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Abstract. In this article we consider the continuity properties of the partial 
Legendre-Fenchel transform which associates, with a bivariate convex function 

F: X x Y --t R U {+m}, its partial conjugate 

L : x x Y *  + R, i.e. L(z , y* )  = inf y E Y { F ( z , y )  - (Y* I Y)}. 

Follwiing [3] where this tranformation has been proved to be bicontinuous 
when convex functioiis F are equipped with the Mosco-epi-convergence, and 
convex concave Lagrangian functions L with the Mosco-epi/hypo-convergence, 

we now investigate the corresponding convergence notions for augmented La- 
grangians, Moreau-Yosida approximates and subdifferential operators. 

1. INTROD'CJCTION 

In 141, [5] the authors have introduced a new concept of convergence for bi- 
variate functions specifically designed to study the convergence of sequences 
of saddle value problems, called epi/hypo-convergence. 

A main feature of this convergence notion is, in the convex setting, to make 
the partial Legendre-Fenchel transform bicontinuous. We recall that ,  given a 

convex function F: X x Y + R its partial Legendre-Fenchel transform is the 
convex-concave function L: x x Y * --* R 

The transformation F H L is one-to-one bicontinuous when convex functions 
are equipped with epi-convergence and closed convex-concave functions (in the 
sense of R.T. Rockafellar 1371 with epi/hypo convergence (see [5], [3])). 

When, following the classical duality scheme, functions F n  are perturba- 
tion functions attached to the primal problems 

inf F n  (5, 0) , 
%EX 

the above continuity property, combined with the variational properties of 
epi/hypo-convergence, is a key tool in order to study the convergence of the 
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saddle points (that is of primal and dual solutions) of the corresponding La- 
grangian functions {L" ; n E N}. The reduced problem is the study of epi- 

convergence of the sequence of perturbations functions {F" ; n E N}. This 

approach has been successfully applied to various situations in Convex Anal- 

ysis (in Convex Programming see D. AzC [8], for convergence problems in 

Mechanics like homogenization of composite materials or reinforcement by 

thin structures see [9], H. Chabi [17], . . .). 

Indeed there are many other mathematical objects attached to  this clas- 

sical duality scheme. Our main purpose in this article is t o  study for each of 

them the corresponding convergence notion. 

Particular attention is paid to the so-called augmented Lagrangian (espe- 

cially quadratic augmented) whose definition is (compare with (1.1)) 

and which can be viewed as an "augmented "partial Legendre-Fenchel trans- 

form, In theorem 4.2 we prove the equivalence between Mosco epifhypo- 

convergence of Lagrangian functions L" and 

for every r > 0 and y* E Y *, the sequence 

of convex functions {Lp(. ,y*);  n E N} (1.3) 

Mosco epi-converges to  L r  (a, y*). 

By the way, since Lr can be written as an inf-convolution 

we are led to study the two following basic properties of the inf-convolution op- 

eration, which explains the practical importance (especially from a numerical 

point of view) of the augmented Lagrangian : 

- regularization effect; 

- conservation of the infima and minimizing elements. This is consid- 

ered in Propositions 3.1 and 3.2 for general convolution Kernels, see also 

M. Bougeard and J.P. Penot [14], M. Bougeard [13]. 
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Iterating this regularization process but, now, on the %-variable, we obtain 
the so called Moreau- Yosida approximate 

the inf-sup being equal to the sup-inf (for closed convex-concave functions 
(theorem 5.1 d)) and the Mosco epi/hypo-convergence of Ln t o  L is equiv- 
alent to the pointwise convergence of the associated Moreau-Yosida approx- 
imates (Theorem 5.2). Moreover L x , ~  has the same saddle elements as L! 
(Theorem 5.1 b). 

Finally we characterize in terms of graph convergence of subdifferential 
operators 

aLn -%aL 

the above notions (Theorem 6.1)’ and summarize in a diagram all these 
equivalent convergence properties. 

2. CONVERGENCE OF CONVEX-CONCAVE SADDLE 

FUNCTIONS AND CONTINUITY OF THE PARTIAL 

LEGENDRE-FENCHEL TRANSFORMATION 

2.1. Duality scheme 

Let us first briefly review the main feature of Rockafellar’s duality scheme 
(cf. [37], [38], [39]). Let X, Y ,  X*, Y *  be linear spaces such that X (resp. Y )  
is in separate duality with X *  (resp. Y * )  via pairings denoted by (. I .). 

Let us consider 

L:  x x Y *  --+ R 

which is 
convex in the 5 variable, 

concave in the y* variable. 
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Let us define 

5 

F : X x  Y + E  

G : X *  x Y *  +R 

by : 

F ( w )  = SUP {L(Z,Y*) + (Y* I Y ) L  (2.1) 

(2.2) 

Y'EY'  

G ( z * , Y * )  = i d { L ( ~ , y * )  - (z* 1 z)}. 

F (resp. G) is the convex (resp.concave) parent of the convex-concave func- 

tion L. 

Two convex-concave functions are said to be equivalent if they have the 

same parents. A function L is said to  be closed if its parents are conjugate to 

each other, i.e., 

-G = F* and (-G)* = F. (2.3) 

For closed convex-concave functions L, the associated equivalence class is an 

interval, denoted by [L,z] with 

Let us observe that 

where *y (resp. *z*)  bmotes the partial conjugation wit,, respect to  the y 

(resp. z*) variable. 

If we denote by I'(X x Y )  the class of all convex 1.s.c. functions defined 

on X x Y with value in R, we have the following ([37]). 
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Proposition 2.1. The map K H F establishes a one-to-one cor- 

respond en ce bet ween closed con vex-concave equivalence classes 

and I'(X x Y ) .  

