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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 280, Number 1, November 1983 

A CONVERGENCE THEORY FOR SADDLE FUNCTIONS' 
BY 

HEDY ATTOUCH AND ROGER J.-B. WETS 

ABSTRACT. We develop a convergence theory called epi/hypo-convergence, for 
bivariate functions that essentially implies the convergence of their saddle points. 
We study the properties of this limiting process in particular. We characterize the 
limit functions associated to any collection of bivariate functions and obtain a 
compactness theorem for the space of saddle functions. Even when restricted to the 
univariate case, the results generalize those known for epi-convergence. In particular, 
we show that the analysis of the convergence process via Yosida approximates must 
not be restricted to the convex case. 

1. Introduction. In this paper we develop a convergence theory of the variational- 
type for bivariate functions. We call it epi/hypo-convergence. It extends the theory of 
epi-convergence (for univariate functions), originally developed by Wijsman, Mosco, 
De Giorgi and his many collaborators, to study optimization problems (calculus of 
variations, variational inequalities,...). 

The bivariate case, by which we simply mean a collection of functions {f>, v E N) 
defined on a product space X X Y, presents technical and conceptual difficulties not 
encountered when dealing with epi-convergence. In fact, the theory developed here 
stops far short from a complete answer to the (variational) convergence of bivariate 
functions. One might be interested in the convergence of the minimax of the 
functions FJ, or the maximin of these same functions. In general, the roles played by 
these quantities is asymmetric, and the convergence (existence,...) of one does not 
provide us with much information about the convergence (existence,...) of the 
other. Although most of our statements apply to any class of bivariate functions, the 
theory is intrinsically designed to handle bivariate functions that admit saddle 
points. This is more a matter of intent, than a precondition that needs to be imposed 
at the outset. To remind the reader of this concern, we do not hesitate to refer to 
functions defined on X X Y as saddle functions, although there is no implied 
assumption that they actually admit a saddle point! 

We are motivated by approximation and limit problems that arise in Mechanics, 
Optimization, Hamiltonian Theory,... that cannot be handled in the framework of 
epi-convergence: in particular, by some problems connected to variational inequali- 
ties defined by maximal monotone operators that are not necessarily symmetric- for 
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2 HEDY ATTOUCH AND R. J.-B. WETS 

example certain classes of homogenization problems in Mechanics-also by conver- 
gence questions involving the Hamiltonian and Lagrangian functions generated by 
optimization problems (with state dynamics), and so on. 

In order to set the stage we start in ?2 with a review of the theory of epi-conver- 
gence. We then introduced the definition of epi/hypo-convergence when the domain 
of the saddle functions is metrizable and we show that epi/hypo-convergence 
essentially implies the convergence of the saddle points; this is made precise in ?3. 
Next, we study the limit functions, with respect to the topology of epi/hypo-conver- 
gence, asssociated to a collection of saddle functions. We see that the epi/hypo-limit, 
when it exists, is not necessarily unique. Thus the topology of epi/hypo-convergence 
is not separated (Hausdorff). In many ways this is not surprising. Bivariate func- 
tions, when viewed as saddle functions, are unaffected-as far as their operational 
characteristics are concerned-by a number of (closure) operations. It is this 
phenomena that shows up when taking epi/hypo-limits. 

?5 introduces and studies the Yosida approximates of saddle functions (in the 
metrizable case). We exhibit the relationship between epi/hypo-convergence and the 
convergence of the Yosida approximates. The results are new even when restricted to 
the univariate case because we make no convexity assumptions. Finally, in ?6, we 
derive a compactness theorem. It shows that the class of saddle functions is compact 
under epi/hypo-convergence. In view of the results of ?3, this implies that if we have 
a sequence of bivariate functions that admit saddle points (clustering up to some 
point), then every associated epi/hypo-limit function will also admits saddle points. 
The limit functions are thus of the same nature as the elements of the sequence. 

The definition of epi/hypo-convergence was given its first airing in [2]. A related, 
but stronger, notion of convergence for saddle functions was given by Sontag [12], 
however his attention is limited to a much more restricted class of bivariate 
functions. The work closest to ours is that of E. Cavazzuti [4]. He too deals with a 
stronger notion of convergence than that introduced here. The relationship between 
his work and ours will be made explicit towards the end of ?4. In addition, C. 
Sbordone (Napoli) indicated in his abstract for the meeting "Optimisation: Theorie 
et Algorithmes" (Confolant, Mars 1981) that he has used the theory of epi-conver- 
gence (P-convergence) to obtain the convergence of saddle points. 

2. Epi-convergence. We start with a quick review of the basic results for the 
univariate case. The theory provides a convergence theory for optimization or 
variational problems involving just minimization (or maximization). This is well 
documented; consult for example [9, 5, 1, 12 and 14]. This material will serve as 
background to the study of the bivariate case. In particular it allows us to bring to 
the attention of the reader the situation when the functions take on the value -oo, 
i.e. are not proper. This has usually been glossed over in earlier presentation because 
for univariate functions this extreme situation presents no real practical interest. In 
the bivariate case, saddle functions take naturally the values +oo and - x and we 
shall have to deal with their epi-convergence. 

In this presentation we have chosen to deal with epi-convergence; every definition 
and every result has its counterpart in the setting of hypo-convergence. For the 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 3 

record we give the basic formulas for hypographs at the end of this section. However 
one should be aware of the asymmetric roles played by +x and - x; in particular, 
our choice conditions the addition rules for the extended reals, viz (+oo) + a = +x 
for all a E R and (-xo) + a =- for all a E R U {-oo}. Every collection of 
extended-real numbers always has upper and lower bounds in R, and thus in that 
sense lim inf and lim sup are always well defined. 

Let f: X -- R be an extended-real valued function defined on X, and T a topology 
on X; 6X T(x) is the neighborhood system of x. The effective domain of f is dom f = 

{x lf(x) < +xo}; it is proper if f > -x and dom f 7# 0. The function is T-lower 
semicontinuous (T-l.s.c. or simply l.s.c.) if its epigraph 

epif= {(x,a) E XX RIa ?f(x)} 

is a closed subset of X X R. The lower closure of f is the function cl f: X -* R such 
that 

epi cl f = cl epi f, 

where cl epi f is the closure of epi f with respect to the product topology of T and the 
natural topology on R. The so-defined function is also given by 

(2.1) clf(x)= sup inf f(y) 
V GYJXT(X) V 

as follows from the following string of equivalent statements: 

(x,a) Eclepif, 

forall(V&t6(x),c>O), VX]a-c - + f nepif# 0, 

forall(V&6(x),c>O), VX]-x,a+c[fnepif # 0, 

for all (V E 6t(x), E > 0), 3 y E V such thatf(y) < a + f, 

for all V E 9t( x), inf Evf(Y) ? a, sup VE(X) infyE vf(y) < a, 
cl f(x) < a, i.e. (x, a) E epicl f. 

Thus a function f is T-lower semicontinuous if and ony if f = cl f. 
The extended lower closure of f is the function cl f defined as follows, 

clf=[clf if 
clf>-oo, -ox otherwise. 

With these definitions we get 

2.2 PROPOSITION. Given a topological space (X, T) and a function f: X -* R, we 
have inf f = inf cl f = inf cl f. Moreover, for any open subset G of X, we also have 
infYEG f(y) = infyEG cl f(y) 

PROOF. In view of the definition of cl f, and the fact that X is open it clearly 
suffices to prove the last identity. In fact, since cl f < f, we only need to show that 
infGf < infGcl f when infG > - x. For all y E G, G E 6)(%(y) since G is open, and 
thus from (2.1) we get that cl f(y) > infuEG f(u). Since this holds for every y E G, it 
follows that inf ,Gcl f(y) E> infyCGf(Y). ? 

This innocuous proposition has numerous implications in the analysis of the 
convergence of infima. To begin with it will not matter if we work with f, cl f or cl f. 
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4 HEDY ATTOUCH AND R. J.-B. WETS 

Also, all functions whose closure takes on anywhere the value - xc, have the same 
extended lower closure. This suggests that we might be led to consider a variational 
convergence theory in terms of equivalence classes of functions. We shall need to 
take this viewpoint when dealing with bivariate (saddle) functions, at least in what 
we shall call the epi/hypo-limit of a sequence. 

We first consider epi-limits in the sequential case. By this we mean that (X, T) is 
metrizable and that we are given a sequence of functions { f,: X -) R, v = 1,... }. 
(All that is really needed at this stage is that locally X admits a countable base.) The 
sequence { f, v = 1,... } epi-converges to f at x if 

for every subsequence of functions {f k, k = 1,.. . } and any 

(2.3) sequence {Xk, k 1,.. I } converging to x, liminf f,k(xk) 

f(x), and 

there exists a sequence {x>, v = 1,. .. } converging to x such 
(2.4) that lim sup fp(x ) <f(x). 

k -oo 

If both (2.3) and (2.4) are satisfied for every x E X, we say that f is the epi-limit of 
the sequence fp and we write 

f = limefp^* 

Note that in the presence of (2.3), in condition (2.4) we may replace the lim sup by 
limit. It can be shown that if the sequence { f, v = 1, . . 4 epi-convergences to f at x, 
then necessarily f is l.s.c. at x. In particular, it turns out that if f, = f for all v, the 
epi-limit function is cl f, i.e. 

limefv cl f. 

The study of epi-convergence has been motivated by the following results. 

2.5 THEOREM. Suppose (X, T) is metrizable, f = limef, and {Xk, k = 1,...) is a 
sequence of points converging to x such that Xk E argmm fPk' i.e. fvk(Xk) = inf fvk 

Then x E arg min f and lim(inf fPk) = inf f. 

The proof will be omitted at this stage since this theorem is actually a corollary of 
a similar result that we obtain for sequences of saddle functions, cf. Theorem 3.10. 
Another key result in the theory of epi-convergence, is the following compactness 
theorem. 

2.6 THEOREM. Suppose (X, T) is metrizable and separable. Then any sequence of 
functions { f: X -- R, v = 1... } admits an epi-convergent subsequence. 

Again we shall not prove this result at this point since it is a corollary to Theorem 
6.1 (for saddle functions). The reader should be warned that here we have not 
excluded the possibility that this subsequence converges to the function f +oc, a 
degenerate situation from an optimization veiwpoint since it corresponds to the 
"empty" problem. 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 5 

For conceptual, as well as theoretical purposes, it is also useful to approach 
epi-limits in the following more general framework: (X, T) is an arbitrary topologi- 
cal space and { f, v E (N, 9C)) is a filtered collection of extended-real valued 
functions defined on X, N is the index space and SC is a filter on N. For example, N 
is the set of natural numbers and SC = {H C NI N \H is finite} or N is a topological 
space and 9C if the neighborhood system of a point. The epi-limit inferior of the 
collection { f, v E N), denoted by Tr-lie f- or simply lie f, when no confusion is 
possible-is defined by 

(2.7) (lie"f)(X) = sup sup inf inf fp(y). 
VE9(X) HEXJ El! yEV 

The epi-limit superior, denoted by T-1se f, or simply lSe fp, is defined by 

(2.8) (lsef,)(X) = sup inf sup inf f,(y). 
VEGOL,(x) HEcJC i'EEH ye V 

By (6 we denote the grill associated to a collection 6 of subsets of N, i.e. the family of 
all subsets of N that meet every set in LT. If cT is a filter then the grill of 6i is LT itself. 
Some interchanges of inf and sup are justified by the following lemma. 

2.9 LEMMA. Let 6, be a collection of subsets of a space A and (f its grill. Then for any 
collection of extended-real numbers {Xa, a E A), we have 

(2.10) sup inf xa = inf sup xa. 
HE:d aEH HE& aEBH 

Consequently, if the grill of 6I is again A, then also 

sup inf Xa = inf sup xa 

H.a aEH HEa a aEH 

PROOF. Let /B = sup,,eainfaEHxa and a = infHE supaEHxa. 

We first show that /3 P a. We assume that /3 < +oo, otherwise the inequality is 
trivially satisfied. Given any /3' > /3, by definition of /3 we have that 

3'> inf xa forallH G 6. 
a EH 

Hence, for any H E 9, there exists aH E H such that xaH < ,B'. Let 
H' = {a EAI Xa< }. 

In view of the above, H' E C, since H' n H 7# 0 for all H E i. And we get 

a= inf sup xa < sup Xa </, 

HEcE ae-H aEH' 

from which it follows that a < /3, since the preceding inequalities imply that a < /3' 
for all /' > /3. 

We show next the reverse inequality, namely that /3 < a. We assume that a < +oo; 
otherwise the inequality is trivially satisfied. Take any a' > a. Then by definition of 
a, we know that there exists H' E 6& such that for all a E H', xa < a'. Since H' meets 
every H E LT, it follows that for all H E &S, infaEHxa < a' and hence 

/3 sup inf xa a' 
HEt? aEEH 

from which it follows that /3 c a, since ,8 < a' for all a' > a. L 
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6 HEDY ATTOUCH AND R. J.-B. WETS 

This lemma allows us to re-express the epi-limit superior as follows. 

