ,. 4i,k scalars 
ac.... , 

v 
ERU tool and 0 ...... 0" open subsets of X, v E N, 

k k k 

In particular, for any open sets 0 C X, the sequence {i7T, v E N] is independent whenever 
{f", v E NJ is independent. 

PROOF. Suppose {f", v E NJ is independent. Then for all k, i E N, indices l e, ik, 

for all s4i E , i = 1,..., k, 

k 

P16 E 
* 

I f"(e, -) E s4i' i = I,. , k] = HlP{eE I fe,( , )E dil, 
i-I 

hence this holds in particular for the sets 

Wi = {f E Isc-fcns(X) I '7Th < a' VV E NJ. 

Suppose now that the asserted identity holds for all k E N, indices El, ik, scalars 
.c4 a' inD RU oc, and0 . Q, open subsets of X, V EN. Fix k E R, el,. k E 

N, and let 

1:= sets of the form e E 8 1 ? a,, 
< v E EI]. 

gk is a 7T-system and or-(2Pi) = ao(f C). The independence of the o-(fei) follows from 
Theorem 5.4(a) which implies that the sequence {f", i E NJ is independent. E 
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COROLLARY 5.8. Let (X, d) be a Polish space, (,, S, P) a probability space, and 
{f , v E IN} a sequence of random Isc functions defined on 5. Then, {f , v E JN} is iid if 
and only if the two following conditions are satisfied: 

(a) For any pair f', fk, 

P{j E I |ro(j) < a' V v E N} = P{( E I ( ') < v, V E }, 

Ov open subsets of X and av E 1 U {oo}, v E N; 
(b) For all k E N, indices 1 ...k, , scalars a,...,a R U {oo} and O. . , 0 

open subsets of X, v E N, 

k 

Pt 3| E 
' 

( I 7i (6) < a', i = 1, .. ., k, Vv E NJ}= P E -I P{ (f) < taVv E J}. 
i=1 

In particular, if {f , v e N} is iid, then {7r} is iid for any 0 an open subset of X. 

The next two theorems establish the stationarity and ergodicity of a sequence of random 
lsc functions through scalarization. 

THEOREM 5.9. Let (X, d) be a Polish space, (, S, P) a probability space, and 
{ft, v E N} a sequence of random Isc functions defined on E. Then, {f', v e N} is station- 
ary if and only if for all k, r E N, indices et, ... k E N, scalars a, ..... av E R U {oo 
and O, ..., Ok open subsets of X, v E N, 

PjS E ? I| reo () < a', i = 1,..., k, V v] = P{( E | io+r() < a, i = 1, . . , k, Vv. 

In particular, for any open sets 0 C X, the sequence {tr, v e NJ} is stationary whenever 
{fV, v E J} is stationary. 

PROOF. Suppose {fV, v E N} is stationary. Then, for all k, r E N, indices l, ..., ek, 
and for all si E , i = 1,..., k, 

P{ E I f E i, i = 1,..., k} = P{ E fei+r(, ) i, i = 1... k}, 

hence, this holds in particular for the sets 

si = {f E lsc-fcns(X) O| ro < a c Vv E N}. 

Suppose now that for all k, r E N, indices e, ... k, scalars a, ....., a R U {oo}, and 
0(,.... O' open subsets of X, v E N, 

P{f E A^ ^ 1V"( < a, i = 1,i k, Vl = P{ E I | r () < a, i = 1 ...k, V }. 

For fixed k, r, ei E N, i = 1..., k, let A1 be the measure induced on Wk by (fe, ..., fk). 
Let /L2 be the measure induced on Wk by (fel+r . . , fek+). By supposition, A, = i2 on 
*k. Hence, by Theorem 5.4(c), /,L = ,2 on Wk. E 

THEOREM 5.10. If {fo0DV, v E N} is an ergodic sequence of random Isc functions, then 
for all open 0 C X, {1Tropop, v E N} is an ergodic sequence of extended real-valued random 
variables. 

