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ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 
BY 

HEDY ATTOUCH AND ROGER J. B. WETS1 

ABSTRACT. It is shown that on the space of lower semicontinuous convex functions 
defined on R', the conjugation map-the Legendre-Fenchel transform-is an 
isometry with respect to some metrics consistent with the epi-topology. We also 
obtain isometries for the infinite dimensional case (Hilbert space and reflexive 
Banach space), but this time they correspond to topologies finer than the Mosco- 
epi-topology. 

1. Introduction. Initially, the study of the epi-topology for the space of lower 
semicontinuous functions was motivated by the fact that on the subspace of convex 
functions the Legendre-Fenchel transform, i.e. the conjugation map, is bicontinuous. 
Actually, it is to state this result, which he proved for functions defined on R , that 
Wijsman [1] was led to introduce the concept of epi-convergence. Mosco [2], and 
also Joly [3], generalized this theorem to functions defined on a reflexive Banach 
space by considering an epi-topology generated by both the weak and the strong 
topology on the underlying space. We refer to it today as the Mosco-epi-topology. A 
further extension to the nonreflexive Banach case has been obtained recently by 
Back [4]. 

Walkup and Wets [5] obtained a related result, namely that on le the hyperspace 
of closed convex cones, subsets of a reflexive Banach space, the polar map is an 
isometry when the distance between two cones P and Q is measured in terms of the 
Hausdorff distance between P n B and Q nl B with B the unit ball. In finite 
dimensions this isometry implies the bicontinuity of the Legendre-Fenchel transform 
on the space of lower semicontinuous convex functions equipped with the epi-topol- 
ogy; details are worked out in [6]. In ?4, we refine this result and show that the 
isometry of the polar map yields an isometry for the Legendre-Fenchel transform, 
provided the notion of distance between two functions is defined in terms of a 
suitable metric. 

For infinite dimensions, however, the Walkup-Wets result is not immediately 
transferable to the functional setting, at least not in an operational form. This can be 
traced back to the fact that the unit ball is not compact. In ?2 we exhibit new 
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isometries for the Legendre-Fenchel transform relying on Moreau-Yosida approxi- 
mates. We obtain one isometry in terms of the approximated functionals and 
another one in terms of the resolvents and subdifferentials. We then explore the 
important relationship between these two isometries. Still another isometty is 
brought to the fore in ?3 involving the indicator functions and the support functions 
of convex sets. It also relies on approximates of the original functions, to which we 
refer as Wijsman approximates in recognition of the fact that these were the tools 
used by Wijsman in his derivation of the bicontinuity result refered to earlier. 

2. Isometries for Moreau-Yosida approximates. Let X be a Hilbert space, identi- 
fied with its dual, with norm I I and inner product ( , '). Let f: X ->] - x, xo] 

be an extended real valued function, finite valued for at least some x in X. Such a 
function is said to be proper; it is the only type of function that appears in this 
paper. For every X > 0 

(2.1) fx(x):= (f 1 .II12 )(x) = inf [f(y) + I 9 X y11] 

is the Moreau-Yosida approximate off of parameter X; here O denotes inf-convolution. 
These approximates play an important role in the analysis of variational limit 
problems, basically because a sequence of functions { f : X - I - x, x]1, v = 1, . . . } 

epi-converges (with respect to the strong topology of X) to the lower semicontinuous 
function f if and only if 

(2.2) 1= sup limsupfx = sup liminf fx, 
x>o v-o X>O VX 

provided the fv are (quadratically) minorized, i.e. there exists xo E X and /B > 0 
such that for all v = 1,... 

fV(X) > -I3(IIx - xoW12 + 

[7, Theorem 5.37]. Recall that, given (X, T) a first countable topological space, a 

sequence { f : X - R, v = 1.... 4 epi-converges to f (with respect to the topology 
T), if for all x in X 

(2.3) liminf f v(xV) > f (x), wheneverx = lim xV, 
V -*00 V -*00 

and for some sequence { X, v = 1,... 4 with x = lim, xv 

(2.4) limsup f '(x') < f (x). 
V -*00 

A short review of the properties of epi-convergence can be found in [7, ?2] (for more 
details consult the monograph [8]). 

The Moreau-Yosida approximates possess a number of properties that make them 
well suited for the analysis of the limit of sequences of functions. For example, with 
f (quadratically) minorized, we have that fx is locally Lipschitz with the Lipschitz 
constant depending only on the parameters X, xo and /B [7, Theorem 5.8]. Thus, if a 
collection { f v, v = 1,. . . 4 is minorized with the same quadratic form, the { f>, 
v = 1,... 4 are locally equi-Lipschitz. Another property [8, Proposition 2.67] needed 
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later on is: For any X > 0 and y > 0, we have 

(2.5) (1),1 = f+, 

which is called the resolvent equation. Indeed 

(fx),(x) = infK-ix -Y12 + inf(f(z) + IIy- zl2)] 

= inf[f(z) +inf(>11x -Y12 + 2yIIy 11 )] 

inf[f (z) + 1 ( - AZ + Xx) + 1 (z + x)- Z] 

- inf[ f (z) + 2( lx 1 - z42] 

Note that this identity remains valid if X is a Banach space. 
The analysis of the limit properties of sequences of convex functions via their 

Moreau-Yosida approximates highlights the full potential of this technique. Instead 
of (2.2), we have that a sequence of convex functions { f : X -> ] - x, oo], v = 1, . . . } 
Mosco-epi-converges to the (necessarily convex and lower semicontinuous) function 
f if and only if for all X > 0 

(2.6) fx(x) = lim fx(x) for all x E X, 
V -*00 

provided only that f be proper [9, Theoreme 1.2]. Recall that Mosco-epi-conver- 
gence is epiconvergence for both the strong and weak topologies of X, which means 
that in (2.3) one considers all weakly converging sequences while in (2.4) one 
requires the sequence to be strongly converging. Also 

(2.7) (A)* = ( 
I 11 _112) = * + x 

11211 

since (11 12/2X)* - 112/2. As usual, f *: X -> R, the conjugate of f, is defined 
by 

(2.8) f *(y):= sup [(y,x)- f(x)]. 
xEX 

The map f - f * is the Legendre-Fenchel transform. 
An important relationship between the Moreau-Yosida approximates of f and its 

conjugate f * is highlighted by the next theorem. This identity was already known to 
Moreau [10] in the case X = 1, see also [11, ?31]. It is the key to a number of 
isometries. 

2.9. THEOREM. Suppose X is a Hilbert space and f: X -> R is a proper convex 

function. Then for any X > 0 

(2.10) (f *)X(Xx) = X 112 -f fi_ (x). 
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PROOF. We have 

(f *)x(Xx) = inf [f *(u) + 2|IIXX - U112] 

= inf sup [(y, u) -f(y) +IA IIXX _ UII] 

VP (Y) ( 2A 1 11) 
= sup [-1(y) + min(yy, ) + 2IAXX - u112)1 

= - inf[f(y) + II xyX - hy i ] +I2 Xl 112 

which yields (2.10). The interchange of inf and sup can be justified as follows: 
Define 

g(y) = min(Ky, u) + 2Ak iiAx - u11) = 2 (IIxII - jjx - Y112). 

The function g is concave, finite and continuous on X. Thus, by Fenchel's duality 
theorem [12] we have 

sup [g(y) - f(y)] = inf [f *(u) - g*(u)], 
Y u 

where g * is the concave conjugate of g, i.e. 

g*(u) = inf [(u, y) - g(Y)], 
y 

and a straightforward calculation shows that 

g*(U) - 11XX - U112. Z 

As a corollary to this theorem, we obtain an interesting identity between the 
gradients of (f *)A and the resolvents of parameter X-1 associated with f. Let af(x) 
denote the set of subgradients of the convex function f at x, i.e. 

(2.11) af(x):= {vlf(y) > f(x) + (v, y - x) for all y E X}. 

The convex function fA is differentiable, and 

(2.12) VfJ(X) = X-'(x -JAX) 

where Jx for A > 0 is the resolvent of parameter X associated to f, i.e. the operator 
from X into X defined by 

(2.13) JAX := (I + Xaf )-1(X). 

Note that 

fx(x) = f(JAx) + 2A |1X - JX 12. 



ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 37 

To obtain (2.12), observe that for any X > 0 

y E arg min[f + 2A] X _ 112 

if and only if 

(af + ?-CI)(y) _ x-lx = 0 

or equivalently, if and only if 

y = (I + Xaf)-(x) = Jxx. 

Since 

afx(x) = { VI(V,O) E a(X.Y)(f(y) + 2A ix -Y 11) 

we have 

afx(x) = { vIv = ?-'(x - Jx) 

which also means that the set of subgradients is a singleton and, fx being convex, it 
is thus Frechet differentiable with its gradient vfx given by (2.12). The resolvent J, 
is a contraction and the gradient x -* V7fx(x) is Lipschitz with constant X1 (for 
more about resolvents and the properties of Yosida approximates (I + Xaf ) -1of the 
monotone operator af, consult [13]). 

Combining (2.12) with (2.10), we obtain 

2.14. COROLLARY. Suppose f is a proper closed convex function defined on a 
separable Hilbert space X. Then for any X > 0 

(2.15) v((f *)X(Xx) = Ji-lx = x - A-lVfX- (x). 

Now let SCC(X) be the cone of proper lower semicontinuous convex functions 
defined on X, here a Hilbert space. For every X > 0 and p > 0 we define on SCC(X) 
the distance functions 

(2.16) d>,p(f, g) = sup If,(x) - gx(x)| 
IIxII<P 

and 

(2.17) dj,p(f,g)= sup 1 Jkx-J x 
IIxII<p 

where f and g are two elements of SCC(X) and J/ and Jk are the resolvents of 
parameter X associated with f and g respectively. Note that in view of (2.12) we 
could also define dj as follows: 

(2.18) dj,p(f,g) = X sup IIVfX(x) - Vgx(x) |. 
IIxII<p 
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Recall that if f e SCC(X), so does f *, and f ** = f. This suggests comparing 
distances between any two functions and their conjugates. This leads us to 

2.19. THEOREM. Suppose X is a Hilbert space. Then for any f, g E SCC(X) and 
any X > 0 and p > 0 

(2.20) d>, p(f, g) = dx-i ,(f *, g*), 

and 

(2.21) d>,p(f, g) = XdJi-1 p-1(f*, g*). 

PROOF. From (2.10) it follows that 

Ifx(x) - gx(x) f = (f*)X_1(X-lx) -(g*)x-I(X-Kx) I 

and hence 

sup Ifx(x) - g(x)I= sup I( *)X-l(y)-(g*)X-1(y) 
11x11<6P IIYII 6 - lp 

which gives us (2.20). 
From (2.15) and (2.12) we see that 

IIJX - JUX 11 = IIJf*1(X-'X) - Jk*1(X-1X) II 
which implies that 

sup IlJfx - J 1x= X sup jJ/>1(y) - Jk* (y) 
IIXII<p 11Y11<X-1P 

and this yields (2.21). EC 
Of course with X = 1, as a direct consequence of the above and (2.18), we obtain 

2.22. COROLLARY (ISOMETRIES). For every p > 0, the Legendre-Fenchel transform 
on SCC( X) is an isometry for d1 p and dJp, i.e. for allf, g in SCC(X): 

(2.23) d1,p(f,g) =d1p(f 9*) 

and 

(2.24) dJp(f, g) = dJp((f *,g*). 

Note also that for X = 1, 

djIp(f,g) = sup IIvfi(x) - vg1(X) II 

The distance function d>,p is calculated in terms of the function values, whereas 

dj, is in terms of slopes (2.18) or resolvents (2.17). Both distance functions generate 
Hausdorff metrics, for example: 

k1 dd ) (f,g) (2.25) dist(f ,g):= E 2 + dk 'Pk(') 
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with the { Pk, k = 1,... } a sequence of positive real numbers increasing to + x, 
and 

00 

(2.26) distJ(f, g):= E [(2kd[p(f, g))/(1 + djJ p(f,g)) 
k=1 

Let us note that dist(f, g) = 0 implies f1 g1 and hence f = g. This last 
implication, which might seem at first surprising, relies on the fact that the functions 
f and g are closed and convex. Indeed if for such functions and some X0 > 0 one 
has fx. = gxo, then f = g. To see this, just take the conjugates of fx. and gxo. From 
(2.7) 

f*+ Ao j_2 g*+ oI. 112 

which implies 

It follows that f = g since the functions f and g are closed and convex. Let us stress 
the fact that in order to recover general closed functions f from their Moreau-Yosida 
approximates one needs all approximates fx (or at least a sequence fA with X" ? 

as n -- + cx). 
Similarly, distj(f, g) = 0 implies af = ag and hence f = g after some normaliza- 

tion of the functions. 
From (2.23) and (2.24), one gets the following 

2.27. COROLLARY (ISOMETRY). Suppose X is a Hilbert space. The Legendre-Fenchel 
transform on SCC(X) is an isometry for the Hausdorff metrics dist and distJ defined 
by (2.25) and (2.26). In particular, we have 

(2.28) dist(f, g) = dist(f *, g*) 

and 

(2.29) dist(f, g) = distJ(f *, g*). 

It should be emphasized that convergence for a sequence of convex functions { f V 

X -> R, v = 1,... } to a limit function f can of course be defined in terms of these 
distance functions. As can be surmised from our earlier comments, there is a close 
connection between epi-convergence in SCC(X) and the convergence generated by 
the metrics introduced earlier. To study these relationships, we begin with comparing 
the uniform structures associated to the distance functions { d>,p; X > 0, p > 0 and 

{dJP; X > 0, p > 04. 

2.30. PROPOSITION. Suppose f and g are proper closed convex functions defined on a 
Hilbert space X. For any X > 0 and p > 0 let d>,p and d>,p be the distance functions 
defined by (2.16) and (2.17) respectively. Then 

(2.31) dx,p(f,g) < X-cpdj,p(f,g) + ax(f,g), 
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where 

(2.32) ax(f, g) = fx(O) - g.(O)= d,0(f, g). 

PROOF. We have that 

fx(x) = f(O) +10 (KVf,(Tx),x) dT, 

since fx is finite everywhere and differentiable, see (2.12). The same holds with g 
and thus 

fX(x) - gX(x) = fX(O) -gX(O) + f ( VfX(-Tx) - VgX(iTx), x) d'T . 

This yields 

Ifx(x) -gX(X) I I fX(O) gx(O)| + K(Vfd(TX) - vgX(TX),x)IdT 

, ax(f, g) + ?IIxIf * vfA(TX) - VgA(TX) ||dT, 

where the last inequality follows from the Cauchy-Schwarz inequality. Taking the 
supremum on both sides with x restricted to the closed ball of radius p, we have 

dx p(f, g) < ax(f, g) + pf' X-Cd'p(f, g) dT, 

utilizing here the relation (2.18). And this in turn gives (2.31). [1 

2.33. THEOREM. Suppose f and g are proper closed convex functions defined on a 
Hilbert space X. For any X > 0 and p > 0 let dX p and d',p be the distance functions 
defined by (2.16) and (2.17) respectively. Then 

(2.34) dJ,f(f, g) < (1 + X)(2dX,P0(f, g))1"2 

for any po such that 

(2.35) po > (1 + X-1)p + ?-JO'(f, g), 

where 

(2.36) 0X(f, g) = ||J/| + II JA ?|O 

PROOF. Since fx and gx are convex, finite everywhere, and differentiable with 
gradients vfx and vg\, we have that for any x and y in X: 

fA(y) -fx(x) > (Vfx(x), y -X) 

gx(x) - gx(y) > ( vgx(y), x -y). 

Adding them up, these inequalities yield for all x and y in X: 

(2.37) [ fx(y) -g(y)] -[fx(x) -g(x)] >K Vf(x) - vgx(y),y - x). 

Now fix x and choose y such that 

(2.38) y := (I + vgx) -'[(I + vf)(x)] = -1 (, + J?+)[(i + Vfx)(x)]; 
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the last equality comes from (2.5), which implies that 

J1AX = (X + 1) '(Xx + Jik1X) = (I + Vg) -x. 

Thus for, all x E X and y as above, the inequality (2.37) becomes 

(2.39) 11 Vfx(x) - vg(y) 11 < f(fx(y) - gx(y)) - (fx(x) - gx(x)) 1/2 

Next, we obtain a lower bound for the left-hand side term of (2.39) in terms of 

II Vfx(x) - vgx(x)II. Indeed we have 

11Vfx(x) - vgx(x) 11 1 vfx(x) - vgx(y) 1 v + 1 VgX(y) - Vg(x) 

1IIVfX(x) - vgx(y) I?+ X` 1x -y 

G (1 X -X1)IIvf(x) - vgx(y) 11; 

the second inequality follows from the fact that Vgx is Lipschitz with constant X 1, 
and the third inequality from the definition (2.38) of y which implies that 

x - y = VgX(y) - Vfx(x). 

This last inequality with (2.39) implies 
(2.40) 

11 Vfx(x) - VgX(x) 1 (1 + -,)(IfX(Y) - g(y) I + Ifx(x) - g(x) )1/2 

Now since Jk+ 1 is a contraction, so is 

1 X 
+ + I 

DA=x+1 x1++1I 

and thus for any z 

IIDxzII _<ID. Dxz - Dx |D0xI I zIIZII + + 1 

Also, 

I(I + Vfx)(x) || X |I + |IVfx(x) - vfx(0) | + |VfX(0)I 

X+1 X111 +-11 
\ ||XII+~ A|J/0l 

where to obtain the last inequality we have used the facts that vfx is Lipschitz with 
constant X1 and, as follows from (2.12), that 

Vfx(0) = A(o - Jf ?) 

Thus for y, as defined by (2.38), we have 

(2.41) II Y I A |I XI+AIIJ?II + A IJ+IOI 

Noting that for every x E X, where X 1 1 gx xII increases as X decreases to zero, 
we obtain 

g V + I 0 7 gx 0 
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that is 

+ 1 I | 11 0 
Returning to (2.41) we get 

11 11 +IXI+ x- IJ/O 11+ IIJ 0 1I) 
Taking the supremum on both sides of (2.40) with llxll < p and appealing to (2.18) 
and the above inequality, we obtain 

1/2 

X-'d( (f, g) < (1 + X 1) sup If(y) - g(y) I+ sup fx(x) - gx(x) 

with 

PO =( + x- 1) P + x- IJ/O 11 + 11IIJ? 11) 
Since p < po, this yields (2.34). J 

2.42. COROLLARY. Suppose f and g are proper closed convex functions defined on a 
Hilbert space X such that 

f(0) = inff= 0 = infg = g(O). 
Then for any X > 0 and p > 0 we have 

(2.43) Xdx,p(f, g) < pdj,p(f, g) < p(1 + )[2dx,(l+X-i)p(f, g)] 
1/2 

In particular, when X = 1, this implies 

(2.44) dj, p(f , g) _< pdj p(f ,g) < 3p (d12(f g))1/ 

The inequalities (2.31) and (2.34), summarized in (2.43) in the "normalized" case 
(f(0) = 0 = inff), make explicit the relationship between the uniform structures 
induced by dX,p and d,p on SCC(X). If we restrict ourselves to the convex cone of 
"normalized" functions in SCC(X), i.e. such that f(0) = 0 = inff, then 

(2.45) 
d, 

(f, g) < pX - dA (f g) < p(1 + X-)[2d P(lX-2)(f,g)]/2 

Let { f : X R, v = 1, ... 4 be a sequence of proper convex functions, and 
suppose they are "normalized" as defined above. Then (2.45) allows us to compare 
the convergence "rate" of the functions, or at least of their Moreau-Yosida ap- 
proximates of parameter A, and that of their resolvents. And either one of these then 
give us a measure of the convergence rate of a sequence of epi-convergent functions 
as we show next. Let us begin with a couple of preliminary lemmas that are of 
independent interest in various applications of these results. 

2.46. LEMMA. Suppose X is a Hilbert space, with f and g proper, lower semicontinu- 
ous convex functions defined on X. Then for all A > 0, > 0 and p > 0 

dx+,~, p f, g) <, d)\po(f, g) 

for any po such that 

po > p + A-Crmax(lWO11, IIJoIll}. 
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PROOF. Let X > 0 and I > 0 and recall that, in view of (2.5), (fx)/ = fx?y. Hence 

fx + t(x= inf fx(v) + 
I 

l|x - v112} 

and 

g +,(x) = inf gx(v) + x11 - V112}- 

Suppose 

v(:= arg min fx(.) + J11X - *112) 

Then 

0 = Vfx(Vt) +-(Vt - X) 

which yields 

V= (I + LVfx)'1(X). 

We also have that 

fX+?(X)J= fx(v'X) + 24 || - Vk,12 

and, of course, 

9X+P(x) gA(vAf) + 21 ||x X- VAf 112, 

and these two relations imply 

(2.47) gA?+(x) -fx+?,(x) < gA(vA) -fA(vA). 

Since x - JSfxx = v( is a contraction, 

|| VA || < || V(-ALf J0 + 0| JfA O || < || x - 0 + || f O||. 
On the other hand, from the equality v(fx),, = vfx+t,, it follows that 

Jf x = (A + [Ax + IJA,xb 

0fx 0 = (A + IL) 
- 

'LJA+ ? 

and thus 

||VAf || <, ||X|| + 1(A + IL) |JAf+ U?I 

Returning to (2.47), for any p > 0 

sup (gx+?(x) -fx+?,(x)) < sup (gx(x) -fx(x)) 
11x11<6P 11xi < P0 

with 

Po > p + I(A + I)-'max{11 Jk?t+011, iliJ+t? }. 



44 HEDY ATTJOUCH AND R. J. B. WETS 

Observe that X - I1v(xIl and X - 1v1xll are monotonically decreasing functions, 
and thus the above inequality is satisfied if 

po > p + QA-1max(iWNOII IIJAOII}. 
Repeating the same argument, but interchanging the role of f and g, and using the 
definition of d,,p yields 

dx+,,,p(f, g) <, dx,p0( f, g). O 

2.48. LEMMA. Suppose X is a Hilbert space, with f and g proper convex lower 
semicontinuous functions defined on X. Then for any A > 0, y > 0 and p > 0 

dx,pt f, g) <, dx+t,,p,( f, g), 

where 

p':= (1 + Q'-l)p + MX-1 maxt ||JkO ||, 1I Jx ?O||}I - 

PROOF. With the same construction as in the proof of Lemma 2.46 we have, from 
(2.47), that 

fx(vk) - gx(vfi) <' fx+,,(x) - g+,+(x). 
Observe that (I + pLvfx)(v() = x. Given any y E X, taking x = (I + pivfx)(y) we 
obtain v((x) = y and thus 

(2.49) fx(y) - gx(y) < fx,?+(w() - gx+,(w() 
with w(:= (I + ,Avfx)(y). Note that 

11 wk 11 -< II Y II + tLX-I(II y 11 + II JO 11)- 

When IIYI < p, it follows that 

IIw( I< (1 + ILX p + ILQX J/ O< p' 

Taking suprema on both sides of (2.49) with IIYII < p yields 

sup (fx(y) - g,(y)) < sup (fx+,(y) - g+,(y)) 
IIYII P IIYII P' 

The same holds when the roles of f and g are interchanged, and this completes the 
proof. O 

As a direct consequence of Lemmas 2.46 and 2.48 we obtain 

2.50. COROLLARY. Suppose X is a Hilbert space with f and g proper lower 
semicontinuous convex functions defined on X such that f(0) = g(0) = inf f = inf g. 
Then for all X > 0, ,u > 0 and p >0 

dx+,, ,Ptf, g) < dx,p( f, g) < d(x+,,),P(l+x-,,,u)( f g). 

2.51. THEOREM. Suppose X is a Hilbert space, and { f ': X -* R, v = 1, . . . } and f: 
X -* R are a collection of proper closed convex functions, such that for some X > 0 
and all p > 0, 

lim dx,p( f, f v) = 0. 
V -4+00 
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Then 

f = Mosco-epi-lim f '. 

V - 00 

Moreover, if X is finite dimensional, then the reverse implication is also valid. 

PROOF. In view of [9, Theoreme 1.2] a sequence of proper convex functions { f", 
v = 1, ... } Mosco-epi-converges to f if and only if for all A > 0, the Moreau-Yosida 
approximates of parameter A converge pointwise to fx, i.e. for all x E X and all 
A > 0, 

lim fx (x) = fx(x). 
V --+ 00 

Now, if 

(2.52) lim dx,p(f,f)= 0 
V --+ 00 

for some A = A > 0 and all p > 0, it follows from Lemmas 2.46 and 2.48 that the 
above holds for all A > 0. The first one of these lemmas gives the convergence for all 
X > A0, and the second one for all 0 < X < A0, since it implies that 

dx p( f, g) <, dx0,P0t(f' g) ' 

where 

P0 = (I +(A0 - A)A-)p +(A0 - A)X-1(max[Il J/o , IIJoIII) 
Since (2.52) implies the uniform (pointwise) convergence on all balls of radius p of 
the fx to fx, and this for all A > 0, we have that f is the Mosco-epi-limit of the f P. 
To obtain the converse observe that the convex functions { fx, v = 1, ... } and fx 
are equi-locally Lipschitz, and this combined with pointwise convergence implies, by 
the Arzela-Ascoli Theorem, the uniform convergence on compact sets, which in 
finite dimensions are the closed bounded sets. O 

Note that we used Lemmas 2.46 and 2.48 to pass from requiring that dx p(f, f") 
goes to 0 for some A > 0 instead of for all A > 0. This also confirms that the 
epi-convergence engendered by the convergence of the distance functions dx,p is 
strictly stronger (in infinite dimensions) than the Mosco-epi-convergence, since 
having 

f = pointwise-limfx 
for some A > 0 is not sufficient to ensure that f is the Mosco-epi-limit of the f P. It 
is also easy to see that we could not obtain the epi-convergence of the sequence { f ', 

v = 1,... } to f by requiring that dx p(f, fV) goes to 0 for all A > 0 and some 
p0 > 0. So, we may feel that Theorem 2.51 is in this setting the best result possible. 

Let us finally notice that Theorem 2.51 is certainly valid in a reflexive Banach 
space. One has to extend Lemmas 2.46 and 2.48 to this setting and rely on [8, 
Theorem 3.26]. 

The next result could be obtained from the equivalence of Mosco-epi-convergence 
and the convergence of the resolvents [9, Theoreme 1.2(c),(d)]. However, it is easier 
to obtain it here as a corollary of the previous theorem, Proposition 2.30 and 
Theorem 2.33. 
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2.53. COROLLARY. Suppose X is a Hilbert space, and { f I: X -* R, v = 1,... } and 
f: X -* R are proper convex lower semicontinuous functions. If for some A > 0 and all 
p > O 

lim d',p(f,fV) = O and lim dX,o(f,fV) = O, 
V -4+00 V -4+00 

then 

f = Mosco-epi-lim f '. 

v- 00 

Moreover, if X is finite dimensional, then the converse is also true. 

PROOF. It really suffices to observe that the hypotheses of the corollary imply that 
for all A > 0 and p > 0 

(2.54) lim dxp(f,fV) = 0, 
V - 00 

as follows from (2.31), and then appeal to the theorem to complete the proof of the 
first claim. In the other direction, we first rely on Theorem 2.51 to obtain (2.54) from 
which it follows (2.34) that 

lim dp (f,f,)=0 
V - 00 

for all p > 0, since (2.54) also implies that limVv dx O( f, f I) f O. 0 
To conclude this section let us describe a situation that covers a number of 

important applications, where the metrics dx p and dj p appear as the appropriate 
concepts for measuring distance between convex functions. 

We write 

f = Tx- epi-lim f V 

V -4+ 00 

if epi-convergence is with respect to the T-topology on X, i.e. for all x in X, (2.3) 
must hold for all sequences { xV, v = 1, ... } T}-converging to x and (2.4) for some 
T-converging sequence. Recall that a collection of functions { f a: X - R, E A } is 
said to be equi-coercive if there exist a function 0: R+ [0, ox] with lim r 0,,(r) - 

ox such that for all a E A 

fa(x) > (11xllx x) for all x E X. 

2.55. THEOREM. Suppose X and H are two Hilbert spaces and X -* H is a 
continuous compact embedding. Then, for any collection { f; f V, v = 1, .... } of proper, 
equi-coercive, lower semicontinuous, convex functions defined on X, the following four 
assertions are equivalent: 

(i) f = weak X-epi-limV f 
(ii) f = Mosco-epi-limVv fV on H; 

(iii) for all p > 0, lim^ V d1 p(f,f) f 0; 
(iv) for all p >0, limV, , d J 

p (f,f) 0 and limVv 0 dxo (f, f) = 0; 
where d Xp and d Xp are defined in terms of the norm 11 H 11 H on H. 
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PROOF. Because of the coercivity assumption, each function f V on H defined by 

fv(x) [jv(X) if x X, 
[ ( -L+ if x H\X 

is also a proper, lower semicontinuous convex function. We simply write f v when no 
ambiguity is possible. 

(i) (ii). We begin by verifying the appropriate version of (2.4) for the Mosco- 
epi-convergence, i.e. to every x E H there corresponds a strongly convergent se- 
quence {xv' e H, v = 1,... } such that limsup of v(xv) < f(x). There is nothing 
to prove if f(x) = x0. If f(x) < ox, then x E X and from (i) it follows that there 
exists a weakly convergent sequence { xp E X, v = 1,... } that gives the desired 
inequality. This sequence is strongly converging in H since is a compact 
injection from X into H. 

Now to establish (2.3), pick any sequence { xv E H, v = 1, . .. } weakly converging 
to x in H. We have to show that 

liminf f (x ) > f(x). 
V -00 

If lim inf 0 f "(x c) = 00, the inequality is clearly satisfied. Otherwise, passing to a 
subsequence if necessary, we may assume that 

liminf f v(xv) = lim f v(xv) < oX. 
V - X V - 00 

From the equi-coercivity of the sequence { f , v = 1,... }, and the compact embed- 
ding X -* H, it follows that for v sufficiently large the xp are in X and the sequence 
is weakly converging in X to x. The desired inequality now follows from (2.3) itself 
since f is the weakx-epi-limit of the f V 

(ii) -* (i). The argument is similar to the preceding one, simplified by the fact that 
we are now going from convergence in H to convergence in X. 

(ii) -* (iv). We show that to every p > 0 and 8 > 0 there corresponds v' such that 
for all v > v, and x E H with IIXIIH < P 

IIJIx - J1XIIH <E 

where Jl{ = