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1. INTRODUCTION

In this paper we study the stability of the value and solutions of stochastic programs.
The stability checked is with respect to perturbations in both the payoff functional and the
probability distribution that describes the uncertainty. For the probability distribution we
consider perturbations in the sense of the weak convergence of measures. It is natural to
check the stability with respect to this convergence, as it reflects errors in measurements
or in sampling. For the payoff functional we come up with a new convergence notion for
integrands. This convergence could be interpreted as epi-convergence on a function space
equipped with a convergence notion related to graph convergence. It allows discontinuities,
thus enabling us to deal with a richer class of problems than has been possible so far. We
provide examples demonstrating the need for discontinuous payoff functionals, and show
how the convergence introduced in this paper applies. The results are then used to verify
the stability of the value of sensors.

We work with an abstract formulation. The stochastic optimization problem consid-
ered here is of the form

(+) maximize / f(z,€)P(de)

where X and = are complete separable metric spaces, and P is a probability measure on =;
the latter space is equipped with its Borel structure. The payoff functional f is a mapping

f(mag):XXE—> [—O0,00] ’

and it is assumed to be, at least, measurable in the £ variable. For a fixed x the integral
is taken in the extended sense, and if not defined, it is set equal to —oo.

As mentioned, the stability of the problem (x) is examined with respect to variations
both in P and in f. Related questions were examined in the literature, and from various
aspects, see e.g. Kall [9], Wang [20], Robinson and Wets [14], Dupac¢ové [7], [8], Romisch
and Schultz [16], [17]. These papers consider variations in P to be in the sense of weak
convergence. The payoff functionals in these papers are assumed to be continuous. The
analysis of [14] assumes, for instance, continuity of the integrands, and use uniform conver-
gence on compacta as the convergence mode. Stability with discontinuous functionals was
considered by Langen [11] and by Schultz [18]; we comment on these papers in the body of
the text. What the present paper offers is a general framework for checking the continuity
of the value with respect to functional convergence of discontinuous payoff functions, and
the weak convergence of the underlying probabilities. Aspects other than continuity are
examined in Kall [9], Dupacova [7], [8] and Romisch and Schultz [16], [17], notably the
differentiability of the value. The setting of our paper is more general, but we examine
only continuity properties.



The paper is organized as follows. In the next section we display two examples where
discontinuities in the payoff functional occur. These examples are used in later sections to
illustrate and check the abstract results. In Section 3 we examine semicontinuity of the
integration in (x) for a fixed decision z, and in Section 4 the continuity of this integral is
studied. These results form a major step in the analysis of the stability of the value, which
we come to in Section 5. We also provide there a result on the stability of the solution set,
and a result on robustness of optimal solutions. The applications of the stability analysis
to the examples of Section 2 are explored in Section 6. Sensors were introduced in [2] as
a tool to evaluate inquiries into the structure of the uncertainty; the application of the
stability analysis to the stability of sensors is given in Section 7, along with a telegraphic
introduction to the sensors model.

2. EXAMPLES

Dicontinuous payoff functions arise in a variety of contexts, such as linear stochastic
programs with random recourse matrix, stochastic programs with discontinuous recourse
costs, multistage stochastic programs with chance constraints, etc.. A particularly rich
collection of examples is supplied by stochastic integer programming problems, see e.g.,
Laporte, Louveaux and Mercure [12], Schultz [18] [19] and Klein Haneveld, Stougie and van
der Vlerk [10]. We present here two simple examples with discontinuous payoff functions;
they are used in the sequel as illustrations for, and tests of, the abstract results.

Example 2.1. The newsboy problem with mandated backorder.  This is a sim-

ple inventory problem in the form of the classical newsboy problem, as treated, e.g., in
Richmond [13, Chapter 7).

A newsboy has to place an order for a number, say x, of copies. Each copy costs him ¢
dollars, while he sells the newspapers at r dollars apiece. These newspapers are sold until
the demand is met. If, however, the demand is greater than z, then the newsboy is obliged
to backorder the missing copies. This extra effort costs him K dollars, a cost which does
not depend on the number of papers to backorder (say, when the newsboy has to send out
a truck to collect the backorder).

Thus, for a given demand & and decision z, the newsboy’s payoff is

ré —cx if €<=z

21) fle8) = (r—c)¢—-K if &>x.

If the demand ¢ is known, then z = £ would maximize the payoff. But in the situation we
analyze, the demand ¢ is a random variable whose realization is not known to the newsboy
when the order x is placed. The probability distribution P that governs ¢ is, however,
available to the newsboy. Thus, if the newsboy wishes to maximize expected payoff, his



decision problem is

(2.2) max1m1ze/ f(z, &) P(dE)

<zr<oo

with f given in (2.1).