PROOF. The shift operator, p : lsc-fcns(X)l -+ lsc-fcns(X)? is ergodic, and 7ro defined 
on lsc-fcns(X)? by iTo()) := info l is measurable. Hence, the sequence {1T,oq0}, is 
ergodic, and equivalent to the original sequence. a 
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6. Kolmogorov's Extension Theorem. Let us now turn to Kolmogorov's Extension 
Theorem for (lsc-fcns(X)?, T??). Because random lsc functions can be identified with ran- 
dom closed sets defined on (3, S?, P) with values in (X x lR), let us derive the result in the 
following framework: Given a sequence {S" : X, v E N} of random closed sets with X 
a Polish space, let us denote, for every v, the distribution Pv of S", i.e., 

P'(s4) := P({( E 5 I S(5) E s}) for s4 E t(X), 

and the joint distribution of a finite collection {S,, S"k } of random sets is then 

P ...... ..Sk... VPI,..., , --dk-) := P({( E I S1(E) E ., E k}) 

for s, I..... k E W(X). 
Assuming it exists, let us denote by P" the probability measure on the sequence space 

(cl-sets(X)?, 9(X)?) that is consistent with the joint distribution of any finite subcollection 
of random closed sets {S'1,..., Sv"}. To assert the existence of such a measure, one usu- 
ally appeals to Varadarajan's version of the Kolmogorov Extension Theorem (Parthasarathy 
1967, Theorem V.5.1): 

THEOREM 6.1. Let {YV, v E J} be random variables defined on (3, S, P) with values 
in a Polish space (Z, r) and A the associated Borel field on Z. Then there exists a unique 
measure ,L?? on (Z?, '??) that is consistent with the joint distribution of (Y" ,..., y"k) for 
any finite subcollection of indices { 1, ..., k} C N. 

However, this is not quite our situation. At this stage, we do not even have a topology 
on cl-sets(X) that would allow us to construct the Borel field on cl-sets(X). It turns out 
that the Effros field is the Borel field generated from both the Fell topology, associated 
with (Painleve-Kuratowski) set convergence, and by the Choquet-Wijsman topology, asso- 
ciated with the pointwise convergence of the distance functions (Beer 1993). While the Fell 
topology is the right one for set and epi-convergence (cf. Theorem 1.1), it is the Choquet- 
Wijsman topology that renders (cl-sets(X), Tc,) a Polish space, heading us towards the 
validation of the Kolmogorov's Extension Theorem that is required here. We elaborate on 
these statements in what follows. 

The Fell topology rf (Fell 1962) on cl-sets(X) is the topology generated by a subbase 
consisting of sets of the form 

10 = {C E cl-sets(Y) I Cno o0}, OcY, 0 open, 

and 
c, = {C E cl-sets(Y) I CnK = 0}, K C Y, K compact. 

That sequential rf-convergence on cl-sets(X) corresponds to set convergence of a sequence 
of closed subsets of a first countable Hausdorff space (hence a Polish space) was first shown 
in Francaviglia et al. (1985), and a straightforward proof of this fact can be found in Beer 

(1993). 

PROPOSITION 6.2. 9(X) C ?f, where Af is the Borel field on cl-sets(X) when it is 

equipped with rf, the Fell topology. 

PROOF. This is an immediate consequence of the fact that the sets %co in the subbase 
for the Fell topology generate T(X). O 

The Choquet-Wijsman topology rc, (Wijsman 1966, and Choquet 1966) on cl-sets(X) is 
defined in terms of the distance functions: dc(x) := infyEc d(x, y), where d is the metric on 
X; by convention: d0(x) = +oo. This topology rcw, consistent with the pointwise conver- 

gence of these distance functions, is generated by a subbase consisting of sets of the form 

x,a _ := {C E cl-sets(X) I dc(x) < a}, x E X, a > 0, 
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and 

Cx,a,+ := {C e cl-sets(X) I dc(x) > a}, x e X, a > 0. 

One has Cv -cw C if and only if dc,(x) -> dc(x) for all x E X; for more about this 

topology, see Beer (1993). It is known that the Choquet-Wijsman topology is finer than the 
Fell topology (Beer 1993). This immediately implies the inclusion, 

if C Acw, 

where ?cw is the Borel field on cl-sets(X) when it is equipped with the Choquet-Wijsman 
topology. 

Hess (1986) showed that the Borel field generated by the Choquet-Wijsman topology is 
the Effros field, but for the hyperspace of closed nonempty subsets of a separable space. 
The empty set in cl-sets(X) corresponds, in the epigraphical setting, to the function, f 
oo. Therefore the empty set cannot be excluded from our considerations. Nevertheless, it 
can easily be shown that ?cw = W(X) for cl-sets(X). For example, by referring to a fact 
mentioned by Beer (1991): Let cl-setso0(X) denote the hyperspace of closed subsets of X, 
not including the empty set. 