(2.11) (lsefv)(x)= sup sup inf inf fj(y). 
VEN7(x) H&X1( veH yE V 

Since XC C SC, it follows directly that 

(2.12) lie ft v< 'Se fv. 

A function f is the epi-limit of the collection of functions { f,, v E N), and we write 
limefv f, if 

(2.13) liefv =f= lSefv 

One can verify that if (X, T) is metrizable and the {ff, v E NJ is a sequence of 
functions, thenf lie f, = 'Se f, if and only if conditions (2.3) and (2.4) are satisfied. 
This will be proved in the setting of saddle functions. The terminology epi-limit and 
epi-convergence comes from the following theorem that provides a geometric inter- 
pretation of this limiting process. 

2.14 THEOREM [9, 5]. Let { fv, v E N) be a filtered collection of extended-real valued 
functions whose domain is endowed with a topology T. Then both lie fv and 'Se fv are 
T-lower semicontinuous, since we have that 

(2.15) epilief f= limsup epif, Fn cl( U epifp), 
vEN HEXJC vEH 

and 

(2.16) epilsef = lim inf epif^ = n cl( U epif)f 
vEN HEX' vEH 

A proof of this theorem in this form is given in [7]. It could also be obtained as a 
corollary of Theorem 4.16. 

So far our review of epi-convergence has stressed its local character or its 
geometric properties. There is also a variational approach that we sketch out here 
below. Here, we limit ourselves to a restricted class of perturbations that lead to a 
very specific class of approximates. These are the Yosida approximates (with parame- 
ter A) defined by 

(2.17) fx(x) = inf [f(u) +T2 d T(u, x)] 

where dT is a metric compatible with the topology T. We naturally assume that (X, T) 
is metrizable. In ?5, we show that the epi-convergence of a sequence of functions is 
intimately related to the convergence of the associated Yosida approximates; see 
Theorem 5.37. This was known for sequences of convex functions [1], but not for 
sequences of arbitrary functions. 

Our emphasis will be on perturbations of the Yosida type. Our development will 
demonstrate that they provide us with a powerful and flexible theoretical tool. 
However, one should keep in mind that they are not the only type of perturbations 
that are of interest or that could be used to achieve the same objectives. For example 
in (2.17) we could replace d2 by any function of dT which is locally Lipschitz and 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 7 

possesses some "shape" properties; cf. ?6 of [13] about cast of functions. We shall 
return to this in ?5. 

For easy reference, we record here the hypograph version of the preceding results. 
A function f from X to R is said to be -upper semicontinuous (T-u.s.c.) if hypof is 
closed, or equivalently if f = (upper) cl f where the upper closure of f is the function 
cl f such that hypo cl f = cl hypo f or equivalently if 

(2.18) f(x) = inf sup f(x'). 

The extended upper closure of f is the function cl f defined by 

(2.19) clf f clf if clf<?+o, 
+x? otherwise. 

From the context it will always be clear that we mean lower or upper closure. 
A sequence of functions {fg, v = 1,... } defined on the metrizable space X and 

with values in the extended reals hypo-converges to f at x if 

for every subsequence of functions {f,, k = 1,... } and 

(2.20) sequence of points {Xk, k = 1,. .. } converging to x, we have 
that lim sup fvk(Xk) f(x) and 

k -oo 

(2.21) there exists a sequence converging to x such that 
(2.21) lim inf f,(x,) f f(x). 

V --~ 00 

In general, given any collection of functions { f: X -> R, v E N) filtered by SC, its 
hypo-limits interior and superior are defined by 

(2.22) (lih )(x) = inf sup inf sup f(y), 
VGDT(X) HG9( v&H vEV 

and 

(2.23) (lsh )(x) = inf inf sup sup f(y). 
VGDL(X) HG9( VGH yGV 

The hypo-limit limh f, exists if h1h f = 1Sh f, = limh f,. From Theorem 2.14 and 
Lemma 2.9 it follows that 

(2.24) hypo lih f = lim inf hypof, = n cl( U hypo v) 
PGN He9( VeH 

and 

(2.25) hypolsh f=limsup hypo f,= n cl( U hypof)fA 
PGN H e' PGH 

As indicated at the beginning of this section, all variational or compactness results 
can be reformulated to fit the hypograph setting. For instance, Theorem 2.5 
becomes: Suppose (X, T) is metrizable and separable, f = limh f,I x = lM k XVk 
and fvk(XVk) = sup fvk. Then x maximizes f and lim(sup fvk) = sup f. 

3. Epi/hypo-convergence. The metrizable case. We now consider saddle functions 
defined on X X Y with values in R, the extended reals. Topologies on X will be 
denoted by T, whereas we reserve a for the topologies on Y. In this section it is 
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8 HEDY ATTOUCH AND R. J.-B. WETS 

assumed that all topologies admit locally a countable base. Since in all the applica- 
tions we can envisage, the (functional) spaces have closed point-sets and are regular, 
one may be tempted-and we shall succumb-to work with the more concrete 
assumption that all topologies are metrizable (without any real loss of generality). 
Let F: X X Y -* R denote a generic saddle function, its effective domain is 

(3.1) dom F = {(x, y) E X X YI F(x, y) E R}. 

We associate with F two multifunctions, each of which determine F uniquely. They 
play the roles of the epigraph and of the hypograph associated with univariate 
functions. First the epigraph-multifunction 

(3.2) y F epi F(, y) = {(x, a) I F(x, y) < a} 

which maps Y into (epigraphical) subsets of X X R, and the hypograph-multifunction 

(3.3) x H- hypo F(x, - ) = { (y, ,8) I F(x, y) 2 /3 

which maps X into (hypographical) subsets of Y X R. 
If the multifunction y H- epi F( *, y) is closed-valued, i.e. for every y the epigraph 

of the function x i-* F(x, y) is closed, we say that F is lower semicontinuous in x. By 

clx F: X X Y -* R, we designate the bivariate function such that for all y E Y, 

epi cl x F(-, y) cl epi F(-, y). 

We call it the epi-closure of F. The lower closure of F, denoted by clx F, is such that 
for all y E Y 

(3.4) cl F(.,y)= fClXF( y) if clxF(.,y)>-o, 
1 -oo on X otherwise. 

Similarly, F is upper semicontinuous in y if its hypo-closure cly F = F, where cly F is 
the bivariate function from X X Y into R such that for all x E X 

hypo cly F(x,) cl hypo F(x, ). 

The upper closure of F, denoted by cly F, is defined by 

(3.5) clyF(x, . cly F(x, ) if cly F(x I < +00I 
+(5 on X otherwise. 

Typically, saddle functions take on both the values +oo and -oo, and the lower and 
upper closure operations which in the univariate case dealt only with "degenerate" 
situations, arise naturally in the analysis of bivariate functions. This point has been 
stressed by Rockafellar in [10] in connection with his study of the convex-concave 
saddle functions. (Our terminology differs somewhat from his, because in the 
convex-concave case, in particular when seeking duality type results, it is convenient 
to work only with what we call the lower and upper closures of F, the use of 
extended closures lacks the flexibility that we like to preserve in the statements of 
our results.) 

Let {JFv: X X Y -4 R, v 1,. .. } be a sequence of bivariate functions, and both 
(X, T) and (Y, a) be metrizable. We say that the sequence epi/hypo-converges to F at 

(x, y) if 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 9 

(3.6) for any subsequence of functions {F,,, k = 1,... } and any sequence {Xk, 
k = 1,... } T-converging to x, there exists a sequence {Yk, k 1, . . } a-converging 
to y, such that 

F(x, y) lim inf F,,(Xk IYk) 
k --* 

and 
(3.7) for any subsequence of functions {F,,, k = 1,... } and any sequence {Yk, 

k = 1, . . . } a-converging to y, there exists a sequence {Xk, k = 1,... } T-converging to 
x such that 

M SUP F,,( Xk I Yk) F( x, y) 
k -- 0 

If (3.6) and (3.7) are satisfied for all (x, y), we say that the F,, epi/hypo-converge to 
F. One should observe that epi/hypo-convergence is essentially a local property: in 
view of the definition, if the F,, epi/hypo-converge to F, their restriction to some 
open set 0 epi/hypo-converge to the restriction of F to ?. 

When the functions F,, and F do not depend on y, then conditions (3.6) and (3.7) 
are clearly equivalent to (2.3) and (2.4) respectively, since for any sequence {a, E R, 
v = 1,... } of extended-real numbers lim sup, a, < a if and only if for every 
subsequence {aVk, k = 1 ...), lim supk . aVk < a. Similarly, if the F,, and F do not 
depend on x, these conditions are satisfied if and only if the sequence of functions 
{F,,, v = 1,. .. } hypo-converges to F. Our results are thus bound to include those for 
univariate functions. However, one should not be lured into believing that 
epi/hypo-convergence is just the combination of the epi-convergence for each y of 
the functions x -+ F,,(x, y) with the hypo-convergence for each x of the functions 
y -+ F,,(x, y). We shall see later that it actually is a combination of epi- and 
hypo-convergence but of a much more sophisticated type. We record, however, the 
following sufficient condition for epi/hypo-convergence which is convenient in 
many applications (cf. Corollary 4.39). 

3.8 PROPOSITION. Suppose (X, T) and (Y, a) are metrizable and {F,: X X Y -R 
v = 1,... } is a sequence of saddle functions which satisfies: For every y E Y, there 
exists a sequence {y,, v = 1,. .. } a-converging to y such that the sequence {F,( *, y,): 
X -~.R, v = 1,. .. } epi-converges to F( *, y), and similarly for every x E X there exists 
a sequence {x,, v = 1,...} -converging to x such that the sequence {F,(x,,, *): 
Y -4 R, v = 1,... } hypo-converges to F(x, *). Then, the sequence of saddle functions 
F,. epi/hypo-converges to F. 

The role played by epi/hypo-convergence in optimization and variational prob- 
lems is underscored by the theorem that follows. Recall that (x-, -) is a saddle point 
of the (bivariate) function F if for all x E X and y E Y we have that 

(3.9) F(x-, y) --- F(x-, y)<F(x,y) 

which implies that 

F(x-, y3) = min maxF(x, y) = max minF(x, y) 
xEX yGY xEX yEY 
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10 HEDY A1TOUCH AND R. J.-B. WETS 

where we write min and max to indicate that the infimum and the supremum are 
actually attained. 

3.10 THEOREM. Suppose (X, T) and (Y, a) are both metrixable and {JFv, t = 1,. . . 

is a sequence of bivariate functions defined on X X Y with values in the extended reals, 
which epi/hypo-converges to a function F. Suppose, moreover, that there is some 
subsequence of functions {FVk, k = 1,... with saddle points {(Xk, Y-k), k = 1,... 
i.e., for all x E Xandy E Y 

(3.11) VFk( k Yk) Vk(Xk Yk) Vk(Xk Yk), 

such that the X- T-converge to some x- and the Yk a-converge to some y. Then (x-, y-) is a 
saddle point of F, and F(x-, y-) =limk x F k(xk Yk) 

PROOF. We have to show that (3.9) is satisfied. The fact that (Xk, Yk) is a saddle 
point of Fk implies that 

SUp Vk(xk y) Fk(k Yk) ? inf FVk(X' Yk) 

Hence, given any y and any sequence { Yk, k = 1,. .. } converging to y (with respect 
to the topology a), we get 

li nfFk( Xk I Yk ) h lm inf v(Xk Y) ( 
k - oo k- oo PkIY 

Similarly, given any x and any sequence {Xk, k = 1,. .. } converging to x (with 
respect to the topology T), we get 

/3 :=limsupFvk(xk Yk) ? limsuptFk(xk Yk) 
k-~oo k-~oo 

From these inequalities, it follows that 

sup liminfJFk(ik Yk) ?a ? /3 ? inf limsupF'k(xk, Yk). 
YkY koo 

k Y 
Xk 

* 
X k - oo 

Since (3.6) imples that for all y 

F(x, y) - sup liminf Fk(Xk Yk)A 
Yk yY k- oo 

and (3.7) implies that for all x 

inf lim sup FJk(xk Yk) < F(x, y) 
Xk X kX-cc 

we obtain that for all y E Y and x E X 

F(x-, y) ? a F1B F(x, y-). 

From this the saddle point inequality (3.9) is obtained. Substituting x- for x, we get 
that F(x, y) < F(x, y) for all y E Y, and substituting y for y similarly yields that 
F(x-, y-) F(x, y-)forallx E X. 