In the sequel, closed convex-concave functions will be assumed to be 
proper, i.e., convex parent F is neither the function 3 t o o  nor the function 
- = -oo. 

In the classical theory of convex duality (see [19], [39]) the Lagrangian as- 

sociated with the proper closed convex perturbation function F is the convex- 
concave function I; defined in (2.5). The research for a primal and dual solu- 

tion is then equivalent to that of a saddle point for the equivalence class which 
contains Z. 

2.2. Mosco epi-convergence 

For further results see [l], [25], [34]. 

Definition 2.2. Let X be a reflexive Banach space. A sequence 
{F" : X 4 R} is said to be Mosco-epi-convergent to F: X -t 

if 
W 

(i) for every z E X, for every z, - 5, 
liminf, F n ( z n )  2 F(z),  

(ii) for every x E X, there exists z,, 2 z, 

limsup, Fn(z,)  5 F ( z ) ,  

where w and 8 denote the weak and the strong topology 
of X respectively. 

We then write 

F = M - lime F". 

A basic property of Mosco-convergence is the following (cf. [33]) 
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Theorem 2.2. Let X be a reflexive Banach space and 

{F" ;  F :  X --t R U {+00} }  

a collection of closed convex proper functions. Then 

F = M - lime F" + F* = M - lim,(Fn)*. 

Comment. The above results establishes that the conjugacy operation is 
bicontinuous with respect to Mosco-convergence. In fact, as proved in [6], this 

operation is an isometry for suitable choice of metrics on I'o(X) and r O ( X * ) .  

2.3. Extended Mosco-epi/hypo-convergence 

Let (E, T) and (F ,  CT) be topological spaces and {L": E X  F -+ R} be a sequence 

of bivariate functions; we define, for every (z,y) E E x F :  

Definition 2.3 (see (41, (51, (31). Let X and Y be reflexive Ba- 
nach spaces and { L", L: X x Y * -+ R} a collection of bivariate 

functions. We say that Ln Mosco epi/hypo-converges to L in the 

extended sense if 

where 

the extended upper closure, i.e., for any function F: (X, T) -+ 

and a respectively denote the extended lower closure and 

cl F 
-00 otherwise, 

if cl F > -00, - c l F  = 

cl F denoting the I.s.c. regularization of F, and a F = ( - F ) .  
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For a convex function, it is well known that F = F** (let us observe 
that if es /h ,  - Is Ln is convex in X and hs/ew - li Ln is concave in y*,  then 
in definition (2.11) the extended closure operations reduce to biconjugation). 

The following result ([3]) establishes that the partial conjugation defined 
in (2.4) and ( 2 . 5 )  is bicontinuous when rO(X x Y )  is endowed with Mosco 
convergence and the classes of closed convex-concave functions is endowed 
with Mosco epilhypo-convergence. 

Theorem 2.4 [[3], Theorem 3.2). Let u s  consider X and Y ,  

reflexive Banach spaces, and { F " ,  F : X  x Y + R} a collec- 
tion of closed proper convex functions with associated equiva- 
lence classes of closed convex-concave functions denoted by L", L.  

Then, the following are equivalent : 

[i) F" 5 F, 
M - e / h  [ii) Ln - L [extended Mosco epi/hypo-convergence). 

The extended Mosco epi/hypo-convergence is variational convergence in a 

sense made precise by 

Theorem 2.6 (131, Theorem 2.6). Let u s  consider ( X , T )  and 
( ~ , u )  two general topological spaces and { K " ,  K :  x x Y + R) 
a sequence of bivariate functions such that 

- cl (e,/h, - 1s K")  5 K <_ 2 (hole, - li K " ) ,  

( Z k , j j k )  is a saddle point of Knk for all Ic E N, 

0 -  
7 . 2  and ak -y. 

(5,jj) is a saddle point of K and 

K(z,y) = lim Knk(?&,ak) 

Then 

k++w 

(2.12) 

(2.13) 
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3. FURTHER PROPERTIES OF INFIMAL CONVOLUTION: 

REGULARIZATION EFFECTS, CONSERVATION OF 

INFIMAL VALUE AND MINIMIZING ELEMENTS 

In preceding section 2.3 the partial Legendre-Fenchel transform 

has been introduced and its continuity properties have been briefly reviewed. 

In the case of Convex Programming 

minsEX f o b )  

subject to  fi(zj 5 0  i =  1,2 ,  . . . ,  m 

The Lagrangian function L attached to the classical perturbation function F 
is given by 

fo(z) - Yi*fi(.) if Y* 5 0,  
L(Z,Y*) = 

otherwise. 

A major technical difficulty which arises when using directly this Lagrangian 

comes from the fact that the value -m is taken on. A natural idea is to replace 

it by some smoother function either by approximation (penalization of the 

constraint y* 5 0) or even better relying on the approximation-regularization 

by infimal convolution (with respect to the perturbation variable y*) .  This 

last approach gives rise to  the so-called augmented Lagrangian, for example 

(where A denotes the sup-convolution) is the “quadratic” augmented La- 
grangian) . 

In the next section we shall study the correspondance F H L,  which can 

be viewed as a “generalized” partial duality transform and shall describe its 

continuity properties. 
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In this paragraph we study two main features of the inf-convolution oper- 
ation which enlight the practical importance of augmented Lagrangian func- 
tions: 

The inf-convolution by a smooth kernel has a smoothing effect. (3.0) 

The inf-convolution preserves the infimal value 

and the set of minimizing elements. 
(3.1) 

In the above setting it follows that the Lagrangian and corresponding aug- 
mented Lagrangian functions have exactly the same saddle elements. 

