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AMERICAN MATHEMATICAL SOCIETY 
Volume 266, Number 1, July 1981 

ON THE CONVERGENCE OF CLOSED-VALUED 
MEASURABLE MULTIFUNCUONS 

BY 

GABRIELLA SALINETH AND ROGER J.-B. WETS1 

ABsTRAcr. In this paper we study the convergence almost everywhere and in 
measure of sequences of closed-valued multifunctions. We first give a number of 
criteria for the convergence of sequences of closed subsets. These results are used 
to obtain various characterizations for the convergence of measurable multifunc- 
tions. In particular we are interested in the convergence properties of (measurable) 
selections. 

1. Introduction. Let (2, (i) be a measure space with (d the class of measurable 
sets and meas a nonnegative sigma-finite measure defined on (?; (E, d) is the 
metric space obtained by equipping Rn with the metric d. A map r with domain S 
and whose values are subsets of E is called a multifunction; its effective domain is 
dom r = (w E sIFr(c) # 0). It is said to be closed- (compact-, convex- . . . ) val- 
ued, if its values are closed (compact, convex, . . . ) subsets of E. A closed-valued 
multifunction r is measurable if for all closed subsets F of E we have that 

r-l(F) = {( E sir(C) n F =0} E (0) (1.1) 
We write rF (F) E (d for all F E IF where IF is the hyperspace of the closed 
subsets of E. Let 9 (SC resp.) denote the hyperspace of open (compact resp.) 
subsets of E. It can be shown that when r is closed-valued, r is measurable if and 
only if any one of the following equivalent conditions is satisfied: 

(i) r-F (G) E ( for all G E 9; 

(ii) r- I(K) EE d for all K E Yu; 
(iii) r- I(Bo'(x)) E (E for all e > 0, x E E where B,(x) is the open ball of radius e 

and center x; 
(iv) r- '(Be(x)) E (E for all e > 0, x E E where Be(x) is the closed ball of radius 

e and center x; 
(v) r admits a Castaing representation, i.e. dom r E (? and there exists a 

countable collection { vk,j 'I of measurable functions from dom r to E such that 
for all co in dom r, 

cl[ U Vk(Co)] = r(Co). (1.2) 
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If g is complete then r is measurable if and only if its graph {(co, x)Ix E r(co)) is 
an (6C ? @ )-measurable subset of Q x E where B is the Borel algebra on E. For 
these and related results, cf. [1] or [2]. 

Every multifunction r can be identified with a function y from Q into P = 

@(E), the power set of E. If the multifunction is closed- (compact- resp.) valued, 
then y can be viewed as a function from Q into 1Y (Yu resp.). Let 6T be the topology 
on 6Y generated by the subbase consisting of the families { K E SC) and {FG, 
G E ) where 

JC = {F E 6 F n K = 0} and 6G = {F E 6 IF n G # 0}. 

The class of subsets of the form 

%1XK * 6** G n 9, n ... n6 G (1.3) 
for n > 0 yields a base for the topology T. The same topology 5Y is also generated 
by the subbase consisting of the families 

{'(x),E > 0,x EE} and {6,YBo(x),e > 0,x E E). (1.4) 

This follows directly from the properties of E. The topological space (6Y, 5T) is 
compact, Hausdorff and second countable (cf. [3] and also [4D.2 The choice of this 
topology for 6Y is motivated by the fact that 5T-convergence corresponds to the 
natural (standard) convergence of sequences of closed sets in E and also with this 
topology, the measurability of F corresponds to the measurability of the corre- 
sponding function y. 

Let B be the Borel algebra on 61 generated by the elements of the base of the 
topology 6'T. Actually B can be generated from the family of sets {6G, G E }). 
To see this simply observe that the space { 6Y, 5Y) is second countable and that the 
elements (1.3) of the base of 6T can be obtained as complements and countable 
intersections of the elements in {6G ). From the properties of E, it also follows that 
the Borel algebra B can be generated by any one of the families { , K E SC, 

6B(x),e > 0, x E E) and {fye(X),e > 0, x E E). A function y from S to 6j- is 
measurable if y'(D) E ( for every D in 'F. 

PROPOsITION 1.1. Suppose that P is a closed-valued multifunction from S to E and 
y is the associated function from 2 to 6S. Then r is measurable if and only if y is 
measurable. 

PROOF. For any open set G c E, we have that 

Y '('SG) ={coly(c) E SG} = {oIr(c) n G # 0} = r'(G). 
The measurability of y implies that for all G in 9, y - '(Q5G) E (d and consequently 
r -'(G) E C, which in turn implies the measurability of r. One argues the converse 
similarly. O 