To see that F(x-, y) = limk ( Yk) simply observe that given {Xk, k 
1,... } converging to x- epi/hypo-convergence implies that there exists {Yk, k = 1,... } 
converging to y such that 

kx,) lmnPk( Yk hm inf F k Yk 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 11 

where the second inequality follows from the fact that Fk(X-k Yk) , k Xk Yk). 

Similarly, we get from the definition of epi/hypo-convergence and the fact that the 

(-k Yk) is a saddle point, 
Xk~~~~~~~~~~~-o F(x, y) >a isP^(kY) 

k - c 

The assertion now follows from the two preceding inequalities. El 
Our next theorem gives sufficient conditions under which a saddle point of F can 

be obtained as the limit of near-saddle points of a sequence of functions {JF, 
v = L,... } that epi/hypo-converges to F. Related results for epi-convergence are 
given in [2, Theorems 2 and 3]. 

3.12 PROPOSITION. Suppose (X, T) and (Y, a) are metrizable and {JF: X X Y R, 
v = L,. .. } is a sequence of saddle functions such that 

(i) for every x E X, there exists a sequence {x,, v = 1,. . . T-converging to x such 
that the sequence {JFXx x, 4 v = 1... . 4 hypo-converges to F(x, ) and 

lim sup FJ(xp, y) = sup F(x, y), 
v *00 yCY yEY 

and 
(ii) for every y E Y, there exists a sequence { y, v = 1,. .. } a-converging to y such 

that the sequence {JF,( y,), v = 1,. . . epi-converges to F(*, y) and 

lim inf F (x, Yv) = inf F(x, y). 
v-0oo x&X xCX 

Then if (x-, y-) is a saddle point of F, 

(X, Y) E n liminf {e-saddle points of Fv} 
> 0 V --) X0 

where (X?, yE) is an cE-saddle point of Fv if 

(3.13) F(x, yE ) > sup F(xE, y) - 

yEY 

and 

(3.14) Fv(x E, yE) < inf F1(x, yE) + E. 
x&X 

Note that the assumptions are stronger than epi/hypo-convergence; see Proposi- 
tion 3.8. 

PROOF. By assumption there exist sequences {5,, v = 1,. . * } and {Y^ v = 1,. . . 
converging to x- and y respectively such that 

(3.15) F(, ,y)= lim,F(., -y) and lim infF(j., y>)infF(., y), 
vE*oo v- 00 

and 

(3.16) F(x, )= limhJF {x^) and lim supFv(5^, )= supF(5, ). 
v __31 co 

v -- 
C 

The proposition will be proved if we show that for all e > 0 there exists vE such that 
for all v 2 v, 

(3.17) Fv(5V, Y.) < inf Fv(x, Yv) + e, 
xex 
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12 HEDY ATTOUCH AND R. J.-B. WETS 

and 

(3.18) FJJx,L, J^) 2_ sup F,,(x-,, y) -E, 
yEY 

i.e. for v sufficiently large (ku, j,) is an e-saddle point of F, 
We argue by contradiction. Suppose (3.18) is not true. Then there exists Eo > 0 

and a subsequence indexed by {Vk, k = 1,. .. } such that 

Fk(ik, Yk) < sup Fk(Yk Y) - 

y 

where we write Fk for F,k, 5Ek for x^k and Yk for Yvk Taking lim inf on both sides, using 
(3.15) and the sequential definition of epi-convergence at x, in particular (2.3), we 
get 

F(iX, y-) < lim inf Fk(ik, Yk) < sup F(.x, *) -E e. 
k-oo 

But this contradicts (3.9) if sup F(5-, *) is finite which must be satisfied since by 
assumption (x~, y-) is a saddle point. 

If F(5-, y-) +00, or similarly if F(x-, y-) -oo, one has to take an extended 
notion of no E-saddle point, namely 

F.(x, y') > inf sup F,(x, y) -E E ] 
yEY 

and 

FJ,(x', ya) < sup[ inf FJ(x, y') + E, 

One argues similarly that (3.17) must be satisfied, relying this time on the 
convergence of the infima in (3.15), and the hypo-convergence in (3.16). D 

4. Epi/hypo-convergence. Limit functions. We will be interested in collections of 
saddle functions {F,, v E N)-usually sequences of functions-defined on the 
product space X X Y and with values in the extended reals. Topologies on X are 
denoted by T, whereas we reserve the symbol a for the topologies on Y. A priori, we 
make no assumptions about these topologies. The index set N is assumed to be 
filtered by SC, a filter. Recall that if N is the set of natural numbers and SJC ={H C 
N I N\H is finite}, then the limit on N with respect to SC is precisely the (sequential) 
limit of the sequence of functions {Fj, v = 1,... ). In this case, one can think of SC as 
the system of "neighborhoods of { oo}". Another example: N = X (or Y) and 
SC = 9T(x) (or %9(y) resp.), the neighborhood system Qf a point x (or y). The grill 
associated to SC, denoted by SC, is the family of subsets of N that meet every set in 
'K. For the preceding examples, we get 

SC = {all infinite countable subsets of the natural numbers) 

and 

fC {allsubsetsHof XIx E clH). 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 13 

When N is the set of natural numbers, a limit with respect to an element of SC 
corresponds to the choice of a subsequence. Note that if SC is a filter then 

(4.1) SK C CC, 
and if e is any collection of sets such that A1 E C&, A2 D Al implies that A2 EC 
then 

(4.2) the "grill" of (i is again Ci . 

Thus, given a filtered collection of bivariate functions 

{F: XX Y -R, v = 1,...}, 

its e-limit, denoted by le1,, is given by 

(4.3) leF,(X, Y) sup inf inf sup sup inf F,(u, v). 
UEGY4(X) VE6X0(y) HE9C vGH vEV UE V 

Its h-limit, denoted by lh F, is given by 

(4.4) hFh,(x, y) inf sup sup inf inf sup F,(u, v). 
Ve%9(Y) Ue%'L(X) HEx( VEH UEU VEV 

The use of this terminology and symbolism is suggested by a number of results that 
follow. Observe that if the FJ, do not depend on y, then le F, is the epi-limit superior 
(2.8) of the sequence and 'hF, is its epi-limit inferior (2.7). Similarly, if the F, do not 
depend on x, then leJF, is the hypo-limit inferior (2.22) of the sequence, whereas lhF, 
is then its hypo-limit superior (2.23). Thus when the functions Fv are actually 
univariate, there is an order relation between these two functions, cf. (2.12) for 
example. This is not the case in general: these two functions are not comparable. This 
is an important observation, in view of the definition that follows. 

A (bivariate) function F: X X Y -- R is an epi/hypo-limit of the sequence {Fv, 
v= l,1...} if 

(4.5) F<lhFv, 

and 

(4.6) leF < F, 

and we then write that F lime/h Fv and say that the filtered collection of saddle 
functions epi/hypo-converges to F. In general, an arbitrary collection of saddle 
functions does not admit an epi/hypo-limit, and if it does, the limit is not necessarily 
unique. To grasp this phenomena it is useful to consider a couple of examples. 

4.7 EXAMPLE. TakeX Y= R and N= {1, 2,...}. For = 1,... 

(yX if(x,y) E [0,1] X [O,1]withO?0 1, 

F, = F,,(x, y) = l-x0 if x E [0, l],y [O, 1], 

t +oo otherwise. 

Then lh.F = F1 but 

(4.8) IFi(, ) {? if (x, y) = (0,0), 
The8 epi/hypo-lemit YxiFs(x, y) otherwise. 

The epi/hypo-limit exists but is not unique. 
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14 HEDY ATTOUCH AND R. J.-B. WETS 

4.9 EXAMPLE. Take X = Y= R and N = { 1, 2,. .. }. For v odd 

[y/x on([0,1] X [0, l])\{O,O}, 

F = F(x, y) = J0 whenx = O,y = O, 
, c- if x E [O, 1], y 4 [O, 1], 

1 +oo otherwise, 

and for v even, F2 = F,,(x, y) = 2F,. Then on 10, 1] X 10, 1] 

lhF,(X, Y) = y/x < 2y/x = 1eF1(X, y). 

But lh F(0 0) = +o > leJF(O, 0) = 0. The lmit functions are not comparable. 
In ?3, when (X, T) and (Y, a) are metrizable and {F,,, v E N) is a sequence of 

saddle functions, we gave a sequential definition of epi/hypo-convergence. The 
proof that the sequential definition, and that via the limit functions leFv and lh F are 
the same, is surprisingly involved. It gives us a taste of the complexity of some of the 
arguments needed to obtain even the simplest facts about saddle functions. 

4.10 THEOREM. Suppose (X, T) and (Y, a) are metrizable and {F,,, v = 1,. . . ) is a 
sequence of saddle functions. Then 

(4.11) leF,(X, y) = sup min limsupFp,(xkk Yk) 

{Pk, k-1,... } CN Xk? TX k - oo 
Yk'aY 

and 

(4.12) lhJ,,(x, y) = inf max liminflk(xk, Yk) 
{Vk,k=1,...}CN Yk-,ay k-o 

X 

Xk __ TX 

where the notation {(k, k = 1,... } C N means that we consider every possible subse- 
quenceof{1,2,...} =N. 

PROOF. Since the definitions of le and lh readily imply that leFJ = -lh(-F,,), it 
clearly suffices to prove either (4.1 1) or (4.12). We work with lh F,,. 

We show first that lh F, < G, where 

(4.13) G(x, y)= inf sup liminfF,k(xk Yk)- 
{Pk)}CN kYokkXk YY 
Xk __+TX ,Yk' 

There is nothing to prove if lh1j(x y) = -x. Let us thus assume that lhF(x, y) > 

-00. From the definition (4.4) of I,h we see that to any a < lh,F(x, y) and any 
V E 6t,(y) there corresponds a neighborhood U of x such that 

a < sup inf inf sup FJ,(u, v) = liminf inf sup FJ,(u, v). 
HE5c9 v&H uCU vEV I-J Oc u&U vCV 

Now let {V', ,u = 1,...} be a countable base of (open) neighborhoods of y, 
decreasing with ,u and such that nfV = {(y}. In view of our preceding remark, to 
each such VJK corresponds Ub E 6L(x) such that 

a < lim inf inf [sup F(u, v) 
v- _o 0c u&Ut, vEE v, ] 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 15 

and since for any {Vk, k = 1,... C N, we have that liminfv, < liminfvk 0, we 
get 

a < liminf inf sup Fk(u, v)j forall = 1. 
k-oo u&UA vEV,, j 

Take any sequence {Xk, k = 1,... converging to x. Given any U,,, Xk E U. for k 
sufficiently large and thus 

a < liminf sup Fk(k v). 
k-oo ke V 

I 

From Lemma A.5 (cf. Appendix) for ,u = 1,... we can find Yky E= VA such that 
a < liminfk*ooFk(xk, Yk,,) and thus also 

a < lim inf lim infJF,k(xkX Yk,)- 
/L-F O k-ooV 

We now have recourse to the diagonalization Lemma A. 1, to extract a sequence 
{Yk Yk,[(k), k = 1, . . ) such that a S liminfkm J, (Xk, Yk) and since we can 
choose the p(k) increasing with k, it follows that the sequence {Yk, k = 1,.. . } 
a-converges to y. Since the above inequality holds for any subsequence of functions 

{Fvk, k = 1,. . }, and any sequence {Xk, k = 1,. . .} T-converging to x, we have that 

a < inf sup liminfvk(xk, Yk) = G(x, y). 
{Vk} CN Yk oYk-oo k 

Xk --'r YkTX 

Next we show that G < lh Fv. Again there is nothing to prove if lhiFv(x, y) = +oo. 
Let us thus assume that lhFv(x, y) < +oo. Given any /B > 1hFv(x, y), the definition 
of 'h' shows that we can find VO E OL(y) such that for all U E 9T(X) 

/3> sup inf inf sup FJ (u, v) = liminf inf sup FJ (u, v). 
HE9(C veH u&U v&V0 v-- u&U v&V0 

Let {U'U, ,u = 1,... } be a countable base of (open) neighborhoods of x, decreasing 
with j, such that n. U. = {x}. From the above it follows that for all u 1,... 