Stability of the problem (2.2) means that the value and solutions do not vary too
much when only small perturbations occur in the data. One perturbation that should be
considered is that the true probability distribution is not exactly equal to P. Another
deviation may be that the fixed backorder cost is not K, but another number, hopefully
close to K. The place of the discontinuity, namely the constraint £ < x in (2.1), could also
be only an approximation of the true value, as a small number of unsatisfactory customers
may be allowed. There may be limits not known in advance on the size of the backorder;
then the second line in (2.1) is only an approximation of a term

(r—c)ymin(§, L) — K if &>z

with L large, and not known in advance. In all the preceding situations, it is clear what
should be meant by “small deviations” in the payoff. The convergence introduced in this
paper agrees with this intuitive perception.

Example 2.2. A mixed integer-linear stochastic recourse problem. We exhibit a sim-

plified version of the general two-stage stochastic program with the integer-linear recourse
process. (The example was added after a referee had kindly pointed out to us the paper
by Schultz [18].) The problem is as follows (we index the parameters by nought for later
use).

(2.3) maximize c(z) — / " Dol — £])Po(de)

—oco< <00 oo

where the function ® is determined by the optimization procedure
(2.4) ®o(b) = min{qoy +roz: oy +Poz=b, ye Ry, z€ Z, } .

Here Ry = [0,00) and Z; = {0,1,2,...}; the constants gg, 79,9 and [y are assumed
positive.

The interpretation is that the decision z is made first, with payoff co(z). Then a
random quantity £ is realized, and a recourse action is performed by choosing y and z such
that apy + Boz = |z — &|. The cost in turn is qoy + 792, and at the recourse stage it should
be minimized. The quantity z is thought of as the cheaper one (this would be reflected by
the condition g_o > EO,
As we see in Section 6, it is this nature of recourse that generates discontinuities in the

but we do not need this); in turn, z is restricted to be an integer.

integrand ®q(-).
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We are interested in the stability of the value of (2.3), with respect to perturbations
in the data cy(), qo, 70, @0, Bo and the underlying distribution Py.

3. SEMICONTINUITY OF THE INTEGRAL

In this section we consider a preliminary, yet a crucial, step toward the stability anal-
ysis. Let = again be a complete separable metric space, endowed with its Borel structure.
Consider the integral

3.) 16,P) = [ 9(©)P(e8)

=)
flm

where P is a probability measure on =, and g : £ — [—00, 00| is a measurable function.
We allow I(g,P) = 400 or I(g,P) = —oo, and when I(g, P) is still not defined, we
set it to be —oco. We are interested in the semicontinuity properties of I(-,-) in its two
variables. Specifically, for convergence modes yet to be chosen, we look for conditions on a
pair (go, Po) such that I(g, P) is semicontinuous at (go, Py) ,namely, either lower or upper
semicontinuous. Note that the integration in (3.1) is a degenerate case of the optimization
problem (%), namely when the decision space is a singleton.

Langen [11, Theorem 3.3| established semicontinuity results for I(g, P), in the spirit
of our result Theorem 3.5 (we thank a referee for pointing this out.) The convergence on
sequences of functions g used in [11] could be called lower semicontinuous convergence,
namely & — & implies liminf gx(&k) > go(o). When continuity is sought, and both
upper and lower semicontinuous convergences are assumed, then one gets the continuous
convergence, i.e., § — &y implies gr(§x) — go(§o), which is the convergence used by
Robinson and Wets [14, Theorem 2.1]. In particular, in the case of continuity, both [11]
and [14] need a continuous limit function go(-). Here and in the next section we relax
the notion of convergence, allowing in particular discontinuous limit integrands go(-). We
propose a type of graph lower convergence for gx. For the measures P we use, as do [11]
and [14], weak convergence of measures. Both notions are presented now.

We denote by P the family of probability measures on =, and by G the family of
measurable functions g : & — [—00, 00].

Definition 3.1. (See e.g. Billingsley [5].) The sequence Py of probability measures

on = converges weakly to Fp if for every bounded and continuous function h : E —
(—00,00), the integrals I(h, P) converge to I(h, Pp).

Since = is a complete separable space, the weak convergence on P is metrizable. The
Prohorov metric induces weak convergence, see [5]. The relevance of the weak convergence
to variational problems can be observed through the structure of the Prohorov metric.
The Wasserstein metrics, used by Romisch and Schultz [16], [17], have a similar structure,
and could be used as well.



We need the following notation. For g € G we denote by lc g the lower closure of g,
namely (lc g)(§) = liminf g(n) as n — £. Similarly, uc g denotes the upper closure of g,

namely (uc g)(§) = limsup g(n) as n — &.
Definition 3.2. The function gg in G is an epi-sublimit of the sequence g if

(lc go)(§) < liminf gx(&) as & — &,

for all £ € Z. The function gg in G is a hypo-suplimit of gy if —gg is an epi-sublimit of the
sequence —gg, or equivalently, if

(uc go)(§) > limsup gx(e) as & — &

for all € € =.