2Professors Carl Eberhart (Kentucky) and James West (Cornell) pointed out that the space (I, 9V) is 
homeomorphic to the Hilbert cube. Let E,= be a one point compactification of E and (IF., ') the 
hyperspace of closed subsets of E,= equipped with the "Vietoris finite topology." The map F-. i*(F) - 
F U (00) is an embedding from IF into IF with image (F E qY01qY foo0)) - {X. The assertion now 
follows from the classical result of Curtis and Schori [51. 
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In [6] and [7] the measurability of a multifunction r is defined in terms of the 
measurability of the associated function y when r is nonempty compact-valued. In 
this case the range of y is Yu' = 3C \ (0) and the topology S7h is generated by the 
Hausdorff distance. This topology is finer than the IT-relative topology on SC'; it is 
generated as follows: Let Sv be the Vietoris topology on YC, i.e. that generated by 
the subbase consisting of the families of sets {9CF, F E '5Y} and {f G' G E @ ). 
Then 5h is the 5Tv-relative topology on Yu'. The Borel algebra on Yu', consistent 
with 'h is denoted by Bh; it can be generated by any one of the families {(YuF}, 
{ 9/ }, { C'Bc(x)} and { 9CB?(X)}. A function y from Q to Yu' is measurable if 
y- l(D) E 6 for every D E 1i? gc. A proof similar to that of Proposition 1.1 yields 
the following: 

PROPOSITION 1.2. Suppose that F is a nonempty compact-valued multifunction from 
Q to E and -y is the associated function from Q to YC'. Then F is measurable if and 
only if y is ^h-measurable. 

A different proof of this proposition appears in [2]. 
In this paper we are basically interested in studying the stochastic convergence of 

sequences of measurable multifunctions (set-valued random variables). We limit 
ourselves to almost everywhere (sure) convergence and convergence in measure 
(probability); convergence in distribution will be dealt with in a follow-up to this 
article. We are particularly interested in the convergence properties of (measurable) 
selections. 

2. Convergence of sequences of closed sets. We already alluded to the relation 
between convergence of sequences in (6F, ̀T) and the classical notion of conver- 
gence for sequences of closed subsets of 6C, due to Painleve; the connection is made 
explicit in Theorem 2.2. Let N denote a countable index set (typically the natural 
numbers); we reserve M to denote an infinite (ordered) subset of N. A sequence of 
sets { Cn c E, n E N } converges to a (necessarily closed) set C, written C = lim Cn 
if 

li Cn = C = ls Cn (2.1) 

where 
li Cn ={x Elx = lim x, xn e Cn for all n > nx) 

and 
Is Cn = {x e EIx = lim xm, xm e CCm for all m E Mx1. 

The sets li Cn and Is Cn are clearly closed. Also note that, since 1i Cn c Is Cn, to 
prove convergence of the sequence { Cn, n E N} to C it always suffices to show 
that 

ls Cn C C C 1i Cn. (2.2) 

We need also to consider the set-theoretic notions of lim inf and lim sup of a 
sequence of sets { Cn, n E N); we denote these by Li Cn and Ls Cn, respectively. 
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We write C = Lim Cn if Ls Cn = C = Li C", where 
00 

Li C, =U n Cm (2.3) 
n=1 m>n 

and 
00 

Ls Cn = n U Cm. (2.4) 
n=1 m>n 

The connections between the topological and set-theoretic notions of limits of 
sequences of sets is clarified by the following relations: 

00 00 

Li C C li Cn= n Li k-'C= n Li(cl k-'Cn) 
k-I k-i 

00 00 0 0 

=fn u nfCl k-Cn= n ci u n cl k'-Cn (2.5) 
k=1 n=1 m>n k -1 n 1 m>n 

and 
00 

Ls Cn c is cn = n cl U Cm) (2.6) 
nl1 m>n 

where by cl A we denote the closure of the set A E E and eA is an open 
e-neighborhood of the set A defined as follows: if A is nonempty then 

eA = {x E EId(x, A) < e) (2.7) 

where d(x, A) = inf[d(x, y)jy E A] and e4 = E \ Be-i(O). 
We start with a characterization of convergence to the empty set that is exploited 

repeatedly in the proof of Theorem 2.2. 

LEMMA 2.1. Suppose that {F,n n C N) is a sequence of closed subsets of E. Then 
lim Fn = 0 if and only if to each K, there corresponds an index nK such that 
Fn n K = 0 for all n > nK. Equivalently, if and only if to each e > 0 and x E E, 
there corresponds n(e, x) such that Fn n Be(x) = 0 for all n > n(e, x). 

PROOF. The equivalence between these two assertions follows directly from the 
nature of E. 

First, suppose that lim Fn = 0 but there exists K such that xm E Fm n K #0 
for all mE C M c N. The infinite sequence {xm m E C M) c K admits a cluster 
point which belongs to Is F1, contradicting the hypothesis that lm Fn = 0. 

Since Ii Fn c Is Fn, to prove the only if part it will suffice to show that Is Fn = 0. 
Suppose not and take x E Is Fn with x = lim{xmlxm E Fm, m E M). Now, let K 
be a compact neighborhood of x. Then xm E K n Fm for m sufficiently large and 
hence there is no nk such that K n Fn = 0 for all n > nk. [a 
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THEOREM 2.2. Suppose that {F; Fn n E N) is a collection of closed subsets of E. 
Then F = 5J-lim Fn, if and only if both part (a) and part (b), of any one of the 