, > liminf inf sup Fj(u, v). 
v D oo u& UA vV 0O 

We can find {xv,, E Uy,, v = 1,...}-cf. Corollary A.8 (Appendix)-such that for 
all Iu 

,/3> liminf sup F ,(x ,,v) 
v -3, 0 v EVO 

and consequently 

/3 lim sup liminf sup Fp(xp , v). 
},,, 3 00 v 3 oo VE vO 

A standard diagonalization argument shows that there exists a choice {vp, ,,= 
1,. . . } with v increasing such that 

/3 lim sup sup F1,(x,L, v) 
-* 00 V E VO 

where we have written x for x,. Now any sequence {y ,u = 1,... } a-converging to 
y eventually belongs to VO. Hence /3 > lim supuO OFpx,., y,). Since this holds for 
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16 HEDY ATTOUCH AND R. J.-B. WETS 

any sequence {y,, It = 1,. . . ) converging toy we get 

,8 > sup limsup f(x^,, y,,) > G(x, y) 

YiLyY U- 0 

where the second inequality follows directly from the definition of G. 
To complete the proof there remains only to show that in (4.13) supyk aY is 

actually attained and thus the supremum is a maximum. Fix any subsequence {Vk, 

k = 1,. . . } C N and {Xk, k = 1,. .. .} T-convergent to x. Set 

a = sup liminfJFk(xk, Yk) 
Yky k-oY 

and let us first assume that a < x. This implies that for every E > 0, there exists 
{y,E, k = 1,. . . } a-convergent toy such that 

lim inf F,,,(Xk I ykE) > a - 
k-oo 

Taking lim inf with respect to E t 0, yields 

lim inf lim inf Fv,(Xk Yk, ) > a. 
EiO k-oo 

We can find a sequence {Yk = Yk"), k 1,.. } a-convergent to y, see Lemma A.1, 
such that liminfk -.OFvk(Xk Yk) > a and clearly this is the sought-for sequence that 
achieves the maximum. Finally if a = oc, then to every n = 1,... there corresponds 

{Y, k = 1,. . } a-convergent toy such that liminfk Fvk(Xk Yk ) > n. Hence 

lim inf lim inf Fv kY) 
- ? 

n-oo k-co 

and again the diagonalization Lemma A. I yields the desired sequence {Yk. k = 1,. . . 
a-converging toy such that lim infkco Fvk(Xk Yk) = X- O 

4.14 COROLLARY. Suppose ( X, T ) and ( Y, a) are metrizable and { Fv v I,, . is a 
sequence of saddle functions. Then 

(4.15) leF1(X y) sup inf lim inf F(xk Y) 

(Vk, k -I ,... }C N Xk-TX k-oo 
Yk o Y 

and 

(4.16) lhJi(x,Y)= inf sup limsupFv(xk,Yk) 
(Vk,k= ,...}CN Yk-aY k-co 

Xk -TX 

where the notation { k, k = 1,... ) C N means that we consider all possible subse- 
quences of N = { 1, 2,... }. 

PROOF. The expressions (4.15) and (4.16) are precisely (4.1 1) and (4.12) except for 
the liminfv oo being replaced by limsupv_. and vice-versa. As in the proof of 
Theorem 4.10, we prove only the first one of these two identities, the other following 
then from the fact that 1h F = -le(-Fv). In view of (4.11), it is immediate that 

Ie1,(X y)> sup inf liminftF,(xk vk)- 

{Vk, k 1 N.X.. CN XkTX v oo 
Yk OtJY 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 17 

To obtain the converse, we note that for any subsequence of indices {Vk, k = 1,... ), 
any sequence {Yk, k = 1,... I} a-converging to y and any sequence {Xk, k = 1,. . . } 
i-converging to x, there corresponds a subsequence (Vkp' p = 1,... } such that 

iM SUPF,(Xk' Yk) = lim F,kp(Xkp, Ykp) ? liminf Fv(xkp, Ykp), 
k- oo P --* 0 P---) 

as follows from the definition of lim inf and lim sup. We now use this in combination 
with (4.1 1) to obtain the desired inequality. O 

The T-lower semicontinuity of the function x t-+ le,v(x, y) follows from the 
definition of 1eFv via (2.1)-cf. also Lemma 4.30 below-and similarly the a-upper 
semicontinuity of y <- lh EF(x, y) follows from the definition of h Fv via (2.18). We 
obtain these continuity properties as a consequence of the next theorem which shows 
that for all y, epi leFv( - , y) is indeed the (set-) limit (with respect to both v and y) of 
epigraphs, and for all x, hypo lhJv(x, -) is the limit of hypographs, the limit 
involving both x and v. 

4.17 THEOREM. Suppose {JF, v E N) is a filtered collection of saddle functions 
defined on the product of the topological spaces (X, i-) and (Y, a). Then for ally E Y, 

(4.18) epi lel,(.,y) n cl( U epi F(, y')) 

D&E6 (v, y')eD 

where 6DY is the filter generated by 9( X 9j(y), i.e. epi leFP(, y) is the lim inf of the 
collection of sets {epi F1( *, y') I v = 1,. . ., y' E Y} with the index space N X Y 
filtered by GD Similarly for all x E X 

(4.19) hypolnF(x,) f n cl( U hypoF,(x' - 

DC6iX (v,x')EGD 

where 4Dx is the filter generated by cJC X XT(X), i.e. hypo lhF,(x, - ) is the lim inf of the 
collection of sets {hypo FJ(x', I ) I= 1, . . ., x' E X} with the index space N X X 
filtered by 6Dx. 

PROOF. For reasons of symmetry, it clearly suffices to prove any one of these two 
identities. We derive (4.18). A pair 

(X, a)E f cl( U epiFv(., y')) 

DGEby (, vy') Ez D 

if and only if, for any D E 6DY, any U E x(x), and any e > 0, there exists 

(ii, y') E D such that 

U X ]-oo, a + Et n epi Fj(, y') 7# 0, 

or equivalently if there exists x' E U such that F(x', y') < a + e. But this holds if 
and only if 

sup sup inf inf F1(x', y') < a. 
Ue6XT(X) DE' P (v,y')ED x'EU 
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18 HEDY ATTOUCH AND R. J.-B. WETS 

Since iD is a filter, the grill of 63 is 6D3 and thus we can apply Lemma 2.9 to 
y ~~ ~~~~~y 

re-express this as follows: 

(4.20) sup inf sup inf F,(x', y') < a. 
UE&ftXf,(X) DE6D (v,y')CD x'E&U 

To complete the proof there remains only to show that 

(4.21) inf sup = inf sup 
DE6DY (V,y')ED (H,V)E9X%,(y) vFH,y'FV 

because by substitution in the preceding inequality, we see that the left-hand side of 
(4.20) is nothing else than leJF,(x, y), and le,E(x, y) < a if and only if (x, a) E 

epi 1 lFy,(- ,y)- 
Since JC X O9L(y) C 6D , for any sequence of extended-real numbers doubly 

indexed by v and y', say {a, Y I v = 1, . . ., y' E Y}, we have that 

inf sup a(v, y') < inf sup a(v, y'), 
DF6DY (V,y')FD (H,V)CSJCXGT(y) vEH,y'C V 

and thus to establish (4.21), it suffices to prove the converse. For any D E 6Dy, there 
exists H E SC, V E 9L,(y) such that H X V C D and thus 

sup a(v, y') sup a(v, y'). 
(v,y')ED vCH,y' V 

From which it follows that 

sup a(v, y') > inf sup a(v, y'). 
(v,y')ED (H,V)ECXX%,(y) vEH,y'CV 

Since this holds for every D E 6DY, we also have that 

inf sup a(v, y') > inf sup a(v, y') 
DE6DY (v,y')ED (H,V)E9X6X%JT(y) vEN,y' Y 

which completes the argument. C1 
It is important to realize that 6D3 is not equal to SC X DL(y). Naturally, one y 

always has that SC X 9t(y) c 63D but in general 6Dy is a much richer collection of 
sets and we would not obtain the epigraph of leF,(-, y) if in (4.18) we replaced 6) 

by SC X 9j(y). As an immediate consequence of the representations (4.18) and 
(4.19) and the definition of upper and lower semicontinuity, we have 

4.22 COROLLARY. Suppose {JF, v E N) is a filtered collection of saddle functions 
defined on the product of the topological spaces (X, T) and (Y, a). Then its e-limit leF, 
is T-l.s.c. in x for all y, and its h-limit IhFp is a-u.s.c. in y for all x. 

Penalty methods and various approximation schemes depend on monotonically 
increasing or decreasing sequences of functions. For epi/hypo-convergence we have 
the following result. 

4.23 PROPOSITION. Suppose { F, v =... . } is an increasing (or decreasing) se- 

quence of saddle functions defined on the product of the topological spaces (X, T) and 
(Y, T). Then the sequence is epi/hypo-convergent. 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 19 

PROOF. Again for reasons of symmetry, it is sufficient to consider the case of an 
increasing sequence. Given any pair U E 6X(x), V E 6L(y), the sequence 

{ inf sup F1(x', y'), v = 1,...) 

is increasing. Thus 

liminf inf sup Fv(x', y') lim inf sup Fv(x', y'), 
V-O x'U y E V v-oo x'eU V 

and similarly 

lim sup sup inf F1(x', y') lim sup inf FJ(x', y'). 
V-O Y'V X'FU Vr Y' V X CU 

Together the inequalities imply that for all U E 6tX,(x) and V E 6,X(y) 

lim sup sup inf F(x', y') < liminf inf sup F,(x', y'). 
v bO0 ,y' A-xU v- oo x'eu }'/Ev 

Since sup inf < inf sup, we get 

sup inf lim sup sup inflF,(x', y') = leF,(x, y) 
ULFf(Xl(x) VE-R0(.Y) V v'0 v'V U 

< inf sup liminf inf sup F,(x', y') = lhF?,(x, y), 
VFCRa(.0) U 'RT(x) V 00 X'CU Y( V 

which implies the epi/hypo-convergence of the F,; see (4.5) and (4.6). O 
This proposition implies the epi-convergence of increasing and decreasing se- 

quences of (univariate) functions, facts that are exploited repetitively in many 
applications of the theory, cf. for example the convergence proofs for barrier and 
penalty functions in [2]. 

To any (filtered) collection of saddle functions, we have, so far, associated a 
couple of limit functions designated by leFv and lhFv. The convergence of saddle 
points is intimately related to some inequalities involving these two functions. 
However there are many other limit functions. In [5] De Giorgi suggests a number of 
them. Considering all possible interchanges of the sequence of inf's and sup's that 
appear in (4.3) and (4.4) and possible substitutions of inf and sup, there are at least 
180 limit functions that one could associate to a filtered collection of saddle 
functions. Of course, not all of them are interesting. However there are various 
relations between some of them that can be used to assert specific properties or to 
verify if the collection epi/hypo-converges. We consider the following 8 limit 
functions associated to the sequence of saddle functions {Fv,, v = 1,... }, 

(4.24) l1JFv(x, y) = inf sup lim sup inf sup FJ(u, v), 
VE600(y) UE6XL(X) VJ 0 UEU VEV 

(4.25) 12F(X, y) = sup inf limsup inf sup F(u, v), 
UE XL(X) VE&L(y) V, u&U VEV 

(4.26) 13FJ(x, y) = inf sup limsup sup inf F(u, v), 
VEE6%(y) UE6X(X) VIJO0 VE&V UE U 

Vlj(x, y) = sup inf limsup sup inf F(u, v), 
UE&X(X) VEE%(y) vIJ 00 VE V U U 

lhF,(x, y) = inf supU E 0L7(x) liminf inf sup F,(u, v), 
VC9La(Y) IJV-bo? uEU vEV 
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20 HEDY ATTOUCH AND R. J.-B. WETS 

(4.27) 14F;(x, Y) inf sup liminf sup inf F,(u, v), 
VF%6YJ(Y) UF6r(X) -0 VV uEU 

(4.28) 15F;(x, y) sup inf liminf inf sup F,(u,v), 
UE6YJ(x) VCO7Ja(y) v-0oo U&U vCV 

(4.29) 16F(x, y) = sup inf liminf sup inf F (u, v) 
UG&XL(x) VCOl0(y) 7 VF V uEU 

For the sake of completeness, we have rewritten here the expressions for leF, and 

lh F;. Rather than sequences of functions, we could have considered arbitrary filtered 
collections; one need only replace lim infpO. by supH infVH, and lim sup,,p by 
infHE9 supp,EH. Using these facts that sup inf < inf sup and lim inf < lim sup, we 
obtain relations between these functions as shown in Figure 1, where the * *.. 

indicate the order relations. 

- Fv 

VI N 

Q2FV - F R F 

eFv I- F, QF VI - ~~~~N N.' ~~~I 

L \ N VVI 

N -s I 

FIGURE 1. Order relations 

The functions 12F, 15FV, 16FV, and naturally 1,F, are T-l.s.c. in x, and the func;tions 

11 F, 13 F, 14 F, as well as lh F, are a-l.s.c. in y. All of this can be directly obtai ned as a 

consequence of the definitions and the following easy lemma. 

4.30 LEMMA. Suppose (X, T) is a topological space and a(x) = supu,,;X (X) q(U), 
where q is an extended-real valued function defined on the subsets of X. Then a is 
T-lower semicontinuous. 