The following propositions, which are related to  some results obtained si- 
multaneously by M. Bougeard and J.P. Penot [I41 (see also [13]) allow us to 
select well-behaved convolution kernels for which the two above basic proper- 
ties (3.0) and (3.1) hold. 

Proposition 3.1. Let ( X , d )  be a general metric space, 
F: X 3 R a real extended valued function and k:R+ -, R' 

a positive function such that 

k(0) = 0. 

Let us define, for every x belonging to X, 

inf Fk(z) = inf F ( x )  
%EX =EX 

arg min (cl F) c arg min (cl Fk) .  

Moreover, if we assume that 

inf F > -00 

and 

k ( t )  -, 0 implies t -+ 0, 
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then 

(c) arg min (cl F )  = arg min (cl Fk) ,  where cl(.) denotes the 
lower-semicontinuous regularization operation (with re- 
spect to the topology induced by d!).  

Proof 

(4 
inf Fk(z) = inf [ inf ( F ( y )  + k d ( z ,  y))] 
SEX ZEX y€Y 

= inf [ inf ( F ( y )  + k d ( z ,  y))] 
y€Y ZEX 

= inf F ( y )  
YEY 

since k(0) = 0. 

(b) Let us now consider Z E arg min (cl F ) ,  that  means 

cl F ( E )  = inf(c1 F )  = inf F = inf Fk = infcl F k ,  
X X X X 

thus we derive since Fk 5 F ,  

cl Fk(Z)  5 cl F ( Z )  = inf cl Fk 
X 

and (b) follows. 

(c) If F = +oo, there is nothing to  prove, so, we can assume that F is proper. 

Let us consider z# E arg min (cl Fk) ,  that is 

cl Fk(z#) = inf cl Fk = inf F. 
X X 

For every E. > 0, by definition of cl Fk, there exists Cc E X which satisfies 

(let us recall that infx F is finite thanks to  (3.3) and the properness of F ) .  

Using now the definition of Fk, we derive the existence of y E  E X such that 
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Since F ( y , )  2 inf F ,  we obtain 
X 

which ensures ye -, z#, thanks to (3.4) and (3.5). 

Passing to the limit inferior on both sides of (3.6), using the fact that 

k 2 0, we derive 
cl F ( z # )  5 liminf F ( y L )  

€ 4 0  

5 inf F, 
X 

that is, s# minimizes cl F. I 

The next proposition deals with regularity of the approximates. Roughly 
speaking , Fk inherits the Lipschitz regularity of k. For technical reasons, 
we shall distinguish the Lipschitz case and the locally Lipschitz one which is 
surprisingly more involved. 

Proposition 3.2. Let us assume that the function k: R+ -+ R' 

satisfies k(0) = 0 and let us  consider a proper function F :  X + i? 
which satisfies the growth condition 

for every z E X, there exists C(Z)  E R such that 

F ( y )  2 - k ( d ( z , y ) )  + c(z),  for every y E X. 
(3.7) 

(a) If k(.) is Lipschitz on R+ then 

F k  is Lipschitz on X .  (3.8) 

(b) If k(.) is locally Lipschitz and verifies 

F ( . )  + k(d(., z)) is uniformly coercive 

when 
(3.9) 

ranges over a bounded set, 

(this means that F ( y )  +k(d(y,  z)) 5 M with z in a bound- 
ed set implies that y ranges over a bounded set), then 

Fk is locally Lipschitz on X. (3.10) 
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Proof. Let us observe, thanks to the growth condition (3.7) and the properness 
of F ,  that  Fk is everywhere finite. 

(a) Let z1 E X, z2 E X, E > 0 and ( l , t  E X such that 

From the definition of Fk(z2), we derive 

Adding the two last inequalities and keeping in mind that F(c1,,) is finite, 
we obtain 

Assuming k(.) t o  be Lipschitz, there exists L > 0 such that 

for every s 2 0, t 2 0. Using the triangle inequality in (3.11), we derive 

Letting c 1 0, we obtain that Fk is Lipschitz. 

(b) We claim that 

F k  is bounded from above on bounded subsets of X .  (3.12) 

Indeed 

Fk(z) 5 F(50) + k ( d ( z 0 ,  z)), 

where 50 E X is such that F ( z 0 )  < +oo 

Therefore (3.12) follows from the continuity of k(.). Let us consider 
defined as above. By a bounded set B c X, (z1,z2) E B x B and 

definition of 
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when 21 ranges over B (see (3.12)) and 0 c c < €0. Using (3.9), we know 
that remains bounded. On other hand, let us recall that 

Using the fact that 
that 

is bounded, we derive the existence of M > 0 such 

( 4 t I , € , Z 2 )  I M ,  ( d ( € l , E , 4  L 

for every ( 5 1 , 5 2 )  E B x B and 0 < 6 I €0. 

The function k(.) being locally Lipschitz, is Lipschitz on [O,M], so, 

there exists L > 0 such that 

From (3.13) we derive 

F k ( 5 2 )  - F k ( Z 1 )  I J5ld(€ l ,c ,z2)  - d ( € l , E , Z l ) )  + 
5 L d ( Z l , Z 2 )  + 6 

for every ( x 1 , x 2 )  E B x B. 