following statements, are satisfied: 
(ia) if F n G 0then Fn n G 0forall n > nG, 
(ib) if F n K= 0 then Fn n K =0for all n > nK; 
(iia) if F n B,'(x) #0 then Fn n B,'(x) # 0for all n > n(e, x), 
(iib) if F n Be(x) = 0 then F n Be(x) = 0for all n > n'(e, x); 
(iiia, for all x in E, lim sup d(x, F,) < d(x, F), 
(iiib) for all x in E, d(x, F) < lim inf d(x, F); 
(iva) lim(F \ eF,) = 0 for all e > 0, 
(ivb) lim(Fn \ eF) = 0 for all e > 0; 
(va) F n Br(x) c eFn for any x E E and for all e > 0, r > 0 with n > n(e, r, x), 
(vb) Fn n Br(x) c eFfor any x E E andfor all e > 0, r > 0 with n > n'(e, r, x); 
(via) F c limT,, li(Fn n B,(x)) for any x C E, 
(vib) limrtoo ls(Fn n Br(X)) c Ffor any x E E; 
(viia) F c li Fn, 
(viib) Is Fn C F. 

PROOF. The equivalence between 5T-convergence in IF and (i) follows im- 
mediately from the base structure of 'J. Thus to prove the theorem it suffices to 
establish the equivalence between (i) and the other statements. We will assume that 
F is nonempty; if F = 0 the equivalence is either trivial or requires a straightfor- 
ward application of Lemma 2.1. We prove the rest in two parts, we show first that 
all (a) statements are equivalent; this is done by obtaining the following string of 
implications: 

(viia) =* (Via) ==> (Va) =* Oiva) =O(ia)= ii) ==> (i) =* 
(Viij) 

(viia) =* (via). Take anyy E F c li Fn, i.e.y = lim{Y,y, n E NIYn e Fn). Now fix 
any x in E. For n sufficiently large and r > d(y, x), yn E Fn n Br(x) and thus 
y E li(Fn n Br(x)) c himrToo li(Fn n Br(x)). 

(via) = (va). Fix any x in F. If y E F n Br(x) then with s = r + e, e > 0, there 
exists yn' Ee Fn n B,(x) such that y = l lim, y. In particular this means that 
there exists n(e, s, x) such that yn' E Fn n B,(x) c Fn and d(y, y.) < e for all 
n > n(e, s, x), i.e.y E eFn for all n > n(e, s, x). 

(va) => (iva). Fix x in E. Now apply Lemma 2.1, more precisely the second 
version of the assertion, to the sequence {F \ eF,, n E N). 

(iva) => (iiia). For the sake of the argument suppose that (iiia) does not hold. Then 
there exists x C E, e > 0 and M c N such that d(x, Fm) > d(x, F) + 2e for all 
m E M or, equivalently, d(x, EFm) > d(x, F) + e. It follows that {yld(x,y) = 
d(x, F)) c ls(F \ eF,), which contradicts (iva). 

(iiia) => (iia). Note that lim sup d(x, F,) < d(x, F) holds only if for all e > 0 with 
d(x, F) < e we have that d(x, F,) < e for n sufficiently large, or, equivalently, only 
if F n B?(x) =# 0 implies that Fn n B?(x) = 0 for n sufficiently large. 
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(iia) =X (ij) Simply note that the properties of E allow us to write every open set 
as the countable union of open balls. 

(ia) =X (viija). Take x e F and { Gi, i E I) a fundamental (nested) system of open 
neighborhoods of x with G1 D F. Clearly, for all i in I, G, n F # 0. Now, (ia) 

implies also that Gi n Fn 7# 0 for n > ni and thus there exists xn E F, such that 
x = lim xn. Hence F c li Fn. 

Next we prove that the (b) statements are equivalent. But this time we derive the 
sequence of implications in the opposite order, i.e. 

(Viib) =* (ib) ==> (iib) =:> (iiib) =* ('Vb) =* (Vb) =* (Vib) ==> (Viib). 

(viib) =X (ib). Suppose not. Then there exists a compact K such that F n K = 0 
but for Fm n K #= 0 for all m E M c N. Every sequence {xm E Fm ,n K) admits 
a convergent subsequence, say to x. By definition x E K n Is Fn c K n F, a 
contradiction. 

(ib) = (iib). Evident. 
(iib) = (iiib). Since d(x, F) > e if and only if F n Be(x) = 0, which in view of 

(iib) implies that Fn n Be(x) = 0, or equivalently, d(x, Fn) > E for n sufficiently 
large. From this (iiib) follows directly. 

(iiib) => (ivb). Suppose not. Then ls(Fn \ eF) =# 0, i.e. there exists { xn E Fm \ eF, 
m E M) such that lim xm = x E ls(Fn \ eF). On one hand we have that for all 
m E M, e < d(Xm, F) < d(x, F) + d(x, xm) and thus d(x, F) > e - d(x, xm); on 
the other hand d(x, Fm) < d(xm, Fm) + d(x, xm). Via (iiib), this implies that 0 = 

lim inf d(x, Fm) > d(x, F) > e - 0, a contradiction. 
(ivb) = (vb). Apply Lemma 2.1 to the sequence {Fn \ eF, n E N). 
(vb) = (vib). Fix any x ( E. Since for all e > 0, r > 0 there exists n(e, r, x) such 

that for all n > n(e, r, x), Fn n Br(x) c eF, it follows that ls(Fn n Br(x)) c EF. 
This holds for every e > 0, and since ls(Fn n Br(x)) is closed, we also have that 

ls(Fn n Br(x)) c F from which the assertion follows directly. 
(vib) =X (viib). If y E Is Fn then there exists { Ym E Fm, m E M c N) such that 

y = limflym. Now fix any x E IF and let s > d(y, x); thenym E (Fm n B,(x)) for m 
sufficiently large. Thus y E ls(Fm n B,(x)) c TOmO ls(Fm n B,(x)) c F. E 

Parts of this theorem can be derived directly from the results of Choquet [3] and 
Michael [4]; cf. also [8]; it remains valid in a more general setting, viz. when E is 
locally compact, Hausdorff and second countable. More specialized results can be 
derived for sequences of closed convex sets; see [9]. 