In the case that gg is finite-valued and continuous, and gi continuously converge to
go, then gg is both an epi-sublimit and a hypo-suplimit of a sequence gi. It is easy to see
that more generally, if the graphs of the functions gx converge to the closure of the graph
of go in the sense of set-convergence in = X [—00, 00|, then gg is both an epi-sublimit and a
hypo-suplimit of the sequence gi. Notice that g is an epi-sublimit of g if the epigraphs
of gk, i.e. {(&7) :r > gr(§)}, lower converge in the Painlev’e-Kuratowski sense to the
closure of the epigraph of gg. The closure operation, however, implies that even if sublimit
is replaced by limit (i.e., inequality is replaced by equality in the definition), then the limit
is not necessarily unique. For instance, let g be the Dirichlet function, namely g(r) = 1 for
r rational in [0, 1], and g(¢) = 0 otherwise. Then the constant sequence g¢,g,... has 1 —g
as both epi-sublimit and hypo-suplimit.

We are aiming at continuity results for I(g, P) when P is endowed with weak con-
vergence, and in G we consider a convergence based on the notions of epi-sublimit and
hypo-suplimit. Additional conditions have to be posed in order to guarantee the semi-
continuity. One issue that may cause problems is the unboundedness of the integrands.
Indeed, even for g fixed, I(g, P) is not semicontinuous with respect to the variable P if
g is unbounded. Imposing uniform boundedness on g is too restrictive in the framework
of variational problems, as objective functions often assume the value —oco. We follow
here Robinson and Wets [14] and Kall [9], and restrict ourselves to equi-tight (uniformly
integrable in the terminology of [14]) families, as follows.

Definition 3.3. Let W be a subset of pairs (g, P) in G x P. The family W is equi-
tight if for every € > 0 a compact set K., and a bound b, exist, such that for all (g, P) € W
the following three conditions hold.

(1) P(E\K,) <€

(2) 9(6)] <be if € € K,

(3) Joyc, 19(©)|P(dE) < ¢
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The preceding definition is a slight generalization of Robinson and Wets [14]; the latter
does not require explicitly the boundedness (2), but the boundedness holds in [14], and
follows from the continuity condition on the g and the uniform convergence; also, [14]
considers families W of the form G; x P; with G; C G and P; C P.

Equi-tightness does not suffice to guarantee semicontinuity; one needs in addition,
some information on the measure of the discontinuity points. To this end we need the
following terminology.

Notation 3.4. We say that £ is a lower continuity point of A : £ — [—00,00], if

liminf h(n) > h(§) as n — £. The set of points that are not lower continuity points of A is
denoted by LDisc h. Likewise, £ is an upper continuity point of A if it is a lower continuity
point of —h. The set of points which are not upper continuity points is denoted U Disc h.

The sets LDisc h and U Disc h may not be measurable. When h itself is measurable,
these sets are analytic. Indeed, LDisc h is given by

(3:2) U M proj{(&n) = d(&n) < 6, h(n) — h(&) > —}

e>06>0

where proj; is the projection on the first coordinate of (§,7), and d(-, -) is the metric on E.
The subset of E x = appearing in (3.2) is then measurable, hence its projection is analytic
(see the projection theorem in Castaing and Valadier [6, 111.4.23]). Since the intersection
and the union in (3.2) can be performed denumerably, the analyticity of the resulting set
follows. Being analytic, the set LDisc g for g € G belongs to the completion of the Borel
field of E with respect to any measure P in P. In particular, the values P(LDisc g), for
g € G and P € P, are well defined.

The following is the main result of the present section.

Theorem 3.5. Suppose that gg is an epi-sublimit of g and suppose that Py converge
weakly to Py in P. Suppose that W = {(gx, Px) : k = 0,1,2,...} is equi-tight, and that
Py(LDisc gg) = 0. Then liminf I(gg, Px) > I(go, Po)-

Proof. Let ¢ > 0 be fixed. Let K. and b, be provided by the equi-tightness of W
(Definition 3.3). Since Py(LDisc go) = 0, it follows that for every § > 0 an open set Ds
exists such that Ds contains LDisc gg, and Py(Ds) < §. We choose § and Ds such that
b < e.

Consider the set K = K.\ D;. This set is compact and contains only lower continuity

points of gg. In particular, gy is lower semicontinuous on K. As such, the restriction of gg
to K is the pointwise limit of a monotone increasing sequence of continuous functions on K.
(See Beer [4] for a proof and a useful algorithm for constructing such a sequence.) Therefore
a continuous function, say hg, on K exists such that

(3.3) /K 190(€) — ho(€) | Po(d€) < e .
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We now extend hg to the entire space ZE by letting ho(§) = go(€) if £ € K. Then, since
ho(€) < go(§) on K, it follows that each £ € K is a lower continuity point of hg, and hg is
an epi-sublimit of gx. We prove now

(3.4) liminf I(gx, Px) — I(ho, Po) > —8€ .

Together with (3.3), and the observation that € is arbitrarily small, (3.4) would complete
the proof.

To verify (3.4), we choose a continuous function h; defined on an open neighborhood,
say @1, of K, and such that hy(§) = ho(§) for £ € K. Such a function h; clearly exists.
We claim that an open neighborhood @ of K can be found, such that @ C @; and such
that the following three conditions are satisfied.

