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Abstract. To justify the use of sampling to solve stochastic programming problems
one usually relies on a law of large numbers for random Isc (lower semicontinuous)
functions when the samples come from independent, identical experiments. If the
samples come from a stationary process, one can appeal to the ergodic theorem
proved here. The proof relies on the ‘scalarization’ of random Isc functions.

1 Introduction

Stochastic programming models can be viewed as extensions of linear and
nonlinear programming models to accommodate situations in which only in-
formation of a probabilistic nature is available about some of the parameters
of the problem. The following formulation includes both the stochastic pro-
gramming with recourse models and the stochastic programming with chance
constraints models :

(1) min  E{fo(§,2)}
so that E{fi(§,2)} <0, i=1,...,m,
z€eR"
where

- € is a random vector with support = C RY,

- P is a probability distribution function on RY,

-fo:R"x 5 = R =[—00,00],

~fi:R"xES R, i=1,...,m,

-fori =0,...,m: Efj(x) := E{fi(§,2)} = [% fi({,z)dP(§) is assumed
finite unless {¢ | fo(&, ) = oo} has positive probability and then E fo(z) = 0.

Let’s also assume that the feasibility set
S={zeR"|Efi(z) <0,i=1,...m}Nn{z|Efo(z) < oo}

is nonempty. We are led to include the possibility that fo and E fy take on the
value oo to allow for the presence of induced constraints as will be explained
shortly.
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The two-stage version of a stochastic program with recourse reads:
min ¢ (z) + E{Q(&,z)} so that fi(z) <0, i=1,...,m,

where
Q(& x) = infy {g2(&,y) |y € S2(&,2) C R™}.

Immediate costs ¢;(x) as well as future (recourse) costs EQ(z) = E{Q(&, z)}
must be taken into account in the search for an optimal decision. In terms of
our canonical problem, fy is simply ¢;(z) + Q(&,z) and the Ef; = f; since
these constraints don’t depend on £. If S5(£,x) = 0, i.e., no feasible recourse
is available in this situation, then Q(¢,2) = co. P{§ € £|Q(§,z) = 00} > 0
means that there is a positive probability that no recourse will be available
if x is chosen as the first stage decision. The ‘induced’ constraints restrict
the choice of z to those for which, with probability 1, there will be a feasible
recourse. Multistage recourse models can be ‘reduced’ to two-stage problems
and consequently also fit our general framework, for example, cf. [1,2].

Reliability considerations lead to the inclusion of chance constraints in
the formulation of the stochastic programming problem. Usually, they are
expressed in the following probabilistic terms:

P{éeE|gu(62) <0, k=1,....¢} > a

with @ € (0,1] the reliability level, or they may include constraints on the
moments of certain quantities such as

E{gr(€,2)} + Blvar gr(€,2)]/* < 0

with (8 a positive constant. To bring the probabilistic constraints in concor-
dance with the canonical form (1), define f; as follows:

Fi(€, @) = {a -1 ifgk(§,'a:) <0,k=1,...,¢q
a otherwise.

Similarly, the constraint on the moments involves the sum of two functions

that are both expectation functionals, since var gi (€, z)(z) = E{gr(§, ) —

Egi(z)}*.

Let’s finally observe that standard nonlinear programming problems are
included as special cases of problems of type (1) since one could have f;(£,z) =
gi(z), a function that doesn’t depend on &, and then Ef;(z) = g;(x). At the
same time, stochastic programs of the type (1) can also be viewed as a par-
ticular class of nonlinear programming problems. Indeed, one can rewrite (1)
as follows:

(2) min Efo(z) so that Ef;(z) <0, i=1,...,m, z € R".

The only difference is that one makes explicit the fact that that the evalu-
ation of some, or all, of the functions Ef;, i = 0,...,m, might require the
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calculation of a (multi-dimensional) integral. This is why our concerns need
to go much beyond identifying the properties (linearity, convexity, differen-
tiability) of the expectation functionals Ef; and leaving the task of solving
(2) to the appropriate nonlinear programming package. The major obstacle
to proceeding in this manner comes precisely from the fact that evaluating
Ef; at any given z, or calculating its (sub)gradient at this z, may be a much
more onerous task than solving a typical nonlinear programming problem.