PROOF. We have to show that epi a is closed, or equivalently that given any pair 
(x,a)GE X XR such that 

for all E > 0 and U E %j(x), U X]-oo, a + Et n epi a 7&0 

it follows that (x, a) E epi a, i.e. a 2- a(x). Suppose to the contrary that a < a(x). 
Then by definition of a, there exist E' > 0 and U' E- 6X,(x) such that a + E' < q(U'). 
Denote by U" the interior of U', and observe that for all x' E U", U' E= 6rx ). 
Thus for all x' E U", a(x') > q(U') > a + E'. Hence 

U"l X ]-oo, a + e[ n epi av= 0 
which contradicts the hypothesis, since U" EE 6X(x). O 

Given a sequence of functions 1F,, n a 1,. . . } any condition of the type F < lion 

or/and F L MjF. (with i, j 1, 2a ... . 6, e, ht) induces certain limit properties for the 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 21 

function F. The relationship between various types of convergences can be obtained 
from the diagram given by Figure 1. Each type of convergence possesses some 
interest in its own right. An independent study of each possible type would lead us 
too far astray from the main interest of this paper. At this time we limit ourselves to 
one other type of convergence, namely that induced by the conditions 

(4.31) l1Fv<F <16 Fv 
From Figure 1 we know that 1F. >a 16F., Thus if (4.31) is satisfied it means that all 
the limit functions that have been associated with the sequences {F,, v = 1,... } 
must be equal, in particular 1 IF, = F = 16 1. Moreover, in view of our remarks 
following Figure 1, the function F must be both T-l.s.c. in x and a-l.s.c. in y. In terms 
of the applications we have in mind these would be very strong properties. In fact 
(4.31) induces a convergence for saddle functions that is much stronger than 
epi/hypo-convergence. This is substantiated by the results that follow. 

4.32 PROPOSITION. Suppose {JFv, v E N) is a filtered collection of saddle functions 
defined on the product of the topological spaces (X, T) and (Y, a). Then for all y e Y 

(4.33) epi 16F,(-,Y) = n cl( U epi F(-, v)), 
EE=-8 ((v,v) E E 

andfor all x E X 

(4.34) hypol 1JF(x, ) ln cl( U hypoFv(u.)) 
EE &x (v, u) C E 

where 6 = H X X'(y) and Sx = SC X O,(x). 

It is worth noting that neither epi 16 Fv(*, y) nor hypo l1 Fv(x, *) are the lim inf of 
epigraphs or hypographs with respect to some filter on OL X , as was the case for 
epi leF*,( , y) and hypo IhF,(x, *). The family &; (or & ) does not engender a filter 
because some finite subcollections have empty intersection. 

PROOF. Again for reasons of symmetry it suffices to prove any one of these two 
identities. We derive (4.33). A pair 

(x,a) E n cl U epiJF(-, v) 
EFg (v,v)&E 

y 

if and only if for all E &G U C 9L(x) and e > 0, we can find (v, v) E E and 
u C U such that Fv(u, v) < a + e. Or equivalently, if and only if 

sup sup inf inf FJ(u, v) a, 
UE?tr(X) EEgy (, v)&E uEU 

or still, in view of Lemma 2.9, if and only if 

sup inf sup inf F(u, v) s a, 
U&9%(x) EE- (,v) EE uE U 

where S = (S) is the grill of &y. The proof will be complete if we can show that 
we can replace &, by &) in the preceding inequality, because then the term on the left 
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22 HEDY ATTOUCH AND R. J.-B. WETS 

is 16F,(x, y) and 16F,(x, y) < a if and only if (x, a) G epi 16',(', y). It thus 
remains only to show that for any collection of extended-real numbers {a,(v) v Ev N, 
v E Y} 

inf sup a,(v) = inf sup a,(v). 
EE y (v,v) E E E& 6y (v,v) E E 

Since I' D 6 it clearly suffices to show that the > (larger than or equal to) 
inequality holds. But now note that from the definition of the (double) grill of a 
collection of sets it follows that 

&> = {E C N X YI3D E & with D C E. 

Thus given any set E G , we can find D e SY such that D C E and thus 

sup a,(v) > sup a,(v) > inf sup a,(v). 
(v,v)ELE (v,v)ED D&& (v,v)CD 

The desired inequality follows from the above since it holds for all E. O 

4.35 PROPOSITION. Suppose (X, r) and (Y, a) are metrizable, and {F1: X X Y RI 
v = 1. . . } is a sequence of saddle functions. Then 

(4.36) 16F,(x, y) = sup inf liminfJFv(x,, yv) 
y O(y X,-"ix v y X0 

= sup inf lim inf FJ,(Xk I Yv) 
y,,-*ay {Vk, k=1I....}CN k-oo k 

Xk;-'X 

= sup inf lim sup Fk(Xk YVk) 
y{V0 Pk=k1,}..CN k--*oo 

Xk --rX 

and 

(4.37) l1Fv(x, y) = inf sup lim sup Fv(x,, yv) 
Xp 

OTX Yv oy v -00 

= inf sup lim sup FJk(X,k, Yk) 
XVTX {Vk,k-l,...}CN k-oo 

Yk uY 

= inf sup lim inf Fv,( Xvk, Yk). 
XVT-X 

{Vk,kl,.. }CN k-oo 

Yk?aY 

PROOF. Once more for reasons of symmetry it will be sufficient to derive one of 
these two strings of equalities, we work with (4.36). The argument that justifies the 
last equalities is similar to that used to prove Corollary 4.14. The second expression 
is obtained from the first one by observing that clearly 

inf lim inf Fv inf lim inf Fvk 
X X V* x {Vk})CN ko X 

k 

Xk X 

and if {Vk} C N, Xk x, then the sequence 

x k Xk, k= 1,... 

xv=x, forallv# Vk, 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 23 

is such that 

lim inf FJ(x,, y ) < lim inf Flk(X k, YVk) 
v- mo k-oo 

which yields the reverse inequality. 
Next we show that 16FJ(x, y) = g(x, y) where 

g(x, y) = sup inf lim inf Fp(xp, yp). 
YV --y Xv bx P 0 b 

We start by proving that 16FX(x, y) < g(x, y). There is nothing to prove if 16JF,(x, y) 
= -xo, so let us assume that 161F(x, y) > -oo. Take any a < 16 F1(x, y). From the 
definition (4.29) of 16F', this implies that there exists U & 6L7(x) such that for all 
V (- 6aY V&9L0(y) 

a < lim inf sup inf F ( u, v). 
V- O v&v u&u 

Let {Vm, m = 1,... } be a decreasing sequence of neighborhoods of y such that 

nm =IVm= {y}. From the above and Lemma A.5 it follows that there exists 

VP, m & Vm such that 

a < liminf inf FJ (u, v, m) 

and hence 

a < lim inf lim inf inf FJ( u, V,m)- m -oo v0 oo uEU 

The diagonalization Lemma A. 1 (see the Appendix) allows us to extract a sequence 
{ypv = v m = 1. ..) a-convergent toy such that 

a < lim inf inf FpJ(u, yp). 

Take any sequence {xp, v = T... . } -convergent to x. For v sufficiently large xp & U 
and hence a < liminf FJ(xp, yp). Since this holds for any sequence {xp, v = 1 ... ) it 
follows that 

a ,- inf lim inf Fp (xp,yp ) 
XV 4 TX V -* 

and a fortiori 

a? sup inf liminfJF,(xp,yp)=g(x,y). 
YV , ay X, 

__ 
TX P 

__ 
00 

This holds for any a < 16 F1(x, y), and thus 16 F <- g. 
Next we show that 16FJ(x, y) > g(x, y). The inequality is trivially satisfied if 

16FJ(x, y) = +oo. Thus let us give the proof under the assumption that 16FJ(x, y) < 

+oo. Take any ,B > 16F1(x, y). This means that for any U E 6LT(x), there exists 
V E 9L(y) such that 

> him inf sup inf FJ(u, v). 
VO 

vEEV uE&U 
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24 HEDY ATTOUCH AND R. J.-B. WETS 

Let {Um, m = 1,... } be a decreasing sequence of neighborhoods of x such that 

nm -IUmr {x}. By the above to each such Um there corresponds Vm such that for 
all m, 

B> liminf sup inf F,(u, v). 
v -00 V E Vm U E Um 

Let {y^, v = 1,... } be a sequence a-converging to y, then for each v sufficiently 
large, y, E Vm and thus 

,8> liminf inf F,(u, y,,). 
1 - 00 U E Um 

The above and Corollary A.8 imply the existence of {Uvum, V = 1 ..., m = 1,... 
such that, for all m, uv m E Um and 

/B > liminf Fi,(u,,mr Yv,) 
v * 00 

Thus 

/3 h limsup liminfJF,(u u, m yv)- 
m-oo 0 -00 

We now appeal to the standard diagonalization procedure to exhibit a sequence 
{Xm = Um, mS m = 1, ... } such that 

/3 > limsupJFl,(xm, Ylm) m o 
m --- 00 

and hence 

/3 sup inf lim infFJm,(xm Yv ) 

y,, {PnJCN M-00o 
XM _*TX 

= sup inf liminfF^,(xp, yj) = g(x, y). 
YV , ?Y Xv --TX 

P 
X_ 

0 

From this the desired inequality follows since the above holds for every /3 > 16F. 

4.39 COROLLARY. Suppose (X, T) and (Y, a) are metrizable and { F, v = 1,. . . ) is a 

sequence of saddle functions defined on X X Y with values in R. Then the sequence { F,, 
v = 1, ... converges to F in the sense of (4.3 1), i.e. IIFJ, < F? 161F,, or equivalently 
1 F, =F= 16Fp if and only if to any pair(x, y) 

(i) there corresponds a sequence {yp, v = 1,... } a-convergent to y such that for all 
sequences {xp, v = 1,... } T-convergent to x we have 

F(x , y) <lim inf F(xp , yp), 
V -4* 00 

and 
(ii) there corresponds a sequence {x,, v = 1,... } T-convergent to x such that for all 

sequences {y, v = 1, ... } a-convergent toy, we have 

F(x , y) ali m sup F(xp , yp). 
V --* 00 

We note that the sufficient conditions for epi/hypo-convergence given in Proposi- 
tion 3.8 imply an even stronger type of convergence than I1Fp = F = 16JF,. In 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 25 

Corollary 4.39(i) the choice of {y,, v = 1,. .. } is allowed to depend on x and y not 
just on y as in Proposition 3.8, and similarly the chioce of {x,, v = 1,. .. } depends 
on x and y in Corollary 4.39(ii) not just on x as in Proposition 3.8. Thus, in addition 
to 11F1 = F = 16F, the convergence of saddle functions suggested by the conditions 
of Proposition 3.8 demands a uniformity property. 

In [41 Cavazzuit calls a sequence of saddle functions {JF,: X X Y - R, v -1,... } 
convergent to F if 1eFv = F= 16Fv which in view of the diagram of Figure 1 
naturally implies that the sequence epi/hypo-converges to F (and thus yields the 
convergence of the saddle points,...). Note that this definition demands that the 
limit function F be T-lower semicontinuous in x but there is no corresponding 
condition with respect to y. 

Of special interest are the limit functions associated to a sequence whose elements 
are all the same saddle function F. We already know that if {F = F, v = 1,. .. } then 
1eF, and 'hF, may differ from F, cf. Example 4.8. However not all lmit functions 
associated to such a sequence can be different, as can easily be assessed from their 
definitions. In such a situation we have 

q3F R4F ,=QhF 

VI VI 
I _ I 

QeF = Q6F - - - 22F =Q5F 

FIGURE 2. Limits of a single function 

where we have written IjF rather than ?jFv to stress the fact that we are dealing with 
sequences whose elements are all identical to F, and again **< ... indicates the 
order relationship. 

First noLe that the sequence (F = Fv, v =... .} always has an epi/hypo-limit 
(leF < lhF), but not a limit in the stronger sense of Corollary 4.39, cf. again 
Example 4.8. From the definition of 13 F (or 14F) and (2.1) and (2.18), it follows 
immediately that 13F = cly clx F = 14F where cly G indicates that we take the upper 
closure of the function y " G(x, y), for all x E X and clx G is the lower closure of 
the function x - G(x, y) for all y E Y, cf. ?3. Similarly we get that 12F = clx cly F 
= 15F. Note that the four limit functions could be different. In particular, we note 
that leF # clx cly F, and similarly cly clx F l# lh F. 

4.40 EXAMPLE. Let 

F(X, Y {0 if x + y is rational, 
F(x, y) = if x + y is irrational. 