COROLLARY 2.3. Suppose that (F; Fn, n E N) is a collection of closed subsets of E. 
Then the following are equivalent: 

(i) F= 5-lim F, 
(ii) F = lim F 
(iii) for all x E F, d(x, F) = lim d(x, Fn), 
(iv) lim[(F \ eFn) U (Fn \ eF)] = 0for all e > 0, 
(v) F = lim4t,x ls(Fn n Br(x)) = limrtoo li(Fn n Br(x)), for any x E E. 
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PROOF. These are simply reformulations of some of the statements appearing in 
the theorem if we remember that for any sequence of sets we always have that 
li c Is and for any sequence of numbers lrm inf < lim sup. O 

3. Convergence almost everywhere (surely). A sequence of closed-valued measur- 
able multifunctions {(F, n E N) converges almost everywhere (a.e.) to a multi- 
function F if for almost all w E Q, the closed sets Fr(w) converge to the closed set 
F(w), more precisely if meas{w E Qjlim Fr(w) # F(A)} = 0. We write F,, -r F a.e. 
Note that meas is nonnegative but not necessarily bounded; if meas is a probability 
measure we write Fn r-- F a.s. 

THEOREM 3.1. Suppose that (F; rF, n E N) is a collection of closed-valued measur- 
able multifunctions. Then both w i- (1i Fn)(w) and w H- (Is FnXw) are closed-valued 
measurable multifunctions. 

PROOF. They are clearly closed-valued; hence it suffices to show that they are 
measurable. In view of (2.5) for every w we have 

00 - 00 

(li r)(W) = n cl u n (cl k-lFm(w))]. 
k=1 n=1 m>n 

Thus (li Fn) iS the countable union and intersection of multifunctions of the type 
cl k - 1Fn, and, hence, to prove that li Fn is measurable it remains only to show that 
w F4 cl k- Fn(o) = {xld(x, rF(W)) < k-1} is a measurable multifunction. But this 
follows from the fact that (x, w) F4 d(x, Fn(o)) is continuous in x and measurable 
in o, a so-called Caratheodory function, and consequently the multifunction 
X F4 A(X) = {(x, 'q) E E X R Jq > d(x, rn(W))} is closed-valued and measurable. 
Now simply note that for F any closed subset of E we have that 

(cl k-I1rF) 1(F) = A-1(F x [0, k-1]) E A. 

To prove that Is Fn is measurable, we show that for F, an arbitrary closed set, from 
(2.6) we have that 

00 

(Is rn) 1(F) = n Ls F-1(k-1F). (3.1) 
k-i 

For k = 1, 2, . . . we always have that 

(Is rF) 1(F) c Ls F-1(k-1F) (3.2) 

and thus (3.1) will be established if we show that 
00 

n Ls Fn 1(k-1F) c (Is rn) 1(F). (3.3) 
k= 1 

But this follows from the inclusion 

Ls F"-l (k - F) c (Is F" _1(cl k -1F) 

and the fact that for any closed-valued multifunction F, 
00 

F-'(F)= nF-1(clk-1F,a 
k-I 
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COROLLARY 3.2. Suppose that (F, n E N} is a sequence of closed-valued mea- 
surable multifunctions converging almost everywhere to a multifunction r. Then r is a 
closed-valued measurable multifunction on Q \ A where meas(A = {wjrj(o) +* r(w)}) 
=0. 

PROOF. For every X E S2 \ A, we have that (Is rF)(o) = F(o) = (li FJ')() and 
thus the assertion follows directly from the theorem. O 

COROLLARY 3.3. A closed-valued mutifunction r is measurable if and only if it is 
the limit of a sequence of simple closed-valued measurable multifunctions. 

PROOF. A closed-valued multifunction is sinWle if it takes on only a finite number 
of values. From Theorem 3.1 we know that the limit multifunction of any sequence 
of closed-valued measurable multifunctions is itself closed-valued and measurable. 
The only if part will be argued later when a stronger result is obtained (Proposition 
4.4). Ei 

In [10, Theorems 2.6, 2.7], M. Sion derives a related result for partitionable 
multifunctions defined on uniform spaces. 

The next theorem yields various characterizations of almost sure convergence in 
terms of specific "test" families of subsets of E or U2. Given {Ai, i E I} a collection 
of elements of ?, we write Ai cO A (A co A, resp.) for all i E I, if there exists a 
(fixed) set AO E 6d with meas AO = 0 such that A, c A U AO (A c A, u AO resp.) 
for all i E I. 