Except for some special cases when the integral [_ fi(¢,z) P(d€) is one-
dimensional, or can be expressed as a sum of one-dimensional integrals, to
evaluate this integral one must generally rely on approximation schemes with
P replaced by a discrete measure P¥ obtained either from some partitioning
of the sample space or as the empirical measure derived from a sample of the
random quantities. In this latter instance, one needs to justify that the solu-
tion derived with the empirical measure PY is, at least in a probabilistic sense,
an approximate solution. This paper deals with such a justification without
making the usual assumption that the sample points have been obtained from
independent experiments. The examples in Sect. 3 and Sect. 4 provide some
of the motivation for relaxing the independence assumption, but it is also
what is required to obtain the consistency of M-estimates for the parameters
of regression models involving constraints coming from a priori information,
cf. [3, Sect. 2].

2 Ergodic Theorem

A comprehensive and powerful technique to obtain the ‘consistency’ of the
optimal solutions of the approximating problems is to actually prove that the
approximating stochastic optimization problems themselves are ‘consistent’.
And to do this, as explained in Sect. 3 and Sect. 4, one can appeal to a general
ergodic theorem for random lsc (lower semicontinuous) functions that can be
formulated as follows: Let B be the Borel field on R", (=, S, P) a probability
space with § P-complete; the P-completeness assumption is harmless for the
application we have in mind. A random Isc (lower semicontinuous) function
is then an extended real-valued function f: 5 x R™ — IR such that
(i) the function (§,z) — f(£,z) is S ® B-measurable;

(ii) for every £ € =, the function z — f(§,z) is lsc.

Theorem 2.1 (Ergodic Theorem). Let f be a random Ilsc function defined
on ExXR", ¢ : 5 — 5 an ergodic measure preserving transformation. Then,
whenever £ — infgn f(£,+) is summable,

U3 feH€),) S Bf, Pas,
k=1

where S stands for epi-convergence.
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The immediate precursors of this theorem are the laws of large numbers
for random lsc functions [4-6], that all posit iid (independent identically dis-
tributed) sampling cf. also [7,8] for further extensions. Here only stationarity
is assumed; the argument relies on a ‘scalarization’ of random lIsc functions
developed in Sect. 6. The proof of the ergodic theorem can be found in Sect. 7.

Definition 2.2. A sequence of functions {g* : R" — R,v € IN} epi-
converges to g : R™ — IR, written g* % g, if for all x € R",

(i) liminf, g”(z¥) > g(z) for all x¥ — z;

(i) limsup, g¥(z") < g(z) for some x¥ — x.

Epi-convergence entails the convergence of the minimizers of the g¥ to
those of ¢ as is made precise below; cf. [9-11] for more about epi-convergence,
theory and applications. Epi-convergence at a point z can also be character-
ized in terms of lower and upper epi-limits.

Definition 2.3. For a sequence of functions {g,9" : R* - R, v € IN},
the lower and upper epi-limits are:

e-liminf g”(z) := supliminf inf g¢"(y),
p>0 v—=oo yeB(z,p)

e-limsup ¢”(z) :=suplimsup inf ¢"(y).
p>0 v—oo yeB(va)
If e-limsup g = e-liminf g¥ = g, then g =: e-lim g is the epi-limit of the
sequence {g"}ven.

It follows immediately from Definition 2.3 that the lower and upper epi-
limits are always lsc; epi-convergence of g to g corresponds to the set conver-
gence of epig” to epig. It is neither implied by, nor does it imply pointwise
convergence, but instead can be viewed as a one-sided uniform convergence.
But, it’s exactly what is needed to ensure the convergence of minimizers of
9" to the minimizers of g, in the following sense.