(1) Jorx ([Po(€)] + [h1(€)[) Po(d) < e

(ii) For some kg, gr(§) —hi1(§) > —efor £ € Q and k > ko
(iii) Py(0Q) = 0 (where Q denotes the boundary of Q).
To verify the existence of such a () we use a compactness argument as follows. The
estimate for the integral in (i) is satisfied for some neighborhood of K since Py(K) = 0,
therefore Py(Q'\K) converge to zero as Q'\ K gets smaller. To establish the estimates in
(ii) and (iii) consider first a point & in K, and establish (ii) and (iii) for a neighborhood
Q¢, of & . To find a neighborhood of §, for which (ii) holds, notice that the condition
h1(&) < (Ic go)(&o) and the epi-sublimit property imply that there exists a neighborhood
Ve, of & and a kg such that gi(§') > hi(§o) — 5 if & > ko and &’ € V¢,. On the other hand,
the continuity of h1(-) in a neighborhood of K implies that a neighborhood V¢ of & exists
such that hi(§o) > h1(§') —€/2 for all £ € V. Then for £ € Vg, NV, , the inequality
g (§') > ha(€') — e holds for k > ko, hence Vg, NV is a neighborhood of & for which (ii) is
satisfied. A standard argument could produce a neighborhood Q¢, of £, which is a subset
of Vg, NV{,, and such that P(0Q¢,) = 0. For this Q¢, both (ii) and (iii) are satisfied. The
compactness of K implies that the union of a finite number of such Q¢,, with { € K,
covers K. This union is a neighborhood of K for which (ii) and (iii) are satisfied, and its
intersection with the neighborhood satisfying (i) is the desired set Q.

The conditions P, — Py, and Py(0Q) = 0, and the continuity of hy on @, imply that

(3.5) lim \ [ e - [ h1(§)Po(df)‘ 0.

Therefore, by (i) and (ii),

(3.6) lim inf ( /Q gk (§) Pr(d€) — /

ho<s>Po<d€>) > 9.
Q
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This is not quite what is required in (3.4) as the integration in the latter is on the entire
space =. We note, however, that the equi-tightness implies that

(3.7) / L lom@Pe) <

for all k = 0,1,2,... (and recall that hg = gg on E\K,). Also, since K.\Q is a compact
set included in Dy, it follows that Py(K.\Q) < d, and since P, — Py it follows that

(3.8) lim sup /K | @PaE) < obe < e

Combining (3.6), (3.7), (3.8), and noting that Q U (E\K¢) U (K. \Q) = E, the estimate in
(3.4) is verified. This completes the proof.

The following is the upper semicontinuity result, analogous to the previous one; it
follows immediately from the definition of hypo-suplimit, and the lower semicontinuity
result.

Theorem 3.6. Suppose gg is a hypo-suplimit of gx, and that Py converge weakly to
Py. Suppose that the family W = {(gk, Px) : K =0, 1,...} is equi-tight, and Py(U Disc go) =
0. Then limsup I(gk,pr) < I(go, Po)-

It is clear that the assumptions Py(LDisc go) = 0 and Py(UDisc go) = 0 cannot
be removed from the previous results. Such an assumption is not used in Langen [11,
Theorem 3.3|, as the semicontinuous convergence used in [11] (see the early part of this

section) makes it irrelevant where the discontinuities occur.
4. CONTINUITY OF THE INTEGRAL

We use the two theorems of the previous section to derive conditions guaranteeing the
continuity of I(g, P). to this end we need the following terminology.
Notation 4.1. For h : E — [—00, 00| we denote by Disc h the set of points £ in E at

which h is discontinuous.

Note that Disc h is the union of LDisc h and U Disc h. The set Disc h is Borel even
if h itself is not measurable. Indeed, for a bounded h the set Disc h is a denumerable
union of closed sets Disc, h, consisting of the points £ in = at which the discontinuity is at
least €, i.e., limsup |h(n) — h({)| > € as n and ¢ converge to . For unbounded h we notice
that Disc h is preserved under the transformation h — h(1 + |h|)™1 (with co - 00! = 1),
which transforms h into a bounded mapping.

Theorem 4.2. Suppose that gg is both an epi-sublimit and a hypo-suplimit of the

sequence g, and that Py converges weakly to Py. Suppose that the family W = {(gk, Px) :
k=0,1,...} is equi-tight, and Py(Disc go) = 0. Then I(gg, Px) converge to I(go, Po)-



9

Proof. The conditions of both Theorem 3.5 and Theorem 3.6 hold, and the two
semicontinuity conclusions imply the continuity.