ThenleF_0<I=clxcly F. 
We have seen that it is possible to associate to a sequence (or filtered collection) of 

saddle functions, various limit functions, which in turn can be used to define various 
types of convergence. We conclude by introducing one more class of limit functions 
involving extended closure. We shall say that a filtered collection of extended-real 
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26 HEDY ATTOUCH AND R. J.-B. WETS 

valued saddle functions {JF, v E N) defined on (X, T) X (Y, a) epi/hypo-converge 
to F in the extended sense if 

(4.41) ClxleF, < F s cly lhF. 

where by clx we mean the extended lower closure (3.4) with respect to x for all y, and 
by cl, the extended upper closure (3.5) with respect to y for all x. The interval of 
epi/hypo-limits associated to a collection of functions is, in general, smaller, as that 
defined by (4.41). We have shied away from using (4.41) as the central definition of 
our presentation because the extended closure adds a global property that cannot be 
translated in local characterization such as (3.6) and (3.7). However if the saddle 
functions are convex-concave, then the extended closures are naturally generated by 
conjugacy operations, cf. [101, and duality considerations lead us to work with this 
extended notion of epi/hypo-convergence. This is developed further in [3]. 

5. Yosida approximates: Metrizable case. Epi/hypo-convergence exhibits strong 
stability properties under various perturbations. This is already the case for epi-con- 
vergence, for example see [1, 13]. This section is devoted to a special class of 
perturbations that generate a whole class of well-behaved approximates, called 
Yosida approximates. This type of approximation had already proved its utility in 
the study of epi-convergence, as well as that of partial differential equations of the 
evolution type, see [1, 6]. The approach to epi/hypo-convergence via Yosida 
approximates, provides us with a powerful analytical tool in that it yields a concrete 
approximation scheme which can be used to study not only the epi/hypo-conver- 
gence of saddle functions, but also the convergence of the (differential) operators 
associated with saddle functions such as maximal monotone operators which are not 
necessarily the subdifferentials of convex functionals. In [31 we give a number of 
results in that direction. 

At this point it is important to stress that, notwithstanding our exclusive reliance 
on perturbations that lead to Yosida approximates, the essence of our results is not 
really dependent on this specific type of perturbational or approximates. There are 
large classes of "natural" perturbations with whom we could achieve the same 
objectives. Rather than the square of the distance we could use any locally Lipschitz 
function of the distance, or even functions that are not directly related to the 
distance function (in the framework of epi-convergence, details can be found in [13, 
?6]), the choice of the approximation-type being conditioned by the application. In 
the Hilbert case, i.e. when both (X, T) and (Y, a) are Hilbert spaces, or more 
generally in the Banach reflexive case, the use of the square of the distance is 

covenient, since epi/hypo-convergence properties are then intimately related to the 
convergence of the resolvents, cf. [1]. 

We take (X, T) and (Y, a) to be metrizable and d7 and d<, any metrics compatible 
with the topologies T and a respectively. Let F be a saddle function defined on 
X X Y with values in R. For every X ? 0, It > 0, we define 

(5.1) F(X, ,ux, y) = sup inf [F(u, v) + d2(u, x)- +d4(v, y) 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 27 

the lower Yosida approximate of F (with parameters X, y), and 

(5.2) F (X, t, x, y) = inf sup [F(u, v) + d2(u, x)- 2jd2(v, y)] 
Eu&X v&Y 2t 

the upper Yosida approximate of F (with parameters X, y). Our terminology is 
justified by the fact that the F I and F' will play the role-and possess the same 
properties as-the Yosida approximates used to study the epi-convergence of 
univariate (convex) functions. In fact, when F depends only on x, and not on y, then 
F I (X, ) = FT (X, ) is precisely the Yosida approximate [1]. The arguments pre- 
sented here show that convexity is not intrinsically required to obtain an epi/hypo- 
convergence theory for saddle functions via Yosida approximates. This observation 
also applies to the univariate case, and thus many of the results here generalize those 
known in the study of epi-convergence (for convex functions). 

At this point, the reader should be warned to resist the temptation to carry over 
the analogy with the univariate case too far. A substantial number of the results, and 
all the significant ones, depend on having X and y play an independent role. Most of 
our analysis would fail if we had insisted on only a 1-parameter approximation 
family. Moreover, the fact that pointwise convergence of the Yosida approximates is 
equivalent to epi-convergence (of the Mosco-type, cf. [1, Theorem 1.2.d]), does not 
carry over to the bivariate case, not even when the functions are convex-concave and 
X and Y are finite dimensional. In fact, this would be somewhat unexpected because 
the definition of the epi/hypo-limit is in terms of two inequalities involving 
noncomparable furictions! Finally note that all the subsequent results are metric 
invariant, i.e. the assertions remain valid whatever be the metrics dT and do used in 
the construction of F I and F' . The actual Yosida approximates obviously depend 
on dT and d, but they can be chosen so as to fit the application. 

After some preliminaries, we show that the Yosida approximates are locally 
Lipschitz provided that the original functions are majorized and minorized in a sense 
to be made precise later on. The Lipschitz constants are explicitly computed. This 
allows us to assert later the locally equi-Lipschitz property of a collection of 
functions majorized and minorized by the same functions. This is a key ingredient in 
the proof of the main theorem of this section, which exhibits the relationship 
between epi/hypo-convergence and the convergence of the Yosida approximates. 

Some of the results that follow depend on boundedness properties of the saddle 
functions. All conditions introduced here below presuppose the existence of some 
pair uo E X and v0 E Y and a constant r > 0. We say that F is (quadratically) 
majorized on a slice (at uo) if for all v E Y, 

(5.3) F(uo, v) s r[d2(v, vO) + 1]; 

it is minorized on a slice (at v0) if for every u E X, 

(5.4) F(u, vo) 2 -r[d 2(u, uO) + 1] 

F is said to be (quadratically) majorized if for all u E X and v E Y, 

(5.5) F(u, v) s r[d2(u, uO) + d2(v, vO) + 1] 
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28 HEDY ATTOUCH AND R. J.-B. WETS 

and finally minorized if for all u E X and v E Y, 

(5.6) F(u, v) > -r[d2(u, u0) + d2(v, v0) + 1]. 

In the statements of the results, we shall refer to both F I and FT . It will always be 
sufficient to give the proof for either F I or F' , since 

(5.7) -FT( X,I,x,y)= sup inf [-F(u, v) + 2d2(v, y)- 1d2(u, x)] 

and thus FT is the negative of the lower Yosida approximate (with parameters l, X) 
of the saddle function (-F) defined on Y X X. 

5.8 THEOREM. Suppose (X, dT) and (Y, do) are metric spaces and F: X X Y -> R is 

a saddle function minorized on a slice (5.4) and majorized on a slice (5.3). Provided that 
X and ,u are sufficiently small, the functionsy " F I (X, ,u, x, y) and x " F I (X, ,u, x, y) 

are locally Lipschitz. Moreover, if, in addition, F is minorized, then F is locally 
Lipschitz in (x, y) and if F is majorized so is FT. 

PROOF. In view of (5.7), it suffices to prove the theorem for F . We start by 
showing that F a is finite valued. From the definition (5.1) of F , it follows that 

F (p, x, y) ? sup [F(uo, v) + 2Xd(uO, x) - 
2jd (v, y)] 

Since F is majorized on a slice (5.3), we have 

F I (A, , X, y) 2d 2(u0, x) + sup [rd2(v, vO) + r - 21d2(V y)j, 

which combined with the inequality 

d2(v, vO) s 2d2(v, y) + 2d2(y, vO), 

implies that when /L s 1 /4r, 

(5.9) F I(X, p, x, y) id2(uo x) + r + 2rd2(y, vO). 

Again from the definition of F , it follows that 

FI(X, l,x, y) > inf [F(u, vO) + d2(u, x) - 2 d(Vo, y) 

which with (5.4)-recall that F is minorized on a slice-yields 

F(AS, x, y) > -21 d2(V0, y) + inf [Id 2(u, x) - rd2(u, u0) - r] 

and thus when X s 1/4r we have that 

(5.10) F( 
I 

x, Y) - 2 rd2(Uo, x)-r. 

Combining (5.9) and (5.10), we see that when 0 < X s 1/4r and 0 < y s 1/4r, 
the functions F I (X, ,u, . . .) are finite valued, with bounds that depend continuously 
on the given parameters uo, vo and r. 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 29 

For the remainder of the proof we may as well assume that X and y are such that 
F (X, u, -) is finite valued. For any pair e > 0 and fixed y E Y, we can find 
v = v (X, ,u, x) such that 

(5.11) F (X, 8, x, y) > inf [F(u, v-) + +d(u, x)1 - 2d 2(V-, y) 

2F'(, IL, x, y) -. 

In particular, this holds for y = Yi and y = Y2 and v- = v-' and v = vE respectively. 
We again use the definition of F I to obtain 

FI(), I, x, yl) > inf [F(u, v-) + Ad2(u, x)] - 2dNv,2 y1) 

+ [d 2( VEI y2) 
- -d 2(v Ey)] 

+2F I-u, x Y2) - E + 21 [d(v2, Y2) - do_2 

where the last relation follows from the second inequality in (5.1 1). Since d2(vE, Yl) 
- d2(vE, Y2) < dj(yj, y2)[2dj(vE, y2) + dj(yj, Y2)]I we have 

FI(X, lu, x, yl) - F (X, tL, X, Y2) 

Ie- 1d(yj, y2)[2d(v-, Y2) + d(yj, Y2)]. 

This, and a similar inequality obtained by the interchangingy1 and y2, yield 

(5.12) IF (X, y, x, Yi) - F (X, /l, x, Y2) 1 

I' SE+ -dj(yj, y2)[dj(yj, y2) + d,o(v-, yl) + d,,(v 
E 

Y2)]- 

There remains only to obtain a local bound on dj(v, y). To do so we rely on the 
second inequality in (5.1 1), to get 

inf [F(u, vE) + Id2(u, x)] + e > F (X, lu, x, y) + 2d 2( V, y). 

In particular with u = uo and X s 1/4r, from (5.10) we have 

F(uo, vE) + +d 2(uo, x) + E 

Id d(vo y) - 2rd2(uo, x) - r + 2jd2(v',, y). 

Since F is majorized on a slice, we use (5.3) to obtain 

r[2d 2(vE, y) + 2d 2(y, vO) + 1] + 
I 

d 2(Uo, x) + E 

+ 
I 

d2(v0, y) + r + 2rd2(uo, x) 2 d 2( VE, y). 2ju T 2ju a~~~~~y) 
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30 HEDY ATTOUCH AND R. J.-B. WETS 

If u s 1/(1 + 4r), this yields 

(5.13) d2(v y)< (4r + I) d(V0, y)+ (4r+ Jd2(uo,x)+4r+2e. 

Substituting in (5.12), we obtain 

IF (X, M, x, yi) - F)(X, t, x, Y2) 1 

e+ d(yi, Y2) M{do(y, Y2) + (4r + )[dtd (Vo Yi) + d2(Vo, Y2)] 

+2(4r+ jd2(uo,x)+8r+4e}. 

This holds for every E > 0, and thus we have that 

(5.14) IF (X,u, x, yl) - FI(X, tL, x, Y2)1 

,-- da(yj y2) * C2(r, ,u, I/ji, A, I/A, vo, yl, y2) 

where C2 is bounded on bounded subsets of its domain of definition. In particular 
for fixed r, I-L, A, uo and vo, C2 is bounded above whenever Yi and Y2 belong to some 
(fixed) bounded subset of Y. This yields the desired Lipschitz inequality. 

A similar analysis, with F T, rather than F 1, yields 

(5.15) IFT(A, t, XI, y) - FT (XI , x2, y) I 

Adr(XI IX2) _C2( ja/uAl//IVO, XI YI Y2) 

the function C2 being the same type of function as C2. 
Next we show that the function x F-* F I (A, ,u, x, y) is locally Lipschitz if F is also 

minorized (by a quadratic form), i.e. satisfies (5.6). For each v E Y, we denote by 

(5.16) [F(Q, v)] x(x) = inf [F(u, v) + d 2(u, x) 

the (lower) Yosida approximate (with parameter A) of the univariate function 
u " F(u, v). With this notation, (5.1 1) becomes 

(5.17) F(X, t, x, y) ?>[F(- ve)]x(x) - 2 d2(ve, y) > F (X, tt, x, y)-e. 

Recall that actually vE depends not only on E but also on A, ,u, x and y. In the 
argument that follows, we shall keep A, u and y fixed, but x will vary. We now write 

v1 for V(E, A, , xl, y), V2 for v(e, ,x2 y), etc.... 

Again from the definition of F 1, we have that 

F(A, St, xl, y) >[F(- vI)]x(x1)- g d2(v-, Y) 

and hence 

FA , xl, y) ?[F(-, vE)](xl2) 
- +d.F(v-, y) 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 31 

which in view of (5.17) yields 

(5.18) F (A, t, x2, Y) - FI(X, A, xi, y) 

-<e8+[F(., 0ht)(X2)-[F(-,v t)],(x,). 