PROPOSITION 6.3: BEER 1991. Suppose Ta is a topology on cl-sets(X) such that the 

Borelfield on cl-sets0o(X) generated by the Ta-open sets is the Effros field on cl-sets0o(X). 
Then, W(X) is the Borelfield on cl-sets(X) generated by the ra-open sets if and only if {0} 
is a Borel subset of cl-sets(X). In particular, this is true if {0} is ra-closed. 

THEOREM 6.4. On cl-sets(X), 6(X) = cw. 

PROOF. We know from Hess (1986) that on cl-sets0o(X), W(X) coincides with the Borel 
field generated by rcw. In view of the preceding proposition, it suffices to verify that {0} 
is rcw-closed, and this follows immediately from the fact that the complement of the empty 
set can be written as the union of open sets in (cl-sets(X), rcw), viz. 

cl-sets#0(X) = U U {C E cl-sets(X) I dc(y) < a}. 
yeX a>O 

Hence, {0} is rcw-closed. O 
So far, we have established the following string of inclusions and equalities, 

c(X)C Af C Acw = e(X), 

which tells us that the Borel fields for both the Fell topology and the Choquet-Wijsman 
topology coincide with the Effros field. 

To be able to apply Theorem 6.1, there only remains to establish that (cl-sets(X), Tcw) is 
a Polish space. In fact, this is settled by the following result of Beer: 

THEOREM 6.5: BEER 1991. Suppose (X, d) is a Polish space, and (cl-sets(X), rTc) is 
the hyperspace of closed subsets of X equipped with the Choquet-Wijsman topology. Then, 
the (hyper)space (cl-sets(X), Tcw) is Polish. 
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From this theorem, (X) = Af, Theorem 6.1, and the fact that random Isc functions can 
be identified with random closed sets (whose values are closed epigraphs), one obtains: 

THEOREM 6.6: KOLMOGOROV'S EXTENSION THEOREM. Let {f : (, S, P) -> 

lsc-fcns(X), v e )N, where (X, d) is a Polish space, and let W be the Effros field on 
lsc-fcns(X). For all v, let P" be the distribution induced by fv on (lsc-fcns(X), :). 
Then, there exists a unique measure P? on (lsc-fcns(X)-, Woo) that is consistent with the 
family of measures (p1, P2,....), i.e., whose finite dimensional projection yield the finite 
dimensional distributions. 

7. Epi-convergence. We are going to need a number of properties of epi-convergent 
sequences of functions. Recall that for functions {g, g' :X - > R, v E N} epi-convergence, 
written gV ->e g means 

? (i) Vx ~ x, liminf g_ gV(xY) >g(x); 
? (ii) 3x 

- x, such that limsup,,oo g(x) < g(x), 
for all x e X, cf. Definition 1.2. When conditions (i) and (ii) are satisfied at some x, it is 
convenient to say that the functions gV epi-converge to g at x. Epi-convergence at a point 
x can also be characterized in terms of upper and lower epi-limits. Let JA(x) denote the 

neighborhood system of x. 
DEFINITION 7.1. The lower and upper epi-limits of a sequence of functions {g, g : X 

R, v e 1} are defined by, 

e-lim inf g(x) := sup lim inf inf gV(y), 
VEN(x) VO00 yEV 

e-limsup g(x) := sup limsupinf g(y). 
VEJr(x) voo yEV 

If e-lim sup gV = e-lim inf gV = g, then g is the epi-limit of the sequence {gV}^EN. 
It follows from Definition 7.1 that the upper and lower epi-limits are always lsc. Epi- 

convergence of gv to g corresponds to the set convergence of epigV to epig in the Fell 

topology (Beer 1993). It is neither implied by, nor does it imply pointwise convergence, but 
instead can be viewed as a one-sided uniform convergence. It is exactly what is needed to 
ensure the convergence of minimizers of gV to the minimizers of g, in the following sense. 

THEOREM 7.2: ROCKAFELLAR AND WETS 1998, THEOREM 7.31. Suppose {gv}VEN is a 

sequence of extended real-valued lsc functions such that gv -+e g. Then every cluster point 
of argmin gV is an element of argmin g. Moreover, if argmin g is nonempty, and there exists 
a compact K C X, such that dom gv C K, then 

argmin g = n liminf^(E- argmin g), 
E>0 

where e-argming := {x E X g(x) < infg+ e < oo}. 