Remark 4.3. A referee pointed out to us that Theorem 4.2 has an alternative direct

proof, using Rubin’s Theorem (see Billingsley [5, Theorem 5.5]). A proper change of
variables in our problem reduces the convergence to the case of Rubin’s result. We rely
on the semicontinuity of the preceding section. This semicontinuity is of interest for its
own sake, and our proof yields also the estimate in Proposition 4.5. In turn, it might be
of interest to interpret our semicontinuity result in the framework of Rubin’s Theorem.
Remark 4.4. As we mentioned already, the continuity result improves available re-

sults; e.g., Robinson and Wets [14] where all integrands are assumed continuous (hence
Py(Disc go) = 0 since Disc go is empty), and the convergence gr — go is uniform on
compact sets. Our setting is more relaxed, but notice that under the conditions of Theo-
rem 4.2, the functions g; converge to go uniformly on compact subsets of the continuity
points of gg. The assumption Py(Disc go) = 0 that we add is natural in the presence of
discontinuities (it is used in Billingsley [5, Chapter 5] in the analysis of weak convergence,
which is used in turn in Schultz [18], in his study of stability in stochastic programs; it
was also used in [1] in the context of variational limits). If this assumption is dropped,
the convergence may fail even for gy fixed. To get an example, let go(§) =0 for 0 < ¢ < 1
and go(§) = 1 for 1 < ¢ < 2, let Py have an atom at £ = 1 and let P have an atom at
¢ = 1—k~1. Similarly, the continuity may then fail for P, fixed. For instance, let go(£) = 0
for 0 <€ <1, go(¢) =1for 1 < & <2 and Py as before, and g (§) = min(£F, 1).

Without the assumption Py(Disc gg) = 0, the continuity of the integral may fail. Our
method of proof, however, provides an estimate for the discontinuity that may result. We
present here a result along this direction, in the case where the integrands are bounded;
analogous results can be derived for the equi-tight case.

Proposition 4.5. Suppose that gy is both an epi-sublimit and a hypo-suplimit of

gk, and P, — Py. Suppose that g are uniformly bounded by the same bound (. Let
A = Py(Disc go). Then

lim sup |1 (gx, Px) — I(g0, Po)| < 2BA .

Proof. We follow the proof of the lower semicontinuity in Theorem 3.5, but choose
Ds to be such such that Py(Ds) < A + 6. This affects the analysis when (3.8) is derived,
and ¢ there should be replaced by (6 + A)B. This change is carried back to (3.4) and
the effect is that —8e is replaced by —2AS — 8¢, and since € is arbitrarily small we are left
with —2A3. The analogous argument for the upper semicontinuity completes the proof.

5. STABILITY ANALYSIS

In this section we use the semicontinuity and the continuity results of the previous
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sections in order to derive stability results for the stochastic optimization problem (x).
We consider a sequence (fx, Py) of pairs of integrands and probability measures. We find
conditions under which the values of the corresponding stochastic problems converge to
the value associated with the pair (fy, Pp). To this end let

(5.1) val(fx, Px) = supr(eer)r(lum g fr(z, &) Py (d),

where the integral is set to be equal to —oo if not defined.
As a preliminary step toward the stability we consider the convergence of the func-
tionals v defined by

(5.2) () = / fule, €) Py (de)

Notice that val(fx, Px) is the supremum over z € X of y(z).

A major tool in the analysis of stability of minimization problems is the concept of
epi-convergence of the cost functional, which becomes hypo-convergence in the case of
maximization problems; for a detailed account, cf. Attouch [3] or Rockafellar and Wets
[15]. Recall that the sequence i : X — [—00, 0] hypo-converges to 7 if at every point
x, lim sup vx(xx) < Yo(zo) when zx — z¢, and there exists at least one sequence y — xg
such that lim v, (yx) = Y0(zo). (Hypo-convergence can be characterized in terms of the
set-convergence of the hypographs, see [15].)

We state now the main connections between convergence properties of the pairs
(fx, Pr) and the associated upper semicontinuity properties, and hypo-convergence for
the functions .

Proposition 5.1. Suppose that whenever z — ¢ in X, the function f(zo,-) is a
hypo-suplimit of f(xg,-), and W = {(f(zk,-), P) : k=0,1,...} is equi-tight. Suppose also
that P(UDisc f(zg,-)) = 0 for all 5. Then 7 is upper semicontinuous.

Proof. The assumptions of Theorem 3.6 hold for gi(-) = f(zk,-) and Py = P for all
k. The conclusion then of Theorem 3.6 amounts to the upper semicontinuity of 7.

Theorem 5.2. Suppose that P, converge to Py and that whenever z; — xq, the

function fo(xo,-) is a hypo-suplimit of fx(zk,-), and that for each xy, there is at least
one sequence Yy, — T such that fo(zg,-) is an epi-sublimit of fx(yx,:). Suppose that
whenever zy — 1z the set W = {(fx(zk,), Px) : kK = 0,1,...} is equi-tight, and that
Py(Disc fo(zo,-)) =0 for all zg. Then 7, hypo-converge to 7.

Proof. By Theorem 3.6, limsup Vi (zr) < Y0(zo) whenever xx — xg, and by Theorem
3.5, liminf vk (yx) > ~vo(xo) for the specific sequence yx guaranteed by the conditions. This
completes the proof.

Notice the structure in the previous result. The conditions resemble a kind of hypo-
convergence for the functional f(z,-), however with respect to the hypo-suplimit and the
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epi-sublimit notions for functions defined on =, rather than with respect to convergence of
real numbers. The additional conditions (equi-tightness and the measure zero condition)
guarantee that this hypo-limit notion for function-valued functionals fi(z, -), is translated
into the standard hypo-limit of the functions 7.