Letting 6 1 0  archieves the proof of (3.10). I 

Comments 

(1) A sufficient conditions which guarantees the growth condition (3.7) and 
the coerciveness assumptions (3.9) is the following: 

for every B c X bounded, 

there exists o c 1 and C E R 

such that F ( y )  2 - a k ( d ( s , y ) )  - C 

for every x E B and y E X 

and 

k(.) is coercive ( lim k ( t )  = +oo) 
t d + m  

( 3 . 1 4 ~ )  

(3.14b). 
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Indeed by taking B = {z} for every z E X the growth condition (3.7) is 

fulfilled. Moreover if B is a bounded subset and if F ( y )  + k ( d ( z , y ) )  5 M 
with z E B, we derive, using Q < 1 and C E R defined in (3.14), 

- C + (1 - a ) k ( d ( z , y ) )  5 M and 

From the coerciveness of k(.) and the boundness of B, (3.9) follows. 

(2) Take X a Banach space, for the following possible choices of k(.), we have 

k(r) = $- Moreau-Yosida approximate 

k ( r )  = r Baire- Wijsman approximate 

k ( r )  = !jr2 + er Gauvin approximate 

(3) We stress the fact that ,  as far one is only concerned by the minimization 

problem, one can replace any function F by a smoother Lipschitzian func- 

tion which has exactly same minima and same minimization set as the 

original one. 

This feature has been already exploited by the authors ([6]) when defining 

rate of convergence for sequences of convex functions. 

A major difficulty in this kind of question is that  the domains of the 

functions may also vary. By using the above device (note that the regularized 

functions Fk are everywhere defined and locally Lipschitz) one can define for 

every p 2 0 the following distance 

dp(F,G) = SUP I W z )  - G k ( 4  
ll415P 

which allows us to derive convergence rates for the solutions of the correspond- 

ing minimization problems. 

Indeed, in the convex case, and k(r) = f (that is the Moreau-Yosida 

approximate), the whole function F is determined by one of its approximates. 
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Just notice that 

hence 
I * l 2  FL = F* + k -  ( F i  stands for (Fk)* ) ,  

2 

and if F is closed convex 

(3.15) 

At this stage a natural question is: what is the largest class of functions for 
which the correspondance F H Fk is one-to-one? (i.e., F uniquely determined 
by one approximate). The class of closed convex function by the preceding 
argument does satisfy this property. Indeed one can exhibit a larger class, 
namely functions which are convex up to the square of the norm, for which 
this property still holds (further results concerning this class of functions can 
be found in M. Bougeard [13]). This is made precise in the following 

Proposition 3.3. Let H be a Hilbert space; for any proper 
function F: H -+ R U {+XI} and X > 0 let us denote 

the Moreau-Yosida approximate of index X of F. Let us  denote by 
r k  the class of functions F :  H 3 R U {+w} such that F + k 1 1 . 1 1 2  
is proper, closed and convex. Then, for every X > 0, k 2 0 such 
that & > k the correspondence 

is one-to-one, i.e., F E r k  is uniquely determined by one of its 
approximates. Moreover FA is C'. 

Proof. Let us first notice that F satisfies a growth condition 

(3.16) 
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since F + k is closed convex and proper. 

Hence for every X > 0, k 2 0 such tha t  > k, F satisfies conditions of 

Proposition 3.2 and FA is everywhere defined and locally Lipschitz. Introduc- 

ing p, a closed convex function such tha t  F = p - k 1 1 . 1 1 2 ,  we have 

Simplifying the last expression, we obtain 

and finally 

(3.17) 

From this last expression we easily derive the conclusions of Proposition 3.3, we 

first notice tha t  given FA,  (3.17) uniquely determines (p*) f_2k ,  and from the 

above argument in the  convex case, cp* is uniquely determined. The  function p 

being closed and convex is again uniquely determined by its conjugate and so 

is F .  

1 2  5 

FA(4 = 5 114 - ( ( . * ) * - 2 k  (1) * 

Moreover from classical properties of the Moreau-Yosida approximation 

for closed convex functions (cf. [15], [I]) ( p * ) + - 2 k  is a c' function and from 

(3.17) so is FA. I 

Remark. Without geometric assumptions on F ,  the  Moreau-Yosida trans- 

form F + FA fails t o  be a one-to-one mapping. Take for instance H = R, 

X = 1/2 and 
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A quite elementary computation shows that  all functions Q such that 
F 2 Q 1 G with 

4. CONVERGENCE OF AUGMENTED LAGRANGIANS 

AND CONTINUITY OF THE ‘‘AUGMENTED” 

PARTIAL LEGENDRE-FENCHEL TRANSFORM 

From now on we assume that  

X, X*, Y, Y *  are reflexive Banach spaces 

equipped with strictly convex norms 

and satisfy the following property: 

weak convergence and convergence of the norms 

imply strong convergence. 

As far as one is only concerned with topological properties it is not a restrictive 

assumption since a theorem of S. Trojanski and E. Asplund asserts tha t  every 

reflexive Banach space can be renormed in order t o  verify (4.1). When this 
is done, the norm is Frechet-differentiable (except at the origin!) and one can 

define 

v x  E x, H ( s )  = D ( 4 4  

The map H: X -+ X *  is called the duality map and characterized by 

H ( z )  is the unique element z* E X *  which satisfies 
(4.3) 

lk*Il* = 114 and b* I 4 = 11412)* 
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The duality map is then a homeomorphism between X and X *  and verifies 

H(X5) = XH(5)  

H-’(z*)  = D (; [I.[\:) (5*) 

where 11.11*  is the dual norm of 11.11 
From preceding results (section 2 and 3) it follows that the “augmented” 

partial Legendre-Fenchel transform F I+ L, is one-to-one correspondence, 

where 

F: X x Y * R U {fm} is a closed convex proper function, 

L: X x Y *  + R is an element of the class of closed proper convex-concave 

functions associated with F by (2.4) and ( 2 . 5 ) .  