Theorem 2.4 [11, Chapter 7]. Suppose that {g"},cv is o sequence of ex-
tended real-valued lsc functions such that g¥ 2 g. Then every cluster point
of argmin g¥ is an element of argmin g. Moreover, if argmin g is nonempty,
and there exists a compact K C R"™ such that dom g C K, then

argmin g = ﬂ liminf, (¢- argmin g"),
e>0

where e-argming := {z € R" | g(z) <infg+¢e < 0}.

Here we state only sufficient conditions for convergence of the e- argmin.
For necessary conditions, consult [11, Chapter 7], and one can refer to [6] for
some extensions.

In order to obtain our almost sure epi-convergence result for random
Isc functions, the following two results based on the separability of R™ are
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essential. They tell us that epi-convergence needs only to be verified at the
points in a countable dense set.

Lemma 2.5 [5]. Let f, g: R" — IR with f Isc. Let R C IR" be the projection
on R™ of a countable dense subset of epig. If f < g on R, then f < g on all
of R™.

Proof. The set R above exists since R™ x IR is separable. Suppose f < g on
R. This is equivalent to {(z,a)|a > g(z), z € R} C epif. Since f is lIsc,
epi f is closed. Taking closures on both sides yields epig C epi f, which is
equivalent to f < g on R". (m}

Lemma 2.6 [5]. Let {g"}.,cn be a sequence of extended real-valued functions
defined on R™ and g : R™ — IR an lsc function. Let R C IR™ be the union of
R and Rs, the projections onto IR™ of a countable dense subset of epig and
a countable dense subset of e-liminf g¥ respectively. Then g = e-lim g” on R
implies g = e-lim g* on IR".

Proof. In order to show that g = e-lim g¥, the following must hold.
e-limsup ¢” < g <e-liminf g”.

Since these are inequalities between Isc functions, we can use Lemma 2.5 to
prove each inequality by having the first one satisfied on the countable set,
R, and the second satisfied on the countable set, R. Then both inequalities
hold on IR" if they are satisfied on R := R; U R». (|

3 Stochastic Programs with Recourse

Consider again the two-stage stochastic program with recourse:
min ¢ (z) + E{Q(&,z)} so that fi(z) <0, i=1,...,m,

with
Q(&, ) = infy {g2(&,9) |y € S2(&,2) C R™}.

Let’s assume that this program has an optimal solution and let’s denote it
by z*.

Let £',...,&" be a sample of size v of the random quantities & and let
P¥ be the empirical measure obtained by assigning probability 1/v to each
one of these sample points. Replacing P by PY leads us to the stochastic
program:

1< k .
min )+ — (;? xT o tha H(x) <0 = [ ¢
1 ql( ) E - (£ ) ) so that fz( ) sV, 1 ]-7 5 11,
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where for k =1,...,v,

Q(&F,z) = infy {q2(€¥,y) |y € S2(€¥,2) Cc R™}.

This can also be written as:
. 1 ko, k
min ¢ (z) + ;l;fh(f »y")

so that  fi(z) <0, i=1,...,m,
y* e Sy(ek x), k=1,...,v.

If v is not too large, this problem can be solved by an appropriate linear or
nonlinear programming package. Let ¥ be the z-component of the solution
of this optimization problem. Because P” depends on the sample, it actually
is a random measure, and consequently z" itself is a random variable. Proving
consistency consists in showing that ¥ converges to z* with probability 1.
The answer to this question is provided by Theorem 2.4 and the Ergodic
Theorem 2.1 if the samples are iid or more generally, are generated from an

ergodic process:
1 g2 v
{6 3£ a"'a£ a"'}a
and the following function f is a random Isc function:

fea) = { @@ +QE) I £i() <O, i=1.m,

o0 otherwise.

For example, this will be the case under the following assumptions:

- q1, fi, it =1,...,m are lsc functions;
- fo(&z,y) = {gz('faway) gtgefwizg,m)’ is a random Isc function;

- forall (&,z): y+— f2(&, z,y) is inf-compact (lsc with bounded level sets).