Once the upper semicontinuity and the hypo-convergence of 7 are established, ex-
istence results and the stability of the value follow in a direct manner. We display here
several such results. A more elaborate discussion, which could be applied here, can be
found in Rockafellar and Wets [15].

Theorem 5.3. Under the conditions of Proposition 5.1, if X is compact, then a

solution to () exists.

Proof. An upper semicontinuous function on a compact set attains its maximum,
hence « attains its maximum, and the point z at which the maximum is attained, is an
optimal solution.

Theorem 5.4. Under the conditions of Theorem 5.2, if X is compact, then val( fx, P)
converges to val(fo, Pp).

Proof. Let z; be such that val(fx, Px) — vk(zx) < k~'. Compactness implies that
x has a converging subsequence, say the whole sequence converges to xy. The conditions
imply that fo(zo,-) is a hypo-suplimit of fx(zk,-). By Theorem 3.6 limsup ~yx(zx) <
Yo(zo)- Since vo(xo) < wval(fo, Po), the choice of z; concludes the first part of the result.
For the second part note that the conditions of Theorem 3.5 are fulfilled for gx(-) = fx(yx, )
and Py, with yx — ¢ and xg such that val(fy, Py) — 7Y0(zo) < €, and € arbitrarily small.
Then vx(yx) — Yo(zo), which proves that liminf val(fx, Px) > val(fo, Py), and together
with the first part, the proof is complete.

We present a result concerning the behavior of the solution set of (x). Denote by
o(fx, Px) the set of z such that v, (z) = val(fx, Px), namely, o(fx, Px) = argmaz .

Theorem 5.5. Suppose that the conditions of Proposition 5.1 hold for each fy,

k=0,1,.... Suppose also that the conditions of Theorem 5.2 hold. If X is compact, then
limsup o(fx, Px) is included in o(fo, Pp).

Proof. From Proposition 5.1, 7% is upper semicontinuous, and from Theorem 5.2
~vx hypo-converge to 9. The semicontinuity of the set-valued mapping argmax i then
follows in a standard way.

We conclude our stability analysis with the question of robustness, namely, suppose
that an optimal solution for the data (fy, Pp) is applied to the problem with the data
(fx, Px)- Is the resulting error small if & is large?

Theorem 5.6. Suppose that the conditions of Theorem 5.2 hold, and let z* be an

optimal solution for the data (fo, Pp). Suppose also that fo(z*,-) is an epi-sublimit of
fr(z*,-). Then z* is an approximate solution for the data (fx, Px) for k large, namely
val(fx, Pi) — vk(z*) converge to 0 as k — oo.
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Proof. The continuity result of Theorem 5.2 together with z* being an optimal
solution imply that
val(fx, Px) —vo(z*) — 0,

and since v, (z*) < val(fx, Px) it follows that
limsup yk(z") —70(2*) < 0.

Applying Theorem 3.5 with the present conditions implies

liminf ~,(z*) —v(z*) > 0.

Hence ~yi(z*) converges to 7o(z*) and together with the convergence of val(f, Px) to
Yo(x*), the proof is complete.

We note that a bound for the discontinuity gap, as presented in Proposition 4.5 for
integrals, is valid also in the case of the optimization problems.

6. ON THE EXAMPLES

In this section we examine the examples introduced in Section 2, in light of the stability
results of the previous section.

Consider first Example 2.1. For the sake of the illustration we consider the cost
functional

61 B ré —cx if €<z
(61) PO = e e

where £ is governed by the exponential distribution with parameter Ao, namely Py(d§) =
Xoe MédE. A straightforward computation shows then that the maximization problem

62 maimize | fola, ) oe 0%t
translates into the problem
(6.3) moagxmigloioze ()\LO —cr — (Ko + )\%)e—kox> )

Solving (6.3) is a simple exercise (note that the payoff function is concave on [0, 00)), and
the optimal solution is
1 Ao Ko

(6.4) z* = —log(1+
Ao

).
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We consider now the possibility that the payoff functional (6.1) is only an approxi-
mation of the true payoff functional. In view of the discussion in Section 2, consider the
payoff functionals

- ) ré — cx if €<z+ex(z)
(6.5) fu(@, &) = (r — ¢)min(€, L) — Kg if &> x4 ex(z) .

Recall that ex(x) reflects the possibility that a number of customers may remain unsatisfied;
the deviation Ky from K reflects an error in the cost of the backorder, and Ly reflects the
possibility that the backorder is limited. We also wish to consider the possibility that the
parameter )\ of the underlying probability measure in (6.2) is only an approximation of the

true exponent A of the probability distribution. Thus, we consider (6.2) an approximation
of

(6.6) mozgtiggjze/() frlz, E) Ape  *EdE .

Theorem 6.1. Suppose that Ay — Ao, K — Ko, Ly — oo and € () converge uniformly

to 0. Then the value of (6.6) converges to the value of (6.2). Furthermore, if the optimal
solution z* of (6.2), given in (6.4), is applied to the problem (6.6) with k sufficiently large,
then the resulting payoff is a good approximation of the optimal payoff.