L: X x Y *  + R U {+oo}, t > 0, 

is the classical “quadratic ” augmented Lagrangian (see 1111, [ 2 0 ] ,  [ 3 5 ] ,  

1 
[361) : 

~ ( z , * ) ~ g  11.11; *) (Y*) 

= for every L E [ ~ , - i ] .  
The terminology is justified by the following equivalent formulation of L,, 

obtained by taking L = z, 

thus 

which amounts t o  replacing F by F + 5 1 1 - 1 1 ;  where Y is the perturbation 

space. 
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In the case of Convex Programming the quadratic augmented Lagrangian 
is given by the following formula 

where 
- t s  i f s 2  4 ,  

+ r ( s , t )  = { :% t2  if s 5 $. 

The following proposition guarantees that the saddle points and saddle values 
are preserved when replacing L by L,, in the general (metric) setting. 

Proposition 4.1. L and L, have same saddle value, and every 
saddle point of L is a saddle point of L,. 

Proof. Take (Z,y*) a saddle point of L; it is characterized by the following 
inequality: 

sup L(z,y*) 5 inf L ( z , J * ) .  
Y'EY' ZEX 

By Proposition 3.1 

sup L,(Z,Y*) = SUP L(%Y*). 
Y'EY' Y'EY' 

Noticing that L, is greater than or equal to L, 

inf L(s ,p*)  5 inf L,(z,jj*). 
zEX SEX 

Combining the preceding inequalities induces 

that is 
(Z,%*) is also a saddle point of L,, 

and 
L ( z , g * )  = L,(Z,Y*) 



Partial Legendre-Fenchel transform 21 

i.e., L and L,  have same saddle value. I 

Remark. The preceding conclusions still hold when instead of quadratic aug- 
mented Lagrangian, one considers augmented Lagrangian obtained through 
inf-convolution by a kernel k(.) satisfying assumptions of Proposition 3.1. 

In the convex-concave setting, a more precise result can be obtained. 

Proposition 4.1’ . Let L : X  x Y *  + R be a closed convex- 
concave function where X, Y are reflexive Banach spaces verify- 
ing 4.1. Then L and L,  have the same saddle points and saddle 
values. 

Proof. In the lines of R.T. Rockafellar (see [37], [38]), we consider, for a closed 
convex-concave function L,  its subdifferential 

where a l L  and &(-I,) denote the convex subdifferential with respect to  the 
first and the second variable. It is well known that 

(u*,v) E dL(z ,y*)  e ( u * , y * )  E d F ( Z ,  - v ) ,  (4.5) 

and 
(Z, j j * )  is a saddle point of L e (0,O) E aL(Z,jj*). (4.6) 

Moreover, when (Z, j j * )  is a saddle point of L,  

L(Z,g*) = F(Z,O)  = G(O,jj*), 

where F and G are respectively the convex and concave parent of L (see (2.1)’ 

(2.2)). 

Let us now return to  the proof of Proposition (4.1’). 

(Z, j j * )  is a saddle point of L, e (0’0) E aL,(S,jj*) 

* (0,17*) E f3 ( F  + f ll*ll2> (W. 
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Let us observe that  

2 since the function 
in 4.3). Using the fact that  H ( 0 )  = 0, we derive 

I l . l l y  is continuous. (H(y )  is the  duality map defined 

(Z,g*) is a saddle point of Lr # ( O , j j * )  E d F ( Z ,  0) 

# (0,O) E ~ L ( E ,  jj*) (from 4.5) 

++ (Z,jj*) is a saddle point of L. 

Moreover the saddle values verify 

which ends the proof of Proposition 4.1’. I 

Comment. The conclusions of Proposition 4.1’ still hold when replacing Lr 

by & ( Z , y * )  = s ~ p ~ . ~ ~ , { L ( z , r l * ) - k ( l l y *  - q*ll)} ,  where k:R + R is an even 
convex function such that  k* is derivable at the origin and verifies k * ( O )  = 0 
and (k* ) ’ (O)  = 0. 

Indeed, in this setting, Lk is the closed convex-concave function associated 
with the convex parent 

We can now give the main result of this section. 

Theorem 4.2. Let X ,  Y be reffexive Banach spaces renormed 
ils in [4 .1) .  There is equivalence beiween 

(i) F* 5 F ;  
M e h  

M - e l h  

(ii) L* d L; 

[iii) LF - Lr for every [resp. some) r > 0, 
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(iv) L:(.,y*) %L,(.,y*) for every r > 0 and y* E Y * .  

Before detailing the proof of Theorem 4.2, we recall the key facts used in 
this proof: 

F" 5 F + (F")* % F*;  (4.7) 

(4.8) F" M ' F  + VA > 0, ~x E X, nd+m lim ( ~ " ) x ( s )  = ~x(x), 

where {Fn, F: X -+ R} is a collection of convex closed proper functions and 

is the Moreau-Yosida approximate of parameter A of F. Equivalence (4.7) was 
proved by U. Mosco in [33], and (4.8) is Theorem 3.26 of [l]. 

Proof of Theorem 4.2 

(i) o (ii) is Theorem 2.4. 

(i) =+ (iii). F" -+ F =+- F" + f 11-11; - F + 5 11.lI'y and (iii) follows from M 

Theorem 2.4 and formula (4.4). 

(iii) =+- (i). Assuming (iii) holds for some r > 0, we derive, from Theo- 
rem 2.4 that 

and then 

From (4.7), we derive that 

(PI,* 3 (F*) , ,  for some r > 0. (4.10) 

Using the resolvent equation = 

that 
we obtain from (4.8) and (4.10) 

n-++oo 
(Fn) i (z*)  - ( F * ) p ( x * )  for every p > 0 and z* E X*. 