THEOREM 3.4. Suppose that Fr; r,,, n E N} is a collection of closed-valued 
measurable multifunctions from S2 to E. The following are equivalent statements: 

(i) rn 
r- a.e; 

(ii) for any conWact set K C E and any open set G c K, 

Ls r-'(K) c F-'(K) and F-'(G) cO Li rF-(G); 

(iii) for any E > O and x C E, 

r-F(Bo(x)) co Li r-'(Bo(x)) c Ls F,-7(Be(X)) co F-'(B8(x)); 
(iv) for any e > 0,r > Oandx E E, 

lim meas[ U ((rm \ er) u (r \ EFm)F1(Br(X))1 = O; 

(v) there exists A E ? with meas A = O such that for all x E E and X E 2\ A, 

lim d(x, rn(W)) = d(x, r(F)); 

(vi) there exists A E i with meas A = 0 such that for all x E E and X E G2 \ A, 

iim is(rn(w) n B,(x)) c F(w) c lim li(F.(w) n B,(x)). 
r4oo rToo 

PROOF. (i) X= (ii) X (iii). Almost everywhere convergence implies the existence of 
a set A with meas A = 0 such that for every w E S2 \ A, r(w) = lim rF(w). Restrict- 
ing the Fn and F to S2 \ A, we know from Theorem 2.2(i) that the closed sets Fn(W) 
converge to 1(w) if and only if for every open set G and every compact set K: 
w E r-'(G) implies that w E- Fr-(G) for n > nG and w X r-'(K) implies that 
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F X '-(K) for n > nK, or, equivalently, if and only if the inclusions of (ii) are 
satisfied. The same argument, but relying this time on Theorem 2.2(ii), establishes 
the equivalence between (i) and (iii). The inclusion Li F - '(B?(x)) c Ls F - '(Be(x)) 
is always valid. 

(i) < (v) < (vi). These are clearly direct consequences of the equivalence between 
statements (ii), (iii) and (vi) of Corollary 2.3. 

(i) < (iv). In view of statements (vii) and (iv) of Theorem 2.2 and Lemma 2.1, the 
measurable multifunctions rn converge almost everywhere to 1 if and only if there 
exists a set A E c?, meas A = 0, such that for every e > 0, r > 0 and x E E there 
corresponds n(e, r, x) such that [(1 \ El') U (rn \ eF)](o) n B,(x) = 0 for all n > 
n(e, r, x). Let 

Wn(6, r, x) = (@ E- 2| U 0( \ erm) U (rm \ er))(w)] n B,(x =# 0} 

The sets Wn(e, r, x) are measurable and thus so is W(e, r, x) = Lim Wn(e, r, x). 
Now, we have that r = lim rn a.e. if and only if for all r > 0, 
meas(U* l UXED W(k -, r, x)) = 0 where D is a countable dense subset of E, 
or, equivalently, if and only if for all r > 0, k = 1, . .. and x E D, 
meas( W(k- , r, x)) = 0 or still, if and only if for all r > 0, e > 0 and x E E, 
meas(W(e, r, x) = Lim Wn(e, r, x)) = 0, but this holds if and only if 
lim meas Wn(e, r, x) = 0. O 

As can be easily gathered from the proof the somewhat weaker statement (iv') 
also implies almost everywhere convergence: 

(iv') for any e> 0 and x C E and some r > 0, 

him meas[ U ((rm \ er) U (r \ erm))'(Br(x))] = 0. 

COROLLARY 3.5. Suppose that {f;fn, n E N) is a family of measurable functions 
from S to R. Then f = lim fA a.e. if and only if for every q C R we have that 

E8 Ilf(o) <71} Co Li{w E flfn(') <'71 (3.4) 

and 

Ls{w EC- Slf|(') < 71) Co {( E -Inf(o) < q). (3.5) 

PROOF. Apply criterion (ii) of Theorem 3.4. [] 

4. Convergence of measurable selections. We turn next to finding conditions that 
will guarantee the convergence of measurable selections. A measurable function v 
from S2 to E is called a measurable selection of (the measurable multifunction) 1 if 

v(X) E F(w) for all X E8 dom r. The basic theorem on measurable selections, 
already referred to in the introduction, asserts that a multifunction 1 is measurable 
if and only if r admits a Castaing representation, i.e. dom 1 E A and there exists a 
countable collection of measurable selections {Vk, k E N') such that for all 
X E dom 1, Clt U k Vk(()} = r(w) 
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THEOREM 4.1. Suppose that {F,,, n E N) is a collection of closed-valued measur- 
able multifunctions from Q to E converging almost everywhere to the closed-valued 
measurable multifunction 1 such that for all n, dom Fn = dom 1. Then there exist 
Castaing representations {vnk, k E N') of the Fn such that for each k in N', 
vk = lim V,n a. e. on dom 1 and {Vk, k E N') is a Castaing representation of 1. 

PROOF. The theorem is trivially true if meas(dom 1) = 0. Let us thus assume- 
without loss of generality-that dom 1 = dom Fn = S2, meas 2 > 0 and that F(w) 
= lim Fn(Q) for every X in R2. Since the topology on (E, d) is metric invariant we 
may also assume that d is the Euclidean distance. 

