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Abstract. In the paper we study concentration of sample averages (Minkowski's sums) of independent 
bounded random sets and set valued mappings around their expectations. Sets and mappings are 
considered in a Hilbert space. Concentration is formulated in the form of exponential bounds on 
probabilities of normalized large deviations. In a sense, concentration phenomenon reflects the law of 
small numbers, describing non-asymptotic behavior of the sample averages. We sequentially consider 
concentration inequalities for bounded random variables, functions, vectors, sets and mappings, deriving 
next inequalities from preceding cases. Thus we derive concentration inequalities with explicit constants 
for random sets and mappings from the sharpest available (Talagrand type) inequalities for random 
functions and vectors. The most explicit inequalities are obtained in case of discrete distributions. The 
obtained results contribute to  substantiation of the Monte Carlo method in infinite dimensional spaces. 
Keywords: concentration inequality, Talagrand's inequality, random set, random set-valued mapping, 
Minkowski's averages, large deviation, law of small numbers. 

1. Introduction 
Concentration inequalities describe tail behavior of the probabilities of large deviations for sums of 

independent random variables from their mean. They, like limit theorems, determine rate of convergence 
in the law of large numbers. Moreover, they are valid for any finite sums and thus express, in a sense, a 
law of small numbers. Classical results of this type are Bernstein's, Chernoff's and Hoeffding's 
exponential inequalities for bounded random variables. There are extensions of these results to random 
vectors and random functions (see, e.g. (Talagrand, 1994, 1996), (Pflug, 2003), (Nemirovski, 2004), 
(Boucheron et al., 2005), (Steinwart and Christmann, 2008), (Shapiro et al., 2009)). 

In the present paper we derive such inequalities for random sets (and mappings). First non-
asymptotic result of this type was obtained by (Artstein, 1984) for finite dimensional independent random 
sets. It exponentially bounds the probability that Housdorff distance between sample average set and its 
mean exceeds a given threshold. The result is essentially finite dimensional since the bound heavily 
depends on the dimension number, the more the dimension the worse the bounds. Unlike this, 
contemporary concentration inequalities are dimension free (e.g. are valid for Banach space valued 
random variables), but exploit different complexity measures for the range of the random object. 
Asymptotic large deviation result for random sets in a separable Banach space was obtained in (Cerf, 
1999). We derive explicit non-asymptotic concentration inequalities for bounded random sets and 
mappings in a separable infinite dimensional Hilbert space. 

In the present paper we sequentially review and update concentration inequalities for bounded 
random variables, functions, vectors, random sets and set valued mappings, deriving next inequalities 
from preceding cases. Especially sharp and explicit results are obtained in case of discrete distributions. A 
closely related asymptotic result, a central limit theorem for random sets with a discrete distribution, was 
obtained in (Cressie, 1979). 

Thus the main contribution of the paper consists in the following. We improve (Artstein's, 1984) 
concentration results for bounded random sets making the estimates much sharper and equally applicable 
to finite and infinite dimensional (separable Hilbert space) cases. The estimates still remain non-
asymptotic, i.e. valid for any finite sum of independent random sets (unlike (Cerf, 1999)). We derive 
concentration inequalities from the sharpest available analogues results for random vectors and random 
functions. Concentration inequalities for random mappings are completely new, although they were 
obtained only for a discrete distribution. Extensions of these results to general distributions and to 
unbounded random sets and mappings are still open problems. 
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2. Concentration inequalities for sums of independent random variables and their extensions   
Classical concentration inequalities for random variables are due to Bernstein, Chernoff and 

Hoeffding (see, e.g.  (Boucheron et al., 2005), (Steinwart and Christmann, 2008)). 
Next statements extend concentration inequalities to random functions. Further they are used for 

derivation of concentration inequalities for random vectors and sets. 
2.1 Theorem  (see, e.g., (Boucheron et al.,. 2005)). Let ( , )Y d  be a separable metric space with 

metric d , ( , , )Ξ Σ P  be a probability space and := { : }yF f Y ×Ξ→ �  be a set of functions 
:yf Y ×Ξ→ �  continuous in y Y∈  for all ξ ∈Ξ , Σ -measurable in ξ  and = 0yfE  for all .y Y∈  

Furthermore, let 0b ≥  be a constant such that yf b∞≤� �  for all y Y∈ . For independent random 

variables 1,..., νξ ξ , we define a random variable :G Zν → �  by 
=1

: ( ) .sup y j
y Y j

G f
ν

ν ξ
∈

= ∑  Then, for all 

> 0t  and all > 0γ , we have  
 { }> 2 .tG G t b eν ν ν −+ ≤P E  

The following theorem presents a refinement of the (Talagrand’s, 1994, 1996) inequality. 
2.2 Theorem (Talagrand’s inequality in i.i.d. case, see (Steinwart and Christmann, 2008)). Let 
0b ≥ , 0σ ≥ , and 1n ≥ . Moreover, let ( , , )µΞ Σ  be a probability space and F  be a countable set of  

Σ -measurable functions such that = 0fµE , 2 2fµ σ≤E  and f b∞≤� �  for all f F∈ . We write 
:Z ν= Ξ  and : νµ=P , E  denotes expectation over P . Furthermore, for independent random variables 

1,..., νξ ξ   we define a random variable :nG Z → �  by 
=1

: ( ) .sup j
f F j

G f
ν

ν ξ
∈

= ∑  Then,  for all > 0t , we 

have  
 { }22 ( 2 ) 2 3 .tG G t b G tb eν ν ννσ −≥ + + + ≤P E E  

To use Theorems 2.1, 2.2 one needs estimates of the quantity Gν , which are given in the following 
lemmas. 

2.3  Lemma ( GνE  in case of finite Ξ ). Suppose the probability space is discrete, Ξ  contains NΞ  
elements, and 

,,

| ( ) |sup Ff F f Mξ ξ Ξ∈ ∈Ξ ≤ . Then  
,

2 .FG M Nν νΞ Ξ≤E  

2.4  Lemma ( GνE  in case of finite F , (Boucheron et al., 2005, Theorem 3.3)). Suppose the family 
F  ifs finite and bounded, i.e. it contains F  number of elements and  

,

sup ( )f F f Mξ ξ∈ ∈Ξ ≤ . Then 
2lnG M Fν ν≤ . 

3. Concentration inequalities for sums of random vectors in a separable Hilbert space  
In the present section we derive concentration inequalities for sums 

=1
= ii

S νν ξ∑  of independent 
bounded random vectors iξ  with values in a separable infinite dimension Hilbert space H . In the next 
section these results will be used to derive concentration inequalities for random sets. Similar results for 
finite dimensional regular Banach spaces (obtained in a different way) can be found in (Nemirovski, 
2004).
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Concentration inequalities for sums 
=1

= ii
S νν ξ∑  of independent random vectors iξ  can be obtained 

from such inequalities (Theorems 2.1, 2.2) for random functions, since for any s H∈  holds 
: 1sup .f H fs f s∈ ≤=� �   

3.1 Theorem. Let 1,..., νξ ξ  be independent random variables (in a separable Hilbert space) such that 
i i bξ ξ ∞− ≤E� � , 2 2

i iξ ξ σ− ≤E E� �  for all i , then for any > 0t  holds  

 1 2> ,ttbS S eν ν σ

ν ν ν

−
  − + ≤   

P E� �  

and (for iid case)  

 ( )22 21 2 .
3

t
t b tbS S eν ν
σ σ νσ

ν νν ν

−

 + − ≥ + + ≤   
P E� �  

As an illustration we apply Theorem 3.1 to derive concentration inequalities for frequencies in the 
law of large numbers. The next theorem establishes rate of convergence (of order 1 / ν ) and the 
exponential decay of the probabilities of large deviations for frequencies in the law of large numbers with 
countable realizations. Later it is used for establishing concentration inequalities for random mappings. 

3.2 Theorem.  Let 1 2{ , ,...}ξ ξ  be a sequence of independent random variables taking values from a 
finite or countable collection 1 2{ , ,...}ξ ξ  with probabilities 1 2{ , ,...} =p p p  respectively. Denote 

1= { ,..., ,...}j
ν ν νλ λ λ  a random vector of frequencies such that j

νλ  is the quotient of =1{ }iνξ  hitting the 
value jξ . (If =1{ }iνξ  does not hit the value jξ  then = 0j

νλ ). Then for any ν  and > 0t   

 2 4{ >1 } ,tp t eνν λ −− + ≤P � �  

 2
2

22 2 2>1 1 ,3
ttp t eνν λ

ν ν
−

  − + + + ≤   
P � �  

where ( )1/22= ( )j jjp pν νλ λ− −∑� � .  

4. Concentration inequalities for bounded random sets  
Concentration inequalities from Theorem 3.1 can be extended to random sets. The first result of this 

type for bounded m -dimensional random sets was obtained by (Artstein, 1984). The estimate of the 
probability of large deviations of Minkowski's averages from its expectation in (Artstein, 1984) depends 
on the size of the deviation t  through a multiplier 11 / mt −  standing before the exponential term, so it 
makes sense only for a finite dimensional case. An asymptotic large deviation result for random sets in a 
separable Banach space was presented in (Cerf, 1999). 

Consider random sets { }iX , i.e. Borel-measurable vector functions from some probability space 
( , , )Ξ Σ P  to the space of non-empty closed subsets of a separable Hilbert space H  with norm = H⋅ ⋅� � � � . 
A random vector : Hξ Ξ→  is called a selection of iX  if with probability one holds iXξ ∈ . Define the 
expectation iXE  of iX  to be  
 { }= : < .i i HX is a selection of X andξ ξ ξ +∞E E E� �  
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Define the deviation of a set A H⊂  from a set B H⊂  as ( , ) = sup infa A b B HA B a b∈ ∈∆ −� �  and 
Hausdorff distance between sets A  and B  as  { }( , ) = max ( , ), ( , ) .A B A B B A∆ ∆H  In particular for 
a H∈  denote ( , ) = ( , )dist a B a B∆ . Denote coA  a convex hull of A H⊂ , = supx AA x∞ ∈

� � � �. 
Define a sample average set  

 
1 1

1 1= = = : .i i i i
i i

S X s is a selection of X
ν ν

ν ξ ξν ν= =

   ∑ ∑  

In the next theorems we extend and sharpen finite dimensional results by (Artstein, 1984) to a 
separable infinite dimensional Hilbert space. 

4.1 Theorem. Let 1,...,X Xν  be independent closed valued random sets with =i iX coXE , 
( , ) <i icoX X b≤ +∞H  with probability one, 2 2( , )i icoX X σ≤EH  for all i . Denote  

 
=1 =1

1 1= , .i i
i i

D coX X
ν ν

ν
ν ν

   ∑ ∑H  

Then for any > 0t  we have  

 2 ;ttbD D eν ν
ν

−
  ≥ + ≤   

P E  

and for iid { }iX   

 ( )22 2 2 .3
t

t b tbD D eν ν

σ σ ν

νν

−

 + ≥ + + ≤   
P E  

If { }iX  take on values from a finite collection of size XN , then the term DνE  in the inequalities 
can be replaced by 2 Xb N ν .  

In a finite dimensional case, { }m
iX ⊂ � , the term DνE  in the inequalities can be replaced by 

( )2 1 lnb m ν ν+ . 
Theorem 4.1 states a concentration result for convex valued random sets { }icoX . In a finite 

dimensional case, m
iX ⊂ � , the result can be extended by means of Shapley-Folkman lemma to non-

convex valued mappings similar to  (Arstein, 1984). In an infinite dimensional case this is not possible. In 
the next theorem we obtain the desired result for one-sided distance 1=1

1 ,ii
X coXν

ν

 ∆   ∑ E . 