Using again (4.8), in fact a slightly weakened version (see [l]), we derive 

(F")* 3 ( F * )  
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and by (4.7) 

F" 5 F. 

(i) e- (iv). We observe that the convex function 

which is not identically equal to +00 since F is proper, does not take on the 
value -00, and is 1.s.c. since, for every z E X, the function 

is uniformly coercive when z remains bounded. Let us define (in the following 
argument y*  is fixed) 

W z )  = LXz, Y*), 

W) = L ( Z , Y * ) ,  

and observe that 

Let us now consider p > 0 and (\kn)Z, the Moreau-Yosida approximate of (W)* 

of parameter p. We derive 

1 + g I IY*  - v.12).  

(4.11) 

The same calculation holds for and we obtain 

(4.12) 
1 + - 2r l IY* - $*I?}. 
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Let us return to the proof of the equivalence (i) e (2.). By definitions of 9 
and \kn 

(iv) e v r  > 0, ~ y *  E Y * ,  \kn 5 \k 

e vr  > 0, ~ y *  E Y * ,  (en)* 3 \k* 

e Vr > 0, V p  > 0, V(z*,y*) E X *  x Y * ,  

lim (9 " ) ; (s* )  = \k;(z*) 
n++w 

e Vr  > 0, V(z*,y*) E X *  x Y * ,  

e (Fn)* % F* 

~ F ~ M ' F ,  
which ends the proof of Theorem 4.2. 1 

Comments 

(1) Theorem 4.2 can be viewed as a continuity result of the generalized partial 

duality transform 

where (y*, y) denotes the non-bilinear coupling 

(cf. the papers of S. Dolecki [18] and M. Volle (411). 

(2) One can give an equivalent expression of the augmented Lagrangian in the 

Hilbert spaces by using Theorem 2.9 of [6] 
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5. Moreau-Yosida approximates of closed convex-concave functions. 

Equivalence between extended Mosco epi/hypo convergence 

and pointwise limit of Moreau-Yosida approximates 

In [4], H. Attouch and R. Wets have defined the upper and lower Moreau- 

Yosida approximates of general bevariate functions L by means of the following 

formula 

When L is a closed convex-concave function, these two quantities prove to  be 

equal as made precise by the following 

Theorem 5.1. Let X ,  Y be reflexive Banach spaces (renormed 

as in ( 4 . 1 ) )  and 

L : X x Y * + f l  

a closed convex-concave function. 

(a) Then, for all X > 0, /I > 0 

Li ,#  = L;,,, := LA,,,. (5.1) 

LA,,, is called the Moreau-Yosida approximate of  index A ,  

p of L .  

(b)  L and LA,,, have same saddle value and saddle points. 

(c) For all (2, y*) E X x Y *  the function 

L(E,q*)  = L(E,q*)  + 2x 1 llz - Ell2 - - 1 IIY* - 7*1l 2 

2P 

has a unique saddle point z~,,,, y A , ,  characterized by ( * >  

( H  (' -,*.') , - H *  ('* -,y"p)) E a L  ( z A , , , , ~ ; , , , )  , (5.2) 
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where H: X --+ X *  and H * :  Y * + Y are the duality maps 

defined in (4.3) and d L  = dxL x ( - d z ( - L ) ) .  

(d) is locally Lipschitz convex-concave function of class 

C' on X x Y*, with derivative 

Y* - Yi& 
DLx,,(z,  y*) = ( H  (' , -H*  ( c1 )) . 

Pro0 f 

(a) and (c). We shall use the inf-sup theorem of J.J. Moreau [30]; let us 

recall this result. Under the assumptions 

U ,  V are locally convex t.v.s. 

K: u x v + i? is convex-concave 

K( . ,  w )  E T ( U )  for all w E V,  (5.3) 

there exists w o  E V, ko > infuEU K ( u ,  wo) such that 

{u  E U : K ( u ,  wo 5 ko} is weakly compact. 

Then 

inf sup K ( u , v )  = sup inf K ( u , v ) .  
UEU VEV VEV UEU 

Moreover 

Let us define 

1 1 
K ( € , V * )  = L(F,V*) + 5 IIE - 412 - - IlV* - Y*l12. 

2P 

K is closed convex-concave function such that 
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It is clear that K verifies the assumptions (5.3); we derive that 

sup inf K ( ( , q * )  = sup inf K ( ( , q * ) ,  
q'EY'  €EX 9'EY' €EX- 

= min sup K(( ,q*) ,  ( from (5.4), (5.5)), 

= min sup K(( ,q*) ,  

= min sup K(( ,q*) .  

E€Xt) 'EY'  

€EX q' E y '  

€EX q 'Ey '  

The same argument applied to (-K) shows that 

inf sup K ( ( , q * )  = max inf K ( ( , q * ) .  
EEXq'EY" V'EY'  €EX 

It follows that 

max inf K(( ,q*)  = min sup K(( ,q*) ,  
V ' E Y '  €EX €EX V'EY * 

which ensures the existence of a saddle point which is unique thanks to the 
strict convexity-concavity of K ;  the characterization (5.2) of this saddle point 
is then straightforward. 

(b)  Let us consider the quadratic augmented Lagrangian 

1 
L,(S,Y*) = SUP { J%'.)*) - & IIY*  - . ) * I t 2 }  ' 

V'EY' 

From Proposition 4.1', L, and L have same saddle values and saddle points. 
Exchanging the role played by the variables and taking the augmented La- 
grangian of parameter A of (-L,), we obtain the closed concave -convex func- 
tion K defined by 

= -L?,,b7 Y*), 

= -Lx, , (w*) .  