Let QP be the points with rational coordinates in E where p is the dimension of 
E. Let 

ak = (ak, ak, . .. , akP), k E N'Ia, E QP, 

(a.. , ap + ) affinely independent), 

and for any closed set F c E, define 

proj F ak = Mp+ 1 

where for i = 1, . . . p, 

Mi+ = { x E MiId(ak, x) = d(ak, M)} 

and M1 = F. Then "proj"F ak is a singleton unless F is empty, in which case it is 
also empty. Note also that {"proj"F ak, k E N') is dense in F. 

Let 

Vnk((W) proj rn(W)ak, 
k E N', and vk(Q) = proj r(W)ak. 

By construction, the { V,,k, k E N') [{vk, k E N')] are Castaing representations of 
the Fn [1 resp.] provided the functions ( 4 Vn,k(Qo) [k + vk(w)] are measurable. But 
this follows from the repeated application, p + 1 times, of the fact that if A is a 
closed-valued measurable multifunction from Q to E and y E E, then the multi- 
function 

X H-+ projiA(-4)y = {x 8 A(Q)Id(y, x) = d(y, A(@))} 

is closed-valued and measurable. To see this, simply note that the function 
(w, x) + d(x, y) - d(y, A(X)) = q(w, x) is measurable in X and continuous in x; 
thus the multifunction X + {xlq(w, x) = 0) is measurable and so is projA(-)y = 

A:() n {xlq(w, x) = 0). To complete the proof simply observe that for all k E N' 
and for all X E Q, the sequence { Vn,k((), n E N) converges to vk(o). This is a 
direct consequence of Theorem 3.4(v) since (almost everywhere) convergence of the 
F, to F implies that (almost everywhere) the sequence {d(a,, F,QA)), n E N) 
converges to d(ak,, F(o)), and by construction, d(ak, F,(o)) = d(ak, vn,k(Q)) and 

d(a,k, Vk(()) = d(ak, F(Q)). o 

COROLLARY 4.2. Suppose that (rF, n E N) is a sequence of closed-valued mea- 
surable multifunctions converging almost surely to a closed-valued measurable multi- 
function F. Then there exist measurable selections of Fn converging to a measurable 
selection of r. 
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From the convergence of Castaing representations of the Fn to a countable 
collection of measurable functions {Vk, k E N') it does not follow that the Fn 
converge to the closed-valued measurable multifunction 1" where F'(W) = 

cl{ U k Vk(()}, not even when the rn and rF are convex-valued. To see this, consider 
the following simple example: Let Fn(Q) = [0, 1] for all X E Q and all n. Take a 
Castaing representation of rn with the following properties: X " vn,k(W) piecewise 
constant with Vn,k(W) < 2 if k < n. Let vk = lim Vn k necessary O Vk (2. Thus 
rF = cl[ U k VkI C [0, 2], whereas lim rn(o) = [0, 1] for all X in R. 

Note that 1" c 1, since Vk(() = lim Vn,k(QW) C 1i Cl{ U k Vn,k(Q))} = ni J,(o) C 

F(Q). The reverse inclusion would be valid if Is clt U k Vn,k(W)} C clt U k Vk((o)}. In 
order for this to hold, i.e. to derive a converse Theorem 4.1, we need at least the 
uniform convergence of the Castaing representations. But it is not always possible 
to find selections that exhibit uniform convergence, as is evident from the following 
example: Let Q = ]0, 1], rn(F ) = (nw)-'; then vn(X) = rn(w) is the only selection 
and lim vn = v = O = r = lim rF. Clearly there are no measurable selections con- 
verging uniformly to 0. However any measurable selection of the limit multifunc- 
tion r can he obtained as the limit of a sequence of measurable selections of the 
rF; this is the content of the next theorem. 

THEOREM 4.3. Suppose that {Fr, n E N) is a sequence of closed-valued measurable 
multifunctions from Q to E converging almost everywhere to the closed-valued 
measurable multifunction 1. Suppose also that v is a measurable selection of 1; then 
there exist measurable selections {v", n 8 N} of the multifunctions (Fn, n E N) such 
that almost everywhere v = lim v". 

PROOF. Let F'(w) = 
projrn(-)V(W). 

The multifunctions 1', are closed-valued, mea- 
surable and nonempty-valued whenever Fn(W) is nonempty; cf. proof of Theorem 
4.1. Any sequence of measurable selections vn of 1', n E N, has the desired 
characteristics. This follows from Theorem 3.4(v) and the fact that d(v(Q), F(w)) = 

0. [l 
This theorem allows us to give an enlightening proof of Corollary 3.3. We are 

obviously only concerned with the only if part of the statement. Suppose that 1 is a 
closed-valued measurable multifunction and for n = 1, 2, . . ., let Fn = 1 n Bn(0). 
Each Fn is a uniformly bounded compact-valued measurable multifunction and 
F = lim Fn,. As in the proof of Theorem 4.1, for each Fn we build a Castaing 
representation {Unk, k E N'). Each Unk is measurable and necessarily bounded. Let 

{vnk, k E Nn,) = U m<n { Umk, k E8 N'). This is also a Castaing representation of Fn 
with the following properties: 