Proof. The result follows from Theorem 5.4 and Theorem 5.6, once the condi-
tions of these results are verified. We comment on these conditions. The condition
Py(Disc fo(z,-)) = 0 holds since the discontinuity of the payoff function (6.1) occurs
on a set of Lebesgue measure zero (at one point actually), and Py is absolutely continu-
ous. The equi-tightness follows since |fo(z,-)| grows linearly in &, while A\ye=**¢ decays
exponentially, uniformly as A\ — Ag. The graph-type convergence, i.e., epi-sublimit and
hypo-suplimit, are easy to verify under the convergence conditions. Finally, it is easy to
verify that the search for optimal solutions can be restricted to a compact set of possible
orders. Checking all that completes the proof.

We examine now Example 2.2. We are interested in the stability of the value for
a sequence of problems, determined by the data Dy = (cx(z), qk, 7k, ok, Bk, Px) for k =
0,1,2,.... Denote the value of the problem (2.3) with Dy instead of Dy by vg. We find
conditions guaranteeing that vy — vy.

Before addressing the stability problem we wish to identify the points of discontinuity
of @i (|z — &|); the discontinuities are caused by the structure of the recourse stage. The
problem we choose is simple enough to allow the computation of the discontinuities (see
Remark 6.3). Indeed, for b fixed, only a finite number of z € Z, participate in the
minimization (2.4); namely those with Sypz < b. Therefore, for z fixed, the only possible
discontinuities are at |x — &| = Bxj for 7 =0,1,... .
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We identify the following two ensembles. Let A denote the family of probability
measures P on (—oo, 00) such that [*_[£|P(d€) < &y, with §o a prescribed constant. Let
I" denote the family of continuous functions ¢(z) : (—o0,00) — R, such that ¢(z) < ko(z),
with ko(-) a prescribed function satisfying ko(z) = —o0 as |z| — 0.

Theorem 6.2. Suppose that qx — qo, & — 70, ax — ¢ and B — Bp. Suppose that

all ¢x(-) belong to T', and that cx(x) — co(z) uniformly on compact sets. Suppose that
all P, belong to A, and that P, — P, weakly. Finally suppose that Py is atomless. Then
vk — vg. Furthermore, if * is an optimal solution of (2.3), and z* is used as the decision
for the data Dy, then k large implies that the resulting cost is close to the optimal one.

Proof. The claims follow from Theorems 5.4 and 5.6, once the conditions are verified.
We comment on these conditions. The definitions of A and I' imply that the search for
an optimal z can be limited to a compact interval. Then the required tightness of P
follows from the linear bound on the growth of the value in the recourse stage. The
functional convergence of @ (|z — £]) is transparent at all continuity points. The structure
of discontinuities that we displayed earlier shows that the required functional convergence
holds at all points. Finaly, for Py atomless, the requirement Py(Disc ®(|z — -|)) holds
since the set of discontinuities is discrete. This completes the proof.

Remark 6.3. The preceding example is a much simplified version of the general

mixed integer-linear two-stage stochastic program analyzed by Schultz [18]. We thank
a referee for pointing out this reference. We added then the example to show how the
considerations of Schultz [18] can be incorporated into our framework. Indeed, Schultz
verifies the continuity of the value as Py, — Py (and Py, belong to a family of a type similar
to A), when P, is absolutely continuous with respect to the Lebesgue measure. This is
indeed the right general condition, as in the case with several dimensions analyzed in [18],
one can only guarantee that the discontinuities of ®(|z—-|) occur in a denumerable number
of hyperplanes; in our case these are points, so a condition of being atomless suffices.

7. STABILITY OF SENSORS

Sensors were introduced in [2] as a tool to evaluate the worth of an inquiry into the
structure of uncertainty. We recall here the basic idea and definition of the concept (the
interested reader can check [2] for the theory and examples). We then verify the stability
of sensors with possibly discontinuous objective functions. In fact, given the preceding
results in the paper, the stability of sensors follow quite easily.

Consider the maximization problem (*). In many real situations, the decision-maker
has an option of acquiring information about the random event ¢ before choosing z. This
information may not determine £ completely; rather, a more accurate probability may
be obtained. For instance, the newsboy in Example 2.1 may conduct a market research,
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say by sampling the prospective buyers. The given probability P may be improved by
conditioning on the result, say r, of the market research. Let us denote the emerging
probability by P,. Before deciding on the market research (which may involve a cost), the
decision-maker knows what possible outcomes P, may emerge, and he may also know the
probability that governs the distribution of the results r, hence he knows the distribution
that governs the possible probabilities P,.. This probability on probabilities we call a
sensor. Thus a sensor reflects the possible outcomes of a market research, before such
research is conducted. But note that different market research procedures may lead to
different sensors, and the decision-maker may need to decide which one to follow. To this
end we introduce the following.

Definition 7.1. A sensor, say S, is a probability distribution on P. The value of the

sensor S, when applied to the problem (x), is

(7.1) val(f, §) = /7: val(f, P)S(dP) .