Now from (5.16), the definition of [F(., v)]x, it follows that to each e > 0, x E X, 
v & Y and A > 0, there corresponds a ue = ue(X, x, v), an e-approximate infimum 
of the expression appearing in (5.16), such that 

(5.*1 9) [ F(-, V2 )]AX2 ) -[ F(-, v ) ] Ax,I) 

< F(ul, v2) A 9dT(uI, x2) + e-F(uE, tv) - Id2(UE Xl) 

where 

u- = uE(A, x, v*) - uE(A X, v(e, A, , x2, 

= (x2 v) =ue(A x2, v(e, A, Al x2, y, 

and hence 
(5.20) 

[F(, V2)1(X2) -[ F(-' ve)]X(x) < 2AI[d2(U, x2)- d2(u, xI)] + e 

< e + IjdT(x, x2)[2d,(uE, xl) + d(x1, X2)]- 

We now seek an upper bound (or estimate) for d7(UI, xI). From (5.3) and the 
definiton of [F(., v)]x we also have that 

[F(-, v)]x(xI) < F(uo, v-) + kAd2(u0, xI) 

<r[d2(v2,vo) + 1] + 2 x 

We now use the fact that F is minorized, i.e. condition (5.6) is satisfied, the 
definition of uV, and the previous inequality to conclude that 

2e + r[d2(vE, vO) + 1] + 2(u0, xI) 

r r[d2(u-, uo) + d2(V-, vO) + 1] +A d2ul, x1) 

This implies that if A < 1/2(1 + 2r), 

d( uI, x ) < 2e + 2r[d.(v2, v0) A 1] + (2 + 2A) rd( 

which with (5.13) yields 

dT(ul, x) < e(2 + 8r) + 2r(l + 8r) + 4r[1 A (4r +- do(v0, y) 

+ 2r +) dT(uo,xl) + 4r(4r+ d)Td(u x2) 
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32 HEDY ATTOUCH AND R. J.-B. WETS 

Thus 

(5.21) dj(u%, xl) ? Cl(E, r, X, 1/XA I, '/1, UO, VO, XI, X2, Y) 

where Cl is bounded on a bounded region, in particular if xl and x2 belong to a 
bounded subset of X and e, r, X and , are fixed (with A and E; sufficently small). 

Returning to (5.18), the second inequality of (5.20) and the inequality just derived 
for dT(UE(X1, VE(X2, y), xI)) = dJ(u8, xl), we get 

F(, It, X2, y) - F (X, , xl, y) 

? 2e + ~2dT(X1, X2)[dT(XI, X2) + 2CI(E, A, I xI, X2)]. 

Letting E go to 0, for any bounded subset S of X we can find a constant Cl (which 
depends only on r, A, jt, uo, vo andy) such that for any (x1, x2) E S X S 

FI(AIPI, X2, y) - FI(X, , xI, y) S dT(XI, X2) *C1. 

Reversing the role of xl and x2, we have the (locally) Lipschitz inequality 

(5.22) IFI(X, P, xl, y) -FI(A, p, X2, Y) 1--- dT(XI, x2) * Cl. 

To show that F I (A, , * ) is locally Lipschitz in (x, y) it now suffices to observe 
that from (5.14) and (5.22) it follows that 

(5.23) IF (X, I, xl, yl) - F'(A, I, X2, Y2)1 

-IF4(N, P, xl, yi) - Fl(, /, x2, yI) I 

+IF (X, P, X2, Y1) - F(X,px2, Y2)I 

? dT(X1, X2) C1 + dT(y 1, Y2) C2 

C(X, j, xI, yI, x2, Y2)[dT(X1, X2) + d.(yl, Y2)]1 

and this completes the proof that F I is locally Lipschitz in (x, y) if F is majorized 
on a slice (5.3) and (totally) minorized (5.6). 

As already indicated at the outset, the proof for F I proceeds along the same lines, 
except that this time we need F to be minorized on a slice (5.4) and majorized (5.5). 
L 

The next theorem yields a complete characterization of the limit functions 
associated to a sequence {JF, v = 1,. .. } of saddle functions in terms of limits of the 
Yosida approximates of the F1. 

5.24 THEOREM. Suppose {F,, v s,... } iS a sequence of extended-real valued saddle 
functions defined on the product of the metric spaces (X, d ) and (Y, do). If the F are 
uniformly majorized on a slice and minorized, i.e. the parameters uo, vo and r that 
appear in (5.3) and (5.6) are independent of v, then 

(5.25) leFv(X, y) = sup inf limsupFp'(N,,u, x, y). 
X>O >? v 00 

On the other hand, if the FJ are uniformly minorized on a slice and majorized, then 

(5.26) ih1F(x, y) = inf sup liminf Fp (A, ,u, x, y). 
JL> X>O > ?? 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 33 

Thus, if the sequence {FJ,, v = 1,... } is uniformly minorized and majorized, it 
epi/hypo-converges to F if and only if 

(5.27) sup inf limsupF,1(XA, ,x,y)?F? inf sup liminfF1(X, ,x,y). 
X>O [L> X >O O '?>A X>O V O 

PROOF. In view of (5.7) it clearly suffices to prove any one of the identities (5.25) 
or (5.26). We choose to derive (5.26). We show first that 

(5.28) a = inf sup lim inf Fp(X, I, x, y ) > lh F1(x, y). 
'?>O X>o V 

Clearly there is nothing to prove if a = +co, thus suppose that a < +oo. Take any 
/3 > a. We shall show that /3 >- lh F(x, y). Since / > a, there exists I0 > 0 such that 

/ > sup liminfF (X, l0, x, y). 
X>0 o BOO 

Since F1 is finite valued (cf. Theorem 5.8), from (5.2), the definition of F1, it 
follows that for any X > 0 and v, there exists ux such that 

FVT(X, A,x, y) > -V-' + suP [Fi(uV, v) - 21 d2(V, Y)] + d 2 X 

Hence 

/3> liminf liminf (sup [F(ux, v) - 1 d( Y)] + d ( 
X40 v--*o vC ] loC 2 XT( j 

Lemma A. 1, proved in the Appendix, allows us to diagonalize this double indexed 
sequence so that 

/3> limrinf {sup[ FVV(x v)- 21 d (CV Y)j 2(V )dT x)} 

for some choice of {X(v), v = 1,.. . where xp = ux(>). By definition of liminf, there 
exists a subsequence of indices such that 

vCY k' v) 1~d 2(V, + 
X 

d(xx 
(5.29) A > lm (sup [FJk(Xk v) 2- o a Y 2- T ) 

where for k = 1,..., Xk = Xvk and Xk = X(Vk). Since we are taking a supremum with 
respect to v, taking v = vo and using (5.4), we get that 

> limsup [-r(ddk2(X u0) + 1) - 2 d(V0, Y) + d )] 

Since Xk goes to 0 as k goes to x, this implies that the xk converge to x. Because 
d (xk, x) > 0. From (5.29) we obtain 

/ > lim sup sup F(kd ) 2 2t da( Y)]- 
k-xo veY L ]k,k )-2O"(,Y 

Thus for any sequence Yk converging to y we have that 

> limsup [Pk(XkI Yk) -2 

do(Yk, Y 
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34 HEDY ATTOUCH AND R. J.-B. WETS 

which implies 

/3> sup limsup [F,(Xk IYk)] 
Yk -Y k-Xoo 

and this in turn yields 

/3 > inf sup limsupF^,k(xk, Yk) l lhFv(X, Y)4 
{Vk} Yk,Y k- oo 

Xk-X 

and hence completes the proof of (5.28). 
Next we derive the converse inequality, namely that 

(5.30) a = inf sup lim inf F(X, , x, y ) 
? 

lh Fv(x, y ). 
p>O X>O v eo 

If a = -x, the inequality is trivially satisfied. Thus let us assume that a > -ox. 
From the sequential definition of lh' cf. Theorem 4.10, to prove (5.30), we need to 
show that for every subsequence of functions {iF^k k = 1,. .. } and every sequence 
{Xk, k = 1,. . . ) converging to x, there exist {Yk, k = 1,. . . ) converging to y such 
that 

(5.31) a < liminfFk(xkI Yk) 
k- oo 

where we write simply Fk for F 

The hypotheses of the theorem imply that the upper Yosida approximates F. are 

locally equi-Lipschitz with respect to x, as follows from Theorem 5.8 since we can 
use the same Lipschitz constants (5.23). Making use of this fact, to obtain the first 

inequality below, we get 

lim inf FT(X, i, x, y) -,- himinf FkT(, P" Xk I y) 
v -0 k- o 

liminf sup sup [Fk(u, v) + Ad(U, xk)- .j-d2(v,Y)j 

h liminf sup [Fk(xk, v) - d2(v, y)j 
k-oo veY 

kX J 

lim inf [Fk(Xk, vk) Vk do k(v, Y )]I 

where for every k and ,u > 0, vk is given by Lemma A.5. 
This last bound for lim inf,, FT being independent of X, we get 

sup liminfFT(X, ,u, x, y) ? liminf [Fk(Xk' Vk) 
- 

2Jd (vk, y)] 
X>o0 v oo k-Xoo 

Taking the infimum with respect to M,u or equivalently the limit when ,u goes to 
0-see the definition of F i- 

a= inf sup liminfFv(X,., x,y) 
tL>O X>O v >o 

< liminf liminf rFk(Xk, V) - d (v y)lA 
p-0 k- oo 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 35 

To diagonalize this sequence double indexed by M and k, we apply the diagonaliza- 
tion Lemma A. 1 which yields a subsequence of indices {,u(k), k = 1,... } decreasing 
with k to 0, such that 

d2L 

(5.32) a ? liminf [Fk(Xk IYk)J 1 dYk Y) 

where for k = 1,..., yk = Vjk ) and Ik = L(k); thus a ? liminfk Fk(Xk, Yk)* 

There remains only to show that the Yk converge to y. Since a > -oo, (5.32) implies 
that for k sufficiently large 

2 d 2(yk y) S Fk(Xk, Yk) + 1 - a. 

We now use (5.5) to obtain an upper bound for d 2(yk, y), namely 

21A d(Yk, Y) T r[d(xk, uO) + do(yk, vO) + i] + 1 - a 

which implies that theYk converge toy (recall that the Mk tend to 0). 0 
The next corollary justifies the use of the terminology "Yosida approximates" 

when referring to the function F I (X, ,,. . . ) and FT (X, U . . . ). 

5.33 COROLLARY. Suppose F is a saddle function defined on the product of the metric 
spaces (X, d ) and (Y, do) with values in the extended reals. Suppose F is majorized on 
a slice (5.3) and minorized (5.6). Then 

(5.34) leF(X, y) = sup inf F(X, i, x, y). 
X>O gL>O 

Similarly, if F is minorized on a slice (5.4) and majorized (5.5), then 

(5.35) ihF(x, y) = inf sup FT(X, , x, y). 
tL>O X>0 

Finally if F is both (quadratically) majorized and minorized, then 

(5.36) leF = sup inf F(X,,,. ..) inf supFT(X,,. ..)= hF. 
X>0 g>O X>0 LO 

We terminate with a comparison of Theorem 5.24 and those relating the con- 
vergence of the Yosida approximates and the epi-convergence of convex functionals, 
in particular Theorem 1.2 of [1]. To do this it is useful to restrict oneself to the 
epi-convergence (univariate) version of Theorem 5.24. 

5.37 THEOREM. Suppose that { f, v = 1,... } is a sequence of extended-real valued 
functions defined on the metric space (X, d,). Suppose, moreover, that there exists 
xo E Xandr>Osuch that forv = 1,..., 

f,(x) > -r[d 2(x, xo) + 1]. 

Then f lime f if and only if 

f = sup lim sup [ftI= sup liminf[ftIx 
X>o V- oo X>0 V O 

where [f] is the Yosida approximate with parameter X as defined by (2.17). 
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The reader should note that even in finite dimensions, contrary to the "convex 
case", cf. Theorem 1.2d of [1], we cannot assert the equivalence between epi- 
convergence and the pointwise convergence of the Yosida approximates to the 
Yosida approximate of f (for fixed X). This parallels the situation when characteriz- 
ing the convergence of closed convex sets and that of just closed sets through 
r-convergence, cf. [11, part (vii) of the theorem and the remarks on p. 156]. 

6. A compactness theorem. The purpose of this section is to show that when (X, T) 

and (Y, a) are metrizable and separable, every sequence of saddle functions contains 
an epi/hypo-convergent subsequence. This generalizes (and contains) Theorem 2.6, 
a similar result for univariate functions and epi-convergence. The proof is com- 
pletely novel. We rely on the properties of the Yosida approximates and the 
characterization of epi/hypo-convergence in terms of the convergence of the Yosida 
approximates. When specialized to the case of univariate functions, we also obtain a 
new proof of Theorem 2.6. (The proof found in Kuratowski's book [8, p. 246] is 
essentially the standard argument used to porve the Bolzano-Weierstrass Theorem 
adapted to fit sequences of sets.) Finally, let us note that this approach sheds some 
light on the limiting process and to some extent it allows us to identify the limit 
element of the convergent subsequence. 