(i) {Vn,k, k E Nn,) C {vn2k, k E N,2) if n, < n2, and 
(ii) the multifunctions { Uj<k v, k E Nn;) converge uniformly-with respect to 

the Hausdorff distance h-to the uniformly bounded multifunction Fn. 
Each bounded measurable selection vnk is in turn the uniform limit of a sequence 

of measurable simple functions, say {V,kl, E1 Lnk}. Let A,nk, = U j<k V,jl. This is a 
simple finite-valued measurable multifunction and, obviously, for each X ES 2 we 
have that F(Q) = limn, liMk lim Ankl(W). (By finite-valued we mean that the range of 
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the multifunction, i.e. { U ,,nkl(W))I consists of a finite number of points, which is 
a stronger restriction than having r(P) of finite cardinality for each X E U.) Since 
the {(Ankl} converge uniformly to { U j<k vn,} which in turn converge uniformly to 

1n, we can rely on the standard diagonalization argument to find a sequence of 
multifunctions {Ank I, n E N) -that converge to 1. This argument allows us to state 
a stronger version of Corollary 3.3. 

PROPOSITION 4.4. A closed-valued multifunction is measurable if and only if it is the 
limit of a sequence of simple finite-valued measurable multifunctions. 

5. Almost uniform convergence and convergence in probability. Henceforth we 
shall assume that meas is a probability measure. Let {F; Fn, n E N) be a collection 
of closed-valued multifunctions from ?2 to E. We say that the Fn converge uniformly 
to r on a set A E 6T if to every x E E and every pair e' > e > O there corresponds 
an index n(e', e, x) such that for all n > n(e', e, x), 

(BO(x)) n A c rP- (B?(x)) n A (5.1) 

and 

A \ r -I(Be'(x)) c A \ F'-(Be(x)). (5.2) 

This definition is motivated by criterion (ii) of Theorem 2.2. In particular, it follows 
that the sequence {Fr, n E N) converges uniformly to F = 0 on A if to every 
E > 0 and x E E there corresponds i(e, x) such that F-l (Be(x)) = 0 for all 
n > h(e, x). 

If, in addition, the rn and r are measurable, we say that the Fn converge almost 
uniformly if given 8 > 0, there is a set Q24 E 6 with meas(8s) > 1 - 8 such that the 

Fn converge uniformly to F on 028. We then write Fn r,- F a.u. 

THEOREM 5.1. Suppose that meas is a probability measure and {F; rn, n E N) is a 
collection of closed-valued measurable multifunctions. Then Fn r,- F a.s. if and only if 
Fn -, Fa.u. 

PROOF. Clearly almost uniform convergence implies almost sure convergence. By 
definition, the sequence Fn converges (uniformly) on &20= U k-m I2k- with 
meas 2k-1> 1 - k meas eas Q > meas[Limk( U Z i- X)] = 1. To prove the 
other direction we proceed as follows: As in the proof of Theorem 3.4, for e > 0, 
r > 0, x E E let 

Wn,(e, r, x) = w e ?| [ U ((F \ erm) U (rm \ er)))] n B,(x) 0). 

From Theorem 3.4(iv) we know that Fn ,,r F a.s. if and only if for all e > 0, r > 0 
and x E E, lim meas W,(e, r, x) = 0. In particular, if k is any positive integer we 
have that lim meas Wn(k- , r, x) = 0, i.e. given 8 > 0, there exists i(8, k', r, x) 
such that meas Wn(k', r, x) < 8/2k for all n > n. Let 

00 

V(r, x)= U Wi-(k'-, r, x). 
k-i 
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Then meas V(r, x) < 8 and define Q = Q2 \ V(r, x). If X5 E 02 then 
00 

F,oE En(g \ Wi(k -',r, x)), 

i.e. for all n > i(8, k', r, x), X5 E Q \ W,,(k', r, x), since the sequence 
W,(k- , r, x) is monotone nonincreasing (in n). This means that for all n > n, 

(rn \ k- Fr)(W) n Br(X) = 0 (5.3) 
and 

(r \ k-'rn)(w) n Br(X) = 0. (5.4) 

Now assume that w E F - l(Br,(x)) n Saa and for the sake of the argument, let us 
assume that for some k, there is no fi (r' = r + k-, r, x) such that w EC- F '(B,r'(x)) 
n Q, for all n > ni. This means that there exists M c N-determining a subse- 
quence-such that w X r- '(Br,?(x)) for all m E M or equivalently, for all m E M, 
k - 'Fm(W) n Br(x) = 0, from which it follows that for all m E M, 