Using again Proposition 4.1', part (b) of Theorem 5.1 follows. 



Partial Legendre-Fenchel transform 29 

(d) We claim that the operator 

is strongly continuous and bounded on bounded sets. Indeed, let us consider 

xo E X and yc E Y *  such that 

We deduce the existence of a positive constant c such that 

Using the fact that 

we derive 

Adding these two inequalities, we obtain 

Using (5.8) and properties of H and H * ,  it follows 
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From this it follows that 

with M depending only on (11x011 IIyGll , c , A , p ) ,  and that the operator JA,, is 

bounded on bounded sets. 

Let us now prove the continuity of Jx , , .  Consider x" 

we claim that z;,, A ZA,, and y;t;L A yfl,,. Indeed, define 

x and y*n A y*;  

It is clear that 
K" MAh K ,  

and 

V~:ZQ*, K ( E , ~ * )  >_ 1imsupZn(t,q:). 

From Theorem 2 . 5 ,  it follows that the sequence x:,,, y;:, ), which is bounded, 

converges weakly to x~,,, y;,,) since the saddle point of K is unique. More- 

over we obtain, for every K" E [Kn,Tn] and K E [ K , x ] ,  

n 

( 
( 

that is 
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From the saddle point property of (x:,,, y;:,) , we derive 

Passing to  the limit superior in the above inequality and using (5.11) we derive 

So, yV;T;. 
strong convergence thanks to assmption (4.1). 

y: since weak-convergence and convergence of the norms imply 

The strong convergence x : , ~  -L x ~ , ,  is then obtain by using a similar 
method. 

Let us now calculate the Frecbet derivative of L X , ~ .  Let L, be the quadra- 
tic augmented Lagrangian defined in (4.4); its convex parent F, is the function 
F,(z, y )  = F ( z ,  y)  + f 11y112. Using formula (4.5) we derive 

(u*,  .) E dL,(Z,  Y*)  * (u*, Y*)  E dF,(z, -4, 
e~ (u*,Y*) E d F ( z , - v )  + ( O , - p H * - ' ( v ) ) ,  

# (u*, y*) E d L  (5, y* + p H * - l ( v ) )  , 

An analogous calculation after a regularization of parameter X on the first 
variable provides 

and then 

Y* - Y i , ,  dLx,,(z , y * )  = ( H  ( , - H *  ( )) 
thanks to the unicity of xx,,, y;,,). ( 

Let us fix y* E Y*. The function L A , @ ( . ,  y*) is then convex, continuous (in 
fact locally Lipschitz) and its subdifferential taken in z reduces to  
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It follows ([19] Chap. I, Proposition 5.3) that L ~ , ~ ( a , y * )  is GGteaux differen- 
tiable in z and then Frechet differentiable since its derivative is continuous as 
seen above. In the same way, the function L A , ~ ( z ,  .) has a continuous Frechet 
derivative namelv 

It follows that L+ is a C1 function and is locally Lipschitz since its derivative 
is bounded on bounded subsets of X x Y*, which ends the proof of Theo- 
rem 5.1. I 

We can now prove 

Theorem 5.2. There is equivalence between 

Proof. Let us consider the augmented Lagrangians LS and L,; we define 

From Theorem 3.2 we know that 

Let us compute, for X > 0, the Moreau-Yosida approximation $:: 

Using the characterization of Mosco convergence in terms of pointwise conver- 
gence of the Moreau-Yosida approximates (4.8), we derive that (ii) is equivalent 
to (i). I 
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Comments 

1) In the Hilbert case, an easy computation based on the formula 

(see [6] Theorem 2.9) shows that 

It follows in an evident way, that  

which is stronger than the equivalence (i) (ii) in Theorem (5.2). 

2) An interesting open question is to  know whether the equivalence 

is true or not. If this were the case, the class of maximal monotone oper- 
ators (see [38] or [22]) 

associated with closed proper convex-concave functions L would verify 

for every sequence An, for every (2, y*) E X x Y n  
(5.13) 

A!(Z,Y*) * Ax(z,y*) implies Ay(z, y* )  5 Ax(z, y*),  

where A! and Ax are the Yosida approximates of the operators An and 
A. In [l], remark 3.30, H. Attouch has proved that (5.13) is true for the 
subdifferentials of convex functions. 
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6. Equivalence between Mosco-epi/hypo convergence of closed 

convex-concave saddle functions and graph convergence of 

their subdifferentials 

In [l] H. Attouch has established the  following equivalence for sequences of 
closed convex proper functions defined on a reflexive Banach space with value 
in R U $00, (see also [29]): 

F ~ S F  

is equivalent to  

(6.2) 
G d F n  -+ d F  + some normalization condition, 

where dF is the subdifferential of the closed convex proper function F .  

The normalisation condition comes from the fact tha t  F is determined by 
dF up to  a n  additive constant and is described below 

3(z, x*) E dF,  3(zn, x:) E d F n  for every n E N 

such tha t  z, A z ,  x: 5 x* and F"(z,) --t F ( z ) .  
(W 

The code letter G means graph convergence tha t  is: 

(i) V(x,z*) E d F  3z, & z, 2: 5 x* with (zn,zk) belonging to dF" for 

every n E N; 

(ii) for every sequence ( x k , z ; )  E dFnk such that  z k  A z ,  z; A z * ,  we have 
(z,z*) E d F .  

In fact (ii) is implied by (i) thanks to  the maximal monotonicity of the 
subdifferential operator. Moreover (ii) can be replaced by a weaker assumption 
in which one of the two strong limits is in fact a weak limit (see [l], 3.7). 