A proof could be constructed on the basis of Proposition 1.18 (about epi-
graphical projections) and Theorem 14.37 (about the measurability of opti-
mal values) in [11].

The need to go beyond the iid case comes from situations when the sample
is obtained from a time series. In such situations the samples aren’t iid but
usually the process is ergodic. This is typically the case when dealing with
applications where the uncertainty comes from the environment, cf. [12] for
an application dealing with lake eutrophication management and [13] for an
application involving the control of water reservoirs to generate hydropower.

4 Stochastic Programs with Chance Constraints

As we have seen in Sect. 1, in a stochastic program with probabilistic con-
straints the expectation functional appears in the constraints in the following
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form: E{f(§,z)} <0 where

— a—-1 if gk(£7$)§07k2177q
1(&2) {a otherwise.

For an introduction to stochastic programs with chance constraints one could
consult [14], a number of applications are described in [15] and a comprehen-
sive treatment can be found in [16]. To obtain ‘consistency’ we follow an
approach similar to that in [17].

We need the following result about the convergence of level sets of an epi-
convergent sequence of functions; the inner and outer limits of a sequence
{C"},en of subsets of R™ are defined as follows:

liminf C* = {z = lim 2" |2" € C” eventually }
V—00 v—00

limsup C” = {m: lim x"* |;U"’“ eC”™ ke IV}
k—o0

v—0o0

The limit of the sequence exists if the outer and inner limit sets are equal:

lim C” :=limsup C” = liminf C".

v—00 v—0o0 V—00

Proposition 4.1 [11, Proposition 7.7]. For functions g* and g on R", one
has:

(a) g < eliminf g” if and only if limsup,(lev<arg¥) C leve, g for all
sequences a¥ — a; - -

(b) g > e-limsup g” if and only if liminf ,(lev<qyrg¥) D lev<, g for some
sequence o’ — «, in which case such a sequence can be chosen with o L a.

(¢) g =elimg¥ if and only if both conditions hold.

Theorem 2.4, about the convergence of the minimizers of epi-convergent
functions, and the Ergodic Theorem 2.1 combined with Proposition 4.1 yield
the following;:

Theorem 4.2. Let’s consider the following stochastic program with chance
constraints:

min fo(z) so that P{{ € £ |gk(§,$) <0, k=1,...,q} >« (P)

where fo : R™ — IR is continuous, the functions gy are lsc on = x R"™ and
a € (0,1]. Let £1,£2,... be random samples of €, P¥ the empirical measure
associated with £1,€2,...,€, and consider the following stochastic programs:

min fo(z) so that P*{{ € & | ge(&,2) <0, k=1,...,q} > a", (P¥)

with o — «a. Suppose that for oll v,

2 € 5" = {a| P ({€|gule0) <0, k=1,....q}) > 0*},
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then almost surely every cluster point of the sequence {z"},cn is a feasible
solution of the stochastic program with chance constraints (P).

Moreover there exists a sequence o” ta such that for ¥ optimal solutions
of (P¥), every cluster point of the sequence {x"},cn is actually an optimal
solution of (P).

Proof. The assumptions immediately imply that

f&2) = {0 otherwise,

is a random Isc function one can also appeal to [11 Theorem 14.31]. Also,
= [ f( P(d) and E”f = [. f(& x) P¥(d€). The Ergodic

Theorem 2.1 1mphes that Ef = e—hm E" f almost surely In turn, this yields

via Proposition 4.1, that

limsup(leve_ov EVf) Clev<a_o Ef

which means that whenever Z is a cluster point of a sequence of points
{"}ven with 2¥ € leve_ovE¥ f, then T € lev<_oEf.
Proposition 4.1 also guarantees the existence of a sequence «” ta such
that
leve_o Ef =: C =1lim, C¥ with C¥ :=lev<_ E" f.