(F \ k'-rm)(4) n Br(X) = r(w) n Br(X) #0, 

which contradicts (5.4). 
Similarly, if w E Sh \ F -'(Br,(x)), and for all m E M c N, X M \ F- l(Br(x)), 

we have that 

(Fm \ k'-F)(4) n Br(X) = rm(Q) n Br(x) #0, 
and then (5.3) is contradicted. [-1 

Theorem 5.1 is a version of Egorov's theorem; it raises an interesting question. 
The relationship between the closed-valued measurable multifunctions from Q to E 
and the measurable functions from Q to 6JY suggests yet another approach to the 
derivation of Egorov-type results. Again let p be a metric on 6j compatible with CJ, 
the measurable functions yn converge almost uniformly to the measurable function 
y if given e > 0, there exists a set Qe E d with meas(Qe) > - E and on Q,e the yn 
converge uniformly (with respect to the metric p) to the function y. With this 
definition, we can then rely on the standard version of Egorov's theorem to obtain 
the equivalence of almost sure and almost uniform convergence. Passing to the 
associated multifunctions, via Proposition 1.1, would yield an Egorov theorem for 
multifunctions. Such an approach is of interest only if we have a "concrete" version 
of the metric p. Although criteria (v) and (vi) of Theorem 2.2 provide us with 
quantities that can be associated with the notion of proximity (for two closed sets), 
there is, at present, no satisfactory representation of any metric compatible with T. 
Theorem 5.1 and the preceding considerations inform us that the definition of 
uniform convergence for sequences of multifunctions, introduced at the beginning 
of this section, provides a characterization of p-uniform convergence for functions 
with values in 6Y. Is this the best possible, in the sense that a minimal class of 
"test"-sets are involved in the definition? 

Finally, let us observe that the above lead us to a natural definition of conver- 
gence in probability. Let 

Ae,n = (Fn \ Er) U (F \ ern). 
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From Corollary 2.3(iv) we know that for any fixed o, 

r(o) = lim rF(o) if and only if for all E > 0, lim Ae,Q) = 0. 

This, in terms of the criterion for convergence to the empty set provided by the 
Lemma 2.1, can be reexpressed as follows: given r > 0 and x e E, there exists 
fi(r, x) such that Aen(w) n Br(x) = 0 for all n > ni. In view of this, we may define 
convergence in probability as follows: As usual, let (r; r", n E N) be a collection 
of closed-valued measurable multifunctions; then the rn converge in probability to 
F if for all E > 0 and any r > 0, x E E, lim meas(A - 1 (Br(x))) = 0. To see that 
almost sure convergence implies convergence in probability, one proceeds as 
follows: If the rn converge almost surely to r then for all e > 0, the Ae,n converge 
almost surely to 0. In view of the preceding theorem this implies that for all e > 0, 
the Ae,n converge almost uniformly to 0. This means that given any 8 > 0, there 
corresponds U, E (! with meas i2^ < 8 and the Ae,,n converge uniformly to 0 on 
Q \ Q^. In turn this yields, given r > 0, x E E, there exists nii(r, x) such that 

(a \ U.) n A ,-l(Br(x)) = 0 for all n > n', i.e. for all n > ni, meas(A -'(Br(x))) < 
meas Qii < 8, and thus lim meas A ,,'(Br(x)) = 0 for all e > 0, r > 0 and x E E. 
This ends the argument. 

Naturally, if the multifunctions rn are conWact-valued then it is possible to rely 
on the Hausdorff distance to find a satisfactory definition of convergence in 
probability. In view of the relations between the C-topology and the Hausdorff 
metric, discussed in ? 1, it is easy to see that both definitions must coincide when 
the multifunctions are uniformly bounded. If the multifunctions rI, and also r, are 
convex-valued it is possible to characterize convergence in probability in terms of 
the r-distance [9]. Let F1, F2 be two closed subsets of E; for r > 0 the r-distance is, 
by definition, 

if Fr = Fr =0, 
hr(F,F2)= + if F = 0 or F2r = 0 but Fr = F2r, 

h(Ffr, F2r), 

where h(Ff, F2) is the Hausdorff distance between Fr and F2r and for any D C E, 
Dr = D n Br(O). With this definition we have that [9, Theorem 4]: Suppose that 
(C; Cn, n E N) is a collection of closed convex subsets of E. Then C = lim Cn if 
and only if there exists ro > 0 such that for all r > ro, lim hr(C, CQ) = 0. This 
statement clearly implies Theorem 2.2(vi) but convexity is necessary to get the 
converse. It is possible to exploit this result to find, in the convex-valued case, a 
criterion for the convergence in probability that does not involve all x in E (or all x 
in a dense subset of E). Let w i-- ro(w) be a measurable function from &2 to R such 
that ro(w) > d(O, r(w)). Such a function exists (and is finite) whenever r is non- 
empty-valued since X i-+ d(O, r(o)) is measurable. In view of the equivalence of (vi) 
and (iv) in Theorem 2.2, and that in the convex case (vi) can be expressed in terms 
of the r-distance, when the rn and r are nonempty convex-valued, we have that the 
rn converge in probability to r if and only if there exists a positive measurable 
function ro such that for all measurable functions w - r(o) with r(w) > ro(w) and 
all e > 0, lim meas{Iwh,Ih(F,,(rn(), (X)) > E} = 0. This can be further refined when 
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d(O, r(-)) is bounded. It then suffices to check the above for every measurable 
function w + r(w) such that for all w, r(w) > ro, where ro > sup d(O, F(w)). But 
every measurable function is itself the limit of simple functions; thus in this latter 
case (rn and r convex-, nonempty-valued and d(O, F(-)) bounded) the Fn converge 
to F in probability if and only if there exists ro > 0 such that for all r > ro and all 
e > 0, lim meas{wlhr(rn(w), 1(w)) > E} = 0. 
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