Let us return to  convex-concave functions. In [38], R.T. Rockafellar has 
introduced the notion of subdifferential of closed convex-concave function L 

by the formula 
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where d l L  and &(-L)  denote the partial convex subdifferentials with respect 

to  the first and second variable. He proved that dom ( d L )  and d L  itself is 
independent of L E [r(,z] and that the graph of d L  is related to the graph of 
the subdifferential d F  of the convex parent F via the relation 

(u*,v) E d L ( ~ , y * )  + ( U * , Y ' )  E ~ F ( z , - w ) .  (6.4) 

It is clear that 

( z , y* )  is a saddle point of L + (0,O) E dL(z ,y*) .  (6.5) 

From (6.4), and the definition of graph convergence, it follows 

Putting together (6.6), the equivalence between (6.1) and (6.2) and Theo- 
rem 2.4 provides 

Theorem 6.1. Let { Ln: X x Y * -, R} be a sequence of closed 
convex-concave functions (X and Y are reflexive Banach spaces) 
whose convex parents (F") verify (N.C).  Then the following are 
equivalent : 

M - e / h  

G 

(i) Ln - L,  

(ii) dL" - dL.  

Theorem 6.1 points out the fact that extended Mosco epilhypo-conver- 
gence is the notion of convergence for classes of closed convex-concave func- 
tions associated with graph convergence of subdifferentials. This graph con- 
vergence makes precise the variational properties of extended Mosco epi/hypo- 
convergence in order to obtain strong stability of saddle points (see [42] and [8] 
for applications in Convex Programming). 

Theorem 6.2. Let {L",  L:X x Y' + TI} be a collection of 

closed convex-concave functions (X and Y are reflexive Banach 
spaces) such that 

Ln M s / h  L.  
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Then 
for every sequence (z,,yi) 

of saddle points of L", 

which is (w x w) relatively compact, 

each (w x w) limit (z,y*) of a subsequence 

is a saddle point of L; 

for every saddle point (5, y*) of L ,  there exist sequences 

& A Z ,  y+y*, u : A o ,  v , L o ,  

such that (u;,vn) E dLn(z,,y:). 

Thesequence (zn, y i )  is then a saddle point of the convex-concave 
functions 

whose convex parent is 

@"(z,y) = F"(z,y - v,) - (u; I z ) .  

M e h  
Proof. Since L" L ,  we derive, from Theorem 6.1 that 

G dL" -dL.  

If (z,y*) is a saddle point of L, we derive (0,O) E dL(z,y*).  

Using the definition of graph convergence it follows (6.8), the calculation 
of K" and @" being straightforward. 

In order to  prove (6.7), let us consider ( ( , q )  E X x Y and En 5 E ,  
q n  2 q such that F ( ( ,  7) = limn,+, Fn(En, 7"); such sequences exist since 
F" 5 F ,  thanks to the assumption that Ln 

M e h  L (see Theorem 2.4). 

From the fact that (zn, y i )  is a saddle point of L", we derive 

(090) E aLn(zn,  Y,t)  9 

( 0 , ~ ; )  E dFn(zn,O) (see (6.4) and (6.5)). 
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It follows that 

F n ( E n , V n )  - Fn(zn,O) L (Y: I V n )  - 
Taking the lim sup on both sides and still denoting by z, and y: the sequences 
such that 2, 2 and y: 5 y*, we obtain 

and (z, y*) is a saddle point of L, which proves 6.7. I 

Let us conclude this work by giving another characterization of the ex- 
tended Mosco epilhypo-convergence in terms of the resolvents and Yosida 
approximates of the maximal monotone operator 

A(z,y*) = { ( u * , v )  E X *  x Y ; ( u * , - v )  E aL(z,Y*)} 

associated with every closed convex-concave function L. 

Let us return to  (4.2) and consider zx,x and y i , x  defined in (4.2); it follows 

which yields the following formulae: 

( z x , ~ ,  Y ; , ~ )  = J e ( z ,  y*)  resolvent of index A ) ,  

and 
( H  ( -,A,> , a* ( '* - A )) = Ax(s,y*) 

(Yosida approximate of index A ) .  

Theorem 6.3. Let X ,  Y be two reflexive Banach spaces which 
verify (4.11, and {L", L: X x Y *  + R} be a collection of closed 
convex-concave functions. Then are equivalent 

M e h  (i) Ln 9 L) 
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n-++co (ii) Jf"(z,y*) --+ J f ( z , y * )  strongly, for every X > 0 ,  

(iii) AY(z,y*) - A!(z,y*) strongly, for every X > 0 ,  n++m 

(z,y*) E x x Y * .  

Proof. From Theorem 6.1, we obtain 

M - e / h  
L" -+ L d ~ n G . a ~ ,  

and from the definitions of A" and A, we derive 

G dLn Z d L  @ A" - A .  

Then apply Proposition 3.60 of [l], and Theorem 6.3 follows. I 

Let us summarize the preceding results with the following diagram 

Left-hand side: 

F,n 

Fn 

d F n  

pointwise - 
a 
a 

Mosco-epi 
--t 

Graph conv - 

Thm. 5 .2  a 
L 

Thm. 2.4 Mosco-epi/hy PO F u Ln - 
Thm. 6.1 a 

a d L  
Graph conv. d F  - dLn - 

Thm. 6 . 3  

pointwise 
J," - J x  

Right-hand side: 
pointwise 

LA >I  
- 

Thrn. 5.2 a 
Thm. 4.2 Mosco-epi 

L '. LX,Y*) - L r ( * , Y * ) v y * E Y '  
Mosco-epi/hypo - 

Thm. 6.1 D 
dL 

Graph conv. - 
Thm. 6.3 1 

pointwise - J x  
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