And thus é¢ = e-limdc» where d¢ is the indicator function of the set C. It
easy to verify that
fo+d0c = e—lim(fo + (Scu).

Finally, Theorem 2.4 tells us: if ¥ € argmin(fo + dc+) and the z¥ cluster at
some point Z, then this cluster point Z € argmin(fo + d¢), i-e., solves (P). O

In the case of a constraint involving bounds on moments or on the vari-
ance, the argument is similar.

5 Probabilistic Framework

Let lsc-fens(IR™) denote the space of 1sc (lower semicontinuous) extended
real-valued functions defined on R", and (=,S, P) a probability space; we
assume that S is P-complete. We adapt the standard probabilistic framework
to 1sc-fcns(JR™)-valued random variables.

Here we adopt a slightly different viewpoint of random lsc functions; we
think of a random lsc (lower semicontinuous) function as a function f : & —
lsc-fens(IR™) such that the associated bivariate function (€,z) — f(§, ) is
jointly measurable, i.e., S® B-measurable where B is the Borel field on R™. It’s
convenient to identify an lsc function f(£) with its bivariate representation
so we write f(&,x) instead of f(£)(x) for the value of f(&) at x. This brings
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us back to the framework introduced in Sect. 2. The concept of a random lsc
function goes back to the work of Rockafellar in the Calculus of Variations
where it comes up in the form of a ‘normal integrand;’ see [11, Chapter 14]
for a systematic exposition.
To every random Isc function f one associates its distribution Py defined
by
Pi(A):=P{e= | f&,)e A}) for Ae F;

here F is the o-field defined on lsc-fcns(R™). Among the measurable sets in
F are all those of the following form {f € lsc-fens(R™)|infp f(§,-) < a} for
D any open or closed subset of IR"; a short argument can be constructed from
the joint measurability of f in (&, z), the lower semicontinuity in z and the
separability of IR™, or one could rely on the more comprehensive approach
found in [11, Chapter 14].

Two random lsc functions, f and g, are identically distributed if for all A €
F, P;(A) = P,(A). The joint distribution of a finite collection {f*,..., f¥}
of random lsc functions is given, for A;,..., A € F, by

P{fl’m’f’“}(-Ala--';Ak) = P({E €= | fl(é.a ) € Al:"'afk(§5 ) € Ak})

For a sequence {f”, v € IN} of random lsc functions, let’s denote by P>
the probability measure on the sequence space (Isc-fcns(JR™)*, F=) that is
consistent with the joint distribution of the f¥; that such a measure exists
follows from Kolmogorov’s Extension Theorem.

Random lsc functions are said to be independent if their distributions are
independent. A sequence {f!, f2,...} is said to be independent if for any
finite subcollection, {f*1,..., f*, k€ N},

P{ful,m,fuk}(.Al, vy Ag) = HlePfui (A;) for any sets A,..., A € F.

Definition 5.1 (iid and stationarity). A sequence, { f*, v € IN} of random
Isc functions is #id (independent and identically distributed) if it is indepen-
dent and for any k,l € IN, f* and f' are identically distributed. The se-
quence is stationary if its joint distributions are invariant under shifts in the
sequence, more precisely, for any finite subcollection {f**,...,f**}, k € IN,
anyl € IN and any A, ..., A, € F, one has

Prpn gy (Ars o Ar) = P gy (Ars -0 Ag).

Stationarity can also be characterized in terms of a measure preserving
transformation. Recall that a function ¢ : 5 — = is measure preserving if for
all A € S, P(p~1(A)) = P(A).If f is arandom lsc function, one verifies easily

that the sequence { £y fop, fop?, .. } is stationary. In fact, every stationary
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sequence of random lsc functions can be redefined in terms of a (single)
random lsc function and a measure preserving transformation:

Say { ff,velN } is a stationary sequence of random lsc functions and P>
the measure induced on (lsc-fens(IR™)>, F*°). Redefine the f¥ as follows:

f¥ :1sc-fens(R™)> — Isc-fens(R™) with f¥(¢) :== (",

i.e., the v-th element of the sequence ¢ € lsc-fcns(IR™)>. The new sequence
{f"}, e is stationary and has the same joint distributions as the origi-
nal one, but now with respect to the new probability space. Letting ¢ :
Isc-fens(R™) > — lsc-fens(R™)> be the shift operator,

e(¢h, ¢, ) = (¢ ),

and defining f : lsc-fens(RR™)> — lsc-fens(RR™) as f(¢) = ¢!, one has that
F(9”(€)) = ¢"T, so that f, fop, fop?,..., defines the same stationary se-
quence on lsc-fens(IR™)* with respect to the measure preserving shift trans-
formation ¢; it is easy to check that ¢ is measure preserving.

If ¢ : & — Z is measure preserving, then A € S is an invariant event
if p1(A) = A almost surely, i.e., in terms of the symmetric difference,

P(p 1 (A) A A) = 0.

Definition 5.2 (ergodicity). LetZ denote the o-field of invariant events and
call it the invariant o-field. A measure preserving map ¢ : = — = is ergodic
if Z is trivial, i.e., for all A € Z, P(A) € {0,1}. A sequence {f”, v E N}
of random lsc functions is ergodic if the associated (measure preserving) shift
operator ¢ on the sequence space (1sc-fens(IR™)>°, F>°, P*) is ergodic.

6 Scalarization of Random Lsc Functions

The framework of reference is still that of Sect. 5. In this section, it will be
shown that a random lIsc function f is completely identified by a countable
collection of extended real-valued random variables

f «— {m, |z €R,peQ,} where R is a countable dense subset of R".

We refer to such an identification as a scalarization of the random lsc function
f; results about the scalarizations of random lsc functions with values in
Isc-fens(X), for X a Polish space, appear in [18]. When X = R", it’s not
necessary to assume S is P-complete, and this version can also be found in
[11, Theorem 14.40]:

Theorem 6.1 (scalarization). Let f: 5 — lsc-fens(R™),

and for D C R":  let np(&) :=infzep f(£, x).
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Then f is a random Isc function if and only if for all D € D, 7 is measurable
where D is any one of the following collection of sets:

(a) D = the open sets O C R";

(b) D = the closed sets C C R™;

(c) D = the closed balls B(z,p) C R";

(d) D = the closed rational balls B(z, p) C R" with x € R, R a countable
dense subset of R" and p € @ ;

Corollary 6.2 (countable scalarization). Let f : & — lsc-fcns(IR™). For
r € R, a countable dense subset of R", and p € @, define

71—a:,p(é-) = TB(z,p) (6) = innyB(z,p) f(é-a y)

Then f is a random lsc function if and only if the random wvariables in the
countable collection

{map: E—)E|$ ER,peQ,}
are measurable.

Proof. This is just a reformulation of part (d) of the theorem. O

To each sequence of random lsc functions {f” : & — lIsc-fens(X), v €
N } we can associate, by scalarization, a sequence of vector-valued random

variables
{z¥ ,veN|zeR,peq,}

z,p?
Independence, stationarity and ergodicity properties of the sequence of the
random lsc functions are inherited by these vectors generated through scalar-
ization. Here we are only interested in the ergodicity properties of these
scalarizations.

Proposition 6.3. If {foy"} is an ergodic sequence of random lsc functions,
then {7, 0 ¢} is an ergodic sequence of random variables for all x € R,

pPER,.

Proof. The shift operator, ¢ : Isc-fens(X)*= — lsc-fens(X)* is ergodic, and
Te,p defined on Isc-fens(X)> by 74,,(¢) := infp(y,,) (1 is measurable. There-
fore the sequence, {7, , o ¢”} is ergodic, and equivalent to the original se-
quence. (M

7 Proof of the Ergodic Theorem

The proof of the Ergodic Theorem relies on the following theorem of inde-
pendent interest. It says that to verify the almost sure epi-convergence of the
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empirical means of a sequence of random Isc functions, it suffices to check
the almost sure convergence of the empirical means of the corresponding
scalarizations.

Theorem 7.1. Let {f, fryve N} be a sequence of random lsc functions on
R™, and let R be a countable dense subset of R™ that contains the projection
onto IR™ of a countable dense subset of epiEf. For x € R, p € Q, let
T, = infyep(s,p) fY(y) and m, , = inf e Bz p) f(,y). Suppose that for all
z€R, pE @+;

1 i 7t (&) = En P-as.

z,p T,p
k=1

with Er, ,:= E{n, ,(§)}. Then, whenever { — infpn f(€,-) is summable,

LS e S B Pas
k=1

Proof. Fixx € R, p€ @, . Let Z; , C 5 be such that P(5,,) =1 and

1
v Zﬂi,p(g) - E’/Tw,P

for all £ € =, 5. Let Zg ==\, cp ﬂp€Q+ Z;,p- Then P(ER) = 1, since =g is
obtained from a countable intersection of sets of measure one.

To show that for all £ € Zg, elliminf L > | f¥(¢,-) > Ef on R", let
£ € ZRp,z € R". Then

P I T 1~
e—hmlnf;Zf (&, z) = supliminf inf Zf &)

k=1 p>0 v  yeB(zp) V]

1 v
> sup liminf — inf ke,
- p>13 v V,;yEB(w,p)f &)

v

T
> sgp lim inf - Z Tyt &),
k=1
where for all £ € IV, 2t € R, pt € Q4 zt =z, pt10, x € int B(a?, p%), and

Bz, ptt1) c B(zt, p?). For each ¢, ¢ € Zg, from the assumptions, one
has

PR
liminf, ” Z W:l,pl & = Eme .
k=1

Continuing, we obtain

TS N
e-lim inf ” l;f & z) > sgp Em, o = Ef(x)
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by the Monotone Convergence Theorem and the lower semicontinuity of z —
f(&, ) for all & Hence for all £ € g, elliminf L >/ f7(¢,-) > Ef on R™

For the lim sup inequality, observe that for £ € =g, ¢ € R, if ¥ = z, then
by assumption

‘ 1 v , ‘ 1 v
lim sup,, > Z ¥ (¢, 2¥) = limsup, > 277';’0(5) = Em, o= Ef.
k=1 k=1

Using the facts that Ef is Isc (by Fatou’s Lemma) and R contains the pro-
jection on IR™ of a countable dense subset of epi Ef, along with Lemma 2.5
and the fact that

. 1S i . 1S o
elimsup 3" (€, ) < limsup, " 4(€,) <Ef onR,
k=1 k=1
it follows that
. I~ n
e—hmsup;Zf &) <Ef onR"
k=1
In summary, it has been shown that P(£g) = 1, and for all £ € =g,
e-lim sup 1 i fE(E,)) < Ef < eliminf 1 i J (3D
Vit T a V= 7

on R" as claimed. |
We are now ready to prove the Ergodic Theorem.

Theorem 7.2. Let (5,8, P) be a probability space, p : & — = an ergodic
measure preserving transformation, and f o random lsc function on R™.
Then, whenever £ — infg- f(&,-) is summable,

%kX_jl F(6(©),) 5 Bf Pas

Proof. Let {r, ,|z € R,p € @} denote the scalarization of f with R the
projection of a countable dense subset of epi Ef on IR™. Since ¢ is measure
preserving and ergodic, we obtain that for all z € R, p € @), the sequence,
{Tl'z, p© cp”}y cnv is also ergodic by Proposition 6.3. Hence by the classical
Birkhoff-Khintchine Ergodic Theorem [19] with a straightforward extension
to include functions which take on the value +oo, forallz € R, p € @, we
obtain,

1 v
> Z Typ (SOk (5)) — Em, , P-as.
k=1
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Appealing to Theorem 7.1 it follows immediately that

LS H64©.) 5 Bf Pas,
k=1

as claimed. O
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