Here we state only sufficient conditions for the convergence of the e-argmin. For nec- 

essary conditions, as well as conditions for the convergence of infima, consult Rockafellar 
and Wets (1998, Chapter 7), and for certain extensions of these results when dealing with 
random lsc functions, see also Artstein and Wets (1995). 

In order to obtain our almost sure epi-convergence result for random lsc functions, the 

following result based on the separability of X is essential. It tell us that epi-convergence 
needs only to be verified at the points of a countable dense set. 

LEMMA 7.3: ATTOUCH AND WETS 1990. Let f, g: X -- R with f Isc. Let R C X be the 

projection on X of a countable dense subset of epi g. If f < g on R, then f < g on all of X. 
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PROOF. The set R above exists since X x R is separable. Suppose f < g on R. This 
is equivalent to {(x, a) | a >_ g(x), x E R} C epif. Since f is lsc, epif is closed. Taking 
closures on both sides yields epig C epif, which is equivalent to f < g on X. O 

8. Ergodic theorems. The proofs of the ergodic theorems rely on the following lemma, 
which is of independent interest. It tells us that to verify the almost sure epi-convergence 
of the empirical means of a sequence of random lsc functions, it suffices to check the 
almost sure convergence of the empirical means of the vector-valued random variables 
obtained through scalarization. Local inf-integrability (Definition 4.2), already used in the 
construction of an lsc-version of the conditional expectation of a random lsc function, will 
be needed throughout; but this is not a significant restriction. 

LEMMA 8.1. Let (X, d) be a Polish space, (3, SD, P) a probability space, and C c9, 
a a-field. Let {f, f': 5 -- Isc-fcns(X) I v E N} be a sequence of random Isc functions 
with f locally inf-integrable. For x E X, p E R+, let {rr,p, rrx, p v E N} be a sequence of 
scalarizations of these random lsc functions obtained as follows: 

rTXp() := inf f(S, ) rxTp() := inf f"(5,.), B?(x,p) B?o(x,p) 

7Tx,0(() := f(f, x), Vx,o0() := fV(, x). 

Suppose that for all x E X, there exists Kx > 0, such that for all p E [0, Kx), 

- EL p(Tp() - Tx'p(S) P-a.s., 
k=l 

where 7Tr denotes a version of the conditional expectation of 7T with respect to 9. 
If there exists a countable subset R+ C X x R that is dense in epi Eaf(s) P-a.s., then 

LEfk(( .) _ 
ESf(() P-a.s. 

V k=l 

In particular, if the a-field R is independent of the a-field generated by f, then 

I v 
- fk (:,* ) _ Ef P-a.s. 

v k=l 

PROOF. Let Elf be a version of the conditional expectation of f whose values are in 
lsc-fcns(X) as guaranteed by Theorem 4.3 and such that for all s E E3, a set of measure 1, 
and x E X: Ef(S)(x) = limv, rr p(c) for xv - x and pV \ 0. Let R be a countable dense 
subset of X that contains the projection onto X of a countable dense set R+ C X x R[ that is 
dense in epi E/f() for all s E S2, also a subset of E of measure 1. Fix x E R, p E [0, Kx) 
and let 5Xp C Z be such that P(x,p) = 1 and 

1 v 
-E<X ,p(5) XX (5 ) V E ,Xp,. 

k=l 

Finally, let 

o: =In32n n xp x 
- xR peQ+ 

Then P(E0) = 1, since Eo is the countable intersection of sets of measure 1. 
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Let us begin by showing that 

1 v 

?V E So : e-lim inf 1 fk ( .) > Ef (6). 
/V k=l 

For E E , x E X, one has 

1 v v 
e-liminf - fk (, x) = supliminf inf - Lfk(, x') v 

p>o v-oo x'eB(x,p) V 
k=l 

1 v 
> sup lim inf inf fk (, x') 

p>0 v-- V k=l x'B(x,p) 

1 Tk 
> supliminf (), 

lEN v---o 
1Vk=l 

where x1 x, pl \ 0, and 

V 1 E N: xl E R, pl E [0, Kx)no, x E B(xl, pl), B(x/+l, p+l) C B(xl, pl). 