6.1 THEOREM. Suppose (X, T) and (Y, a) are both separable and metrizable. Then 
any sequence of saddle functions {F,: X X Y R, v = I... . } contains a subsequence 
which is T-epi/a-hypo-convergent. 

The proof is in three parts. We first demonstrate that the theorem holds when the 
saddle functions are bounded; actually all that is necessary for this first step is that 
they be majorized (5.5) and minorized (5.6). The next step is to prove the theorem 
when the saddle functions are just bounded below. Finally the last step yields the 
proof of the theorem in its full generality. 

Step 1. We prove the theorem under the additional assumption that the {JF, 
v = I,. . . } are uniformly bounded on X X Y. From Theorem 5.8, in particular 
(5.14), (5.22) and (5.23), lower and upper Yosida approximates FVz(X, ,,...) and 

FPI(X, A,...) are locally equi-Lipschitz (in x and y). Take {xp, p = 1,...) a counta- 
ble dense subset of X and f yq, q = 1. . . } a countable dense subset of Y. Let {X n 

n = 1,. . . ) and {(m, m = 1,. . . ) be two decreasing sequences that tend to 0. For 
each (n, m, p, q) the sequences {FTX(X ns, A, Xp, yq), v = 1,.. .} and 

{Fv(X n, tlm, Xp yq), v = 1,. . . } are bounded in R and thus relatively compact. By a 
standard diagonalization argument we can extract a subsequence Pk such that for all 
n, m, p, q the limit of the sequences {FV(Xn, tm' Xp Yq), k 1,... } and 

{Fvk(Xn I tm I Xp9 yq), k = 1,. . . } exist. 
The equi-Lipschitz property implies that the sequences 

{F^(X(n Am x y), k = 1,... and {FT(Xn, MmI X y), k = 1,... } 

convergeforevery (X,, m,x, y)withn = 1,..., m = 1,..., x E Xandy E Y. 
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From Theorem 5.24, we know that 

leFv,k(X, y) = sup inf limsupF^1(X, |l, x, y) 
X>O /L>O k-,oo 

= sup inf limsupFvt(Xn, m, X y) 
X,A10 Am O k- oo 

where the second equality follows from the monotonicity of the functions X - 

F,V(X, ,i, x, y) and ,i H- F, (X, ,u, x, y). Similarly, from Theorem 5.24, we have that 

lhJFk(x y) inf sup liminfFk(T, 1, x, y) h Y >O X>o k- oo 

= inf sup liminfFTk(Xn,Mm,xy), 
/Lm O X,,jO k-oo 

the second again following from the montonicity of FT in X and [. 
Since FT> F , since liminfk oF and lim supk ,oF, are equal as follows from 

our choice of the sequence {Vk}, and since inf sup > sup inf, we have that 

1eFk(x y) = sup inf lim FVI(XA, Mm X y) 
X,Ao /Lm O k-oo 

< inf sup lim FV (Xfn, 'm9 X y) = lhJk(X Y). 
/Lm X,,jO k-oo 

Thus, we have found a sequence {fvk k = 1,... } such that 

leFk 'lh Fk 

which is precisely the definition of epi/hypo-convergence, see (4.5) and (4.6). 
Step 2. We now assume that the saddle functions are bounded below, say by a 

constant r. For each q = I,... we define Fq, the truncation of F, from above, i.e. 
F"q = inf(F, q). For each q, the sequence of saddle functions {Fq, v = 1,... } 
satisfies the hypotheses laid out in Step 1. Thus for each q, we can find a 
subsequence of saddle functions which is epi/hypo-convergent. We can now rely on 
the standard diagonalization procedure to extract a subsequence {'Fk k = 1,... } 
such that the sequences {Fqkg k = 1,... }converge for each q. For q = 1,. . ., define 

Eq = IMe/h q? 

Note that the sequence {Fq, q = 1,... } is montone increasing. Let F = supq Fq and 
we shall prove that F =lne/h I F i.e. that letv J F - hv 

Since F,qk ? Fk it follows that for all q = I9.., < lhF . By definition 
Eq = lmeh F"q < 1 Fvq and thus for every q, Fq F lh 'k and consequently F e/h k < h vklhk 

supq 1 F It remains to show that leJvk < F. If F(x, y) = +oo, the inequality is 
trivially satisfied. Henceforth suppose that F(x, y) < +cx. We have to prove that 
given any subsequence of functions {JF,, p = 1,... } C {JF k = 1,... }, any se- 
quence {yp, p = 1, ... } converging to y, there exists a sequence {xp, p = 1,... } 
converging to x such that 

(6.2) F(x, y) > limsupF^,(xp yp). 
p-4 00 
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Since for each q, Fq l-Ie/M Fq ia, F^q, there exists a sequence {xq, p 
converging to x such that 

F"(x, y) ? limsupF,q(x, Yq)- 
p- 00 

Because F(x, y) < oo and, F(x, y) > F"(x, y) ? lrn sup , Fq(x q, yp) 
lim supp O inf[ (xp, yp), q], for any q > F(x, y), this last expression becomes 

p~~~~~~~~-o F(x, y) >> Fq(,y lim sup Fp(xP yp), 
p --.00 

and thus by definition of F, 

F(x, y) > lim sup limsupJF,(xp, Yp). 
q ---oo p ---oO 

Note that since for all q the {xq, p 1,... } converge to x, we also have 

0> lim sup lim sup d(x, x). 
q- oo p ->oO 

The diagonalization Lemma A.3, actually an obvious but slightly modified version, 
allows us to extract a subsequence {tXqP) 

- xp, p = 1,. such that both 

F(x, y) > lim sup FJ (xp, yp) and 0 > lim sup d(xp, x). 
p-0oo p- OO 

Thus we have exhibited the sought-for sequence converging to x for which (6.2) is 
satisfied. 

Step 3. We are now ready to actually prove the assertion of the theorem without 
any restrictions on the F1. For every. q, we define Fpq = sup(FJ, -q) > -q. The 
sequence {Fq, v = 1,... } is bounded from below and thus we are in the setting of 
Step 2. Hence for each q we can find a sequence that epi/hypo-converges to a (limit) 
saddle function. The standard diagonalization argument allows us to extract a 
subsequence {F^, k = 1,. such that for each q, the sequences {Fq, k = 1,. . . } are 
epi/hypo-converging. For q = 1,..., define Fq = lMe/h Fq. The sequence {Fq, 
q 1,.. } is monotone decreasing and thus the saddle function F = inf Fq, with 
values in R is well defined. As in Step 2, we shall prove that F = liMe/h F, i.e. that 

leFVk <F lh VFk 

Since Fpq > F it follows that for all q = 1,..., FepjqJ > le F By definition 
F9 = lme/h Fq > leFq and thus for all q, F> le F Consequently F - infq F 
1e Fv It remains to show that lhJFVh > F. If F(x, y) -oo there is nothing to prove, 
so suppose that F(x, y) > -oo. We have to show that for the sequence {tFv, 
k = 1,.. . } condition (3.7) is satisfied, i.e. given any subsequence of functions {1F, 
p = 1,...} C {JF,I k = 1,.. .}, any sequence {xp, p = 1,...) converging to x, there 
exists a sequence {yp, p =... . } converging toy such that 

(6.3) F(x, y) < liminfJE (xp, yp). 
p -- 00 VP 

Since for each q, Fq lie/ Fpq F IF q given {xp, p = 1,...) converging to x, 
there exists a subsequence {ypq, p = II. . . } converging toy such that 

Fq(X y) Fq(Xp yq). 
pO 
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The proof will be complete if we can find a subsequence {yp = qpq(P), p 1,... } that 
satisfies (6.3). 

Now recall that F(x, y) > -x and that 

F(x, y) < Fq(X, y) -< lim inf F>q (X p ypq) = lim inf sup [ F(xp, ypq), -q]. 

Thus for any -q < F(x, y), we have that 

F(x, y) < Fq(,y lim inf F (xp , p 

and thus by definition of F, 

F(x, y) < lim inf lim inf Fp(xp, ypq). 
q- oo p - " 

The same diagonalization procedure that allowed us to complete the proof of Step 2, 
yields the required subsequence. D 

Appendix. We prove here a number of nonstandard diagonalization lemmas. 

A. I LEMMA. Let {a,, v = 1, . . ., ,= 1, be a doubly indexed family in R. Then 
there exists a map v -, ui(v) such that 

(A.2) lim inf a,, ,(,,) lim inf (lim inf aV 
V W00 ,tl - 00 vPW 00 

PROOF. Let a = lim infp , 0, a p and a = lim inf a, . First assume that a < +x-. 
By definition of a, there exists ,I such that 

aA >- a-1/2 forall It> M, aAl ER 

and by definition of a,, there exists v, such that 

a ?, > aA - 1/2 for all v > v. 

We now build two sequences (Ip, p =,... } and {vp, p I,... } in the following 
manner: 

AP > Ap_ I and a. > a-2-P for all , >> ,^p, 

and 

v,, v,, and a aAl -2-P forallv vp. 

Set y( ) = ,, if i, < ii < v4 +1. One can verify that whenever vp , v ?p 1, we have 

a - ) a a- a + a -a > -21 P. 

Hence for all v > vp, av (P) > a - 2-P, from which it follows that liminfp:, aP, L(V) 

> a - 21 -P. The fact that this holds for every p yields (A.2). 
Now let us consider the situation when a +oo. This implies that to any number 

p there corresponds ,p such that for all ,l > tip, aA > p. By definition of a,, this 
means that av ̂  > p - p-1 for all v > vp. The sequence {a,,,(,), 1 - 1,... } is built by 
the following algorithm. 
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40 HEDY ATTOUCH AND R. J.-B. WETS 

a,,,1(1) 
= al' setp - 1, 1= 1, 

(*) if vp > 1 + 1, set a,+ ,L(,+ 1) = al+ 1 ,(,)' 

set 1 = 1 + 1 and return to (*), 
if vp s 1 + 1, set a,+ ,L(,?+ 1) = a,+ l , 

setp = p + 1, 1 = 1 + 1 and return to (*) 

where vp and lp are as defined above. It is easy to see that lim, >0 al (W) 
- +??. D] 

A.3 COROLLARY. Let {aV,,, v = 1,..., = 1,.. be a doubly indexed family in R. 

Then there exists a map v - ,u(v) such that 

(A.4) lim sup a,,(,) slim sup (lim sup aV,,) 
v -- 00 ,u00 v -- 00 

A.5 LEMMA. Let {a(v, ); v = 1,... } be a sequence of extended-real valued func- 
tions defined on X, a general space. Then, there exists a map v H- x(v) such that 

(A.6) liminf sup a(v, x) ? liminfa(v, x(v)) 
V +oo xCX v +00 

and 

(A.7) limsup supa(v,x) limsupa(v,x(v)). 
v-+?00 xCX v- +00 

PROOF. Let us define for each v E N, x(v) E X in the following way. 
If supexE a(v, x) < +oo, take x(v) E X such that 

sup a(v, x) < a(v, x(v)) + v-1. 
xcX 

If sup a(v, x) + oo, take x(v) E X such that 

v s a(v, x(v)). 

We claim that with this choice of the x(v), (A.6) holds: if the right member of (A.6) 
is equal to +oo, there is nothing to prove. So let us assume liminf, + ?, a(v, x(v)) < 
+oo. By definition of the lower limit there exists a subsequence {Vk; k = 1,... } such 
that 

liminf a (v, x (v)) = lim a (v,, X (Vk)) < +oo 
v- +oo k- +oo 

From the definition of x(v), this implies that for k sufficiently large 

sup a(vk, x) < +oo and sup a(vk, x) s a(vk, x(vk)) + vi'. 
xEX xEX 

Finally, 

liminfa(v, x(v)) = lim a(vk, X(Vk)) ' lim inf sup a(vk, x) 
v +oo k + oo k x&X 

> limm inf sup a( v, x). 
v +00 x&x 

Now let us prove (A.7). As for (A.6) the only case we have to consider is when 
lim sup, +?o a(v, x(v)) < +oo. This implies that there exists a positive real number 

ro and an index vo such that 

for all v> vo a(v, x(v)) - ro. 
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CONVERGENCE THEORY FOR SADDLE FUNCTIONS 41 

From the definition of x(v), this implies that for a > sup{vo, ro} 

sup a(v, x) < +x and sup a(v, x) a(v, x(v)) + v-1. 
xEX xeX 

Taking the upper limit with respect to v, we obtain 

lim sup sup a(v, x) ? lim sup a(v, x(v)). 
V-+oo xCX v- +00 

A.8 COROLLARY. Consider the sequence {a(v, .): X -R; v= 1,. .. }. Then, there 
exists a map v i-* x(v) such that 

(A.9) liminf inf a(v, x) > liminf a(v, x(v)). 
V-+OO xCX v-Y +0 
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