The rationale of defining the value of the sensor S as the expectation in (7.1) is as follows.
The value of a fixed probability P, given f, is val(f, P). The occurrence of P is governed
probabilistically by the sensor S, hence expectation of val(f, P) with respect to the measure
S is the value of S to a decision-maker who wishes to maximize expected payoft.

Applying a sensor S may be subject to errors and deviations generated, e.g., by errors
in the sampling that determines S. We are interested in the stability of v(f, S) with respect
to variations both in f and in S. For convergence in the space of sensors we take the weak
convergence of measures. In [2], continuity of the value with respect to S was established
for a payoff function f fixed and continuous. Here we use the analysis of the previous
section and establish continuity with respect to the pair (f,S), with payoff functionals
possibly discontinuous.

We denote by supp S the support of S, namely the smallest closed set M of probability
measures in P, such that S(M) = 1.

Theorem 7.2. Suppose that the functions fx(z,£) are uniformly bounded, k& =

0,1,2,.... Suppose that whenever x; — g, the function fo(zg,-) is a hypo-suplimit of
fx(xg,-), and that for every zy a sequence y, — xo exists such that fo(xg,-) is an epi-
sublimit of fx(yk,). Suppose that Sy is a sensor such that P(Disc fo(zo,-)) = 0 for every
xo and every P € supp Sp. Then, if Sy converge to Sy, the values val(fx, Sx) converge to
val(fo, So)-

Proof. Denote vg(P) = wal(fx, P), namely, the value of (x) with fr the payoff
function and P the probability distribution. A particular case of Theorem 5.2 implies that
vo(P) is continuous on supp Sy. The general case of Theorem 5.2 implies that vg(Py)
converges to vg(Py) if Py converges weakly to Py. With these properties, the Lebesgue
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dominated convergence theorem implies
/vk(P)Sk (dP) converge to /vg (P)So(dP) .

In view of (7.1), this convergence is the desired conclusion and the proof is complete.

The preceding result is stated for f; uniformly bounded which makes the equi-tightness
condition trivial. Unbounded functionals can be incorporated, with the proper conditions
of equi-tightness for (fx(x,-), Px) whenever P, — P and P € supp Sy. We leave out the
details.



17

REFERENCES

Z. Artstein, Chattering variational limits of control systems. Forum Mathematicum, to
appear.

Z. Artstein and R.J-B Wets, Sensors and information in optimization under stochastic
uncertainty. Mathematics of Operations Research, to appear.

H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

G. Beer, A geometric algorithm for approximating semicontinuous functions. J. Approz-
imation Theory 49 (1987), pp. 31-40.

P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture
Notes in Mathematics 580, Springer-Verlag, Berlin, 1977.

J. Dupacové, Stability and sensitivity analysis for stochastic programming. Annals of
Operations Research 27 (1990), pp. 115-147.

J. Dupacovd, On statistical sensitivity analysis in stochastic programming. Amnnals of
Operations Research 30 (1991), pp. 199-214.

P. Kall, On approximation and stability in stochastic programming. In Parametric
Optimization and Related Problems, J. Guddat et al. eds., Mathematische Research
Band 35, Akademie-Verlag, Berlin 1987, pp. 387-407.

W.K. Klein Haneveld, L. Stougie and M.H. van der Vlerk, Stochastic integer program-
ming with simple recourse. Research Memorandum no. 455, Institute of Economic
Research, Rijksuniversiteit Groningen, 1991.

H.J. Langen, Convergence of dynamic programming models. Mathematics of Operations
Research 6 (1981), pp. 493-512.

G. Laporte, F. Louveaux and H. Mercure, The vehicle routing problem with stochastic
travel times. Technical Report no.96, Faculté Notre-Dame de la Paix, 1989.

S.B. Richmond. Operations Research for Management Decisions. Ronald Press Co.,
New York, 1968.

S.M. Robinson and R.J-B Wets, Stability in two-stage stochastic programming.
SIAM J. on Control and Optimization 25 (1987), pp. 1407-1416.

R.T. Rockafellar and R.J-B Wets, Variational Analysis, an introduction.
In Multifunctions and Integrands, Stochastic Analysis and Optimization, G. Salinetti ed.,
Lecture Notes in Mathematics 1091, Springer-Verlag, Berlin 1984, pp.1-54.

W. Romisch and R. Schultz, Distribution sensitivity in stochastic programming.
Mathematical Programming 50 (1991), pp. 197-226.

W. ROmisch and R. Schultz, Stability analysis for stochastic programs. Annals of Op-
erations Research 30 (1991), pp. 241-266.

R. Schultz, Continuity and stabilization in two-stage stochastic integer programming. In
Stochastic Optimization, Numerical Methods and Technical Applications, K. Marti ed.,
Lecture Notes in Economics and Mathematical Systems 379, Springer-Verlag, Berlin 1992,
pp- 81-92.

R. Schultz, Continuity properties of expectation functionals in stochastic integer pro-
gramming. Mathematics of Operations Research, to appear.
J. Wang. Distribution sensitivity analysis for stochastic programs with complete re-
course. Mathematical Programming 31 (1985), pp. 286-297.