For every 1, 5 E S, one has 

1 v 
liminfv - l( ) - = 

-xp 
k=l 

by assumption. Now, observing that when x' -- x and p' \ O, Trr ) / Ef (, x) for 
s E o C SE, taking the supremum over 1 E N yields 

lv 
e-liminf - Lfk(, x) > supr p(S) = E f()(x). v 

vk=1 IEN 

Hence, for all : E S0, e-liminf, k ^) EL f( : * ) (on all of X). 
Next, let us turn to the inequality involving the upper epi-limit. For E E 0 and x E R, if 

xv = x, then by assumption, 

lv lv 

limsup, - fk (, x,) = lim sup - 7 Ei EO ( S) = E f( )(x). 
Jk=l vo k=l 

In view of Definition 7.1, this is the same as for all x E R, 

(e-lim sup -f , .)) (X)< E>f(6)(x). 
v k=1 

Using the facts that Eaf is an lsc version of the conditional expectation of f with respect 
to 9, and that R is a countable dense subset of X containing the projection onto X of a 
countable dense subset of epi E9f, one appeals to Lemma 7.3 to obtain 

1v 
V E S : e-limsup - f-fk(, .) < E/f(e) P-a.s. on X. 

v k=l 

Hence, 
1v 
1 Lf'(.*) E'f(6) P-a.s. 
V k=l 
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When the a-field generated by f is independent of 9, E -f _ Ef. In that case, since 
X is separable and Ef is lsc, one can always find a countable dense subset R+ of epiEf. 
Consequently, 

Lfk(S,) 
_ Ef P-a.s., 

k=l 

as claimed. 1 
The condition, "there exists a countable subset R+ C X x R that is dense in epi Ef(c) 

P-a.s.," is certainly satisfied when R can be generated by countably many atoms (and sets 
of measure zero). Indeed, then R+ can be chosen to be the union over all such atoms a E 9 
of Xa, where Xa is a countable dense subset of X containing the projection onto X of 
a countable dense subset of epi Ef(a), and E9f(a)(x) := ff(f, x)P(df)/P(a). This 
situation occurs when there exist a countable number of sets A E Y that partition 5, and 
such that {Ip() lI E A} = A and (p: A -> A is ergodic, i.e., all SY-measurable sets B C A such 
that 0-1 (B) = B satisfy P(B) = P(A) or P(B) = 0. For a stationary sequence of random 
lsc functions, this corresponds to the ability to partition the sequence into countably many 
ergodic subsequences. 

There are also many other important cases which satisfy the assumption of the existence 
of a countable dense subset R+ of epi Ef(e) P-a.s.. For example, when epi Ef(c) is 
P-almost surely a solid set, i.e., 

cl(int(epi E-f(5))) = epi ERf(6) P-a.s., 

then any countable dense subset of X x R could fill the role of R+. This situation arises 
commonly in applications in which for each s, the function x e-> f (, x) is continuous on 
its domain (where it is finite), or more broadly when epi f(, ) is itself a solid set. 

We are now all set to state and prove our ergodic theorem. The classical version of 
Birkhoff-Khintchine Ergodic Theorem can be found in Loeve (1978), Durrett (1991, ?6.2), 
and de Fitte (1997), for example. For our purposes, we need a version that allows for 
functions that are extended real-valued. A straightforward modification of Loeve (1978, 
Theorem 33.B, Theorem 34.A) takes care of this situation. 

THEOREM 8.2. Let (X, d) be a Polish space, (E, 5D, P) a probability space, p : 5 -+> 
a measure preserving transformation and J its invariant o-field. Let f be a locally inf- 
integrable random Isc function. If there exists a countable subset of X x lR that is dense in 
epi EJf(:) P-a.s., then 

1v 

-f( Pk(f ).) 4 Ef(:) P-a.s. 
V k=l 

In particular, if (p is ergodic, then 

1 Ef( ,k(') .) 4 Ef P-a.s. 
k=l 

PROOF. For x e X and p E Q+, let r p := infBo(x,p f be the random variables obtained 
through scalarization, with 7r,0 := f(., x). Given x e X, p e +4, since Sp is measure pre- 
serving, p E Q+, the sequence {1rx,p o pv , v E N} is stationary. By the Birkhoff-Khintchine 
Ergodic Theorem for all x e X, p e Q+, one obtains 

E X x p((Pc()) < 7p(6) P-a.s., 
k=l 
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where rT- is a version of the conditional expectation of rx p with respect to the invariant 
field J. We are now in the setting of Lemma 8.1, which immediately yields 

1 
- f((pk(), ) 4 EJf(e) P-a.s. 
V k=I 

If so is ergodic, 7 is trivial, whereby J is independent of the o-field generated by f, so 
that again by Lemma 8.1, 

1 Z-f(k()k .) 4 Ef P-a.s., 
v k= 

as claimed. D 
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