4.2 Theorem.  Let 1,...,X Xν  be iid closed valued random sets in a Hilbert space H , 
<iX b∞≤ +∞� �  with probability one, 2 2

iX σ≤E� � , and = iX coXE . Then for any > 0t  and ν  we 
have  

 
=1

1 2, ,ti
i

tbX X e
ν σ

ν ν ν

−
   ∆ ≥ + ≤     ∑P  

 ( )2

=1

2 21 2, .3
t

i
i

t b tbX X e
ν σ σ νσ

ν νν ν

−

 +  ∆ ≥ + + ≤     
∑P  
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5. Concentration inequalities for random sets and mappings in case of a discrete distribution  
In this section we establish concentration inequalities for bounded random set valued mappings in 

the case when the random mapping has a discrete distribution. If the mapping is constant then these 
inequalities become concentration inequalities for random sets. In a similar setting (Cressie, 1979) obtains 
a central limit theorem for random sets with finite discrete distribution. Unlikely, our results are non-
asymptotic, valid for countable discrete distributions and are extended to random mappings. 

Assume that 
(i) ξ  is a discrete random variable taking at most countable number of values 1 2{ , ,...}ξ ξ  with 

probabilities 1 2{ , ,...} =p p p ; 
(ii) 1 2{ ( ), ( ),...}S x S x  are mappings defined on a set nX ⊂ �  with convex values in a Banach 

space; 
(iii) mappings { }jS  are uniformly bounded on X ,  ( ) = sup sup ( ) < .j x X jS X S x∈ +∞� � � �  
Define a random mapping ( , ) : ( )jS x S xξ =  if = jξ ξ , and let { , = 1,2,...}i iξ  are iid realizations of 

the random variable ξ , sample average mapping 1
=1

( , ) = ( , )ii
S x S xνν νξ ν ξ− ∑  and the expectation 

mapping { }( , ) = ( ) = = : ( ) .j j j j j jj jS x p S x s s p s S xξ ∈∑ ∑E  Denote  

 1 2( ) = ( ( ), ( ),...),S x S x S x ( ) = ( ) < ,supj jx XS X S x
∈

+∞� � � �   ( )1/22( ) = <jjS X S +∞∑� � � � . 

5.1 Theorem.  In conditions (i)-(iii) for any > 0t  and ν  the following estimates hold true for the 
uniform distance ( , ) = ( ( , ), ( , ))supx XS S S x S xν ν ξ ξ

∈
U E H E  and graph distance ( , )gphS gph SνH E  

between graphs of mappings Sν  and S , 

 
{ }

{ } ( )2

( , ) > (1 ) ( )
( , ) > (1 ) ( ) exp 4 .

gphS gph S t S X
S S t S X t

ν

ν

ν

ν

+ ≤

≤ + ≤ −

P H E

P U E

� �

� �
 

These estimates have a non-asymptotic character, do not depend on the distribution p  and contain 
explicit constants. If applied to random sets with discrete distribution, this theorem gives a sharper result 
than Theorem 4.1. 

6. Conclusions  
We have obtained a number of new explicit concentration results for vectors (Theorem 3.1), random 

sets (Theorems 4.1, 4.2) and random set valued mappings (Theorem 5.1) in infinite dimensional spaces. 
In a sense, concentration phenomenon reflects the law of small numbers, describing non-asymptotic 
behavior of sample averages. One interesting consequence of Theorem 3.1 is a concentration result for 
frequencies in the law of large numbers with countable number of realizations (Theorem 3.2). One more 
interesting consequence (of Theorem 5.1) is that in case of a discrete distribution a uniform law of large 
numbers for random mappings, i.e. ( , ) = 0lim S Sν

ν→∞U E , holds with probability one without any 
semicontinuity assumptions on the involved (convex valued uniformly bounded) mappings { ( )}jS x  
(compare to (Shapiro and Xu, 2007)). All these results contribute to the substantiation of the Monte Carlo 
method in infinite dimensional spaces. Extensions of these results to general distributions and to 
unbounded random sets and mappings are still open problems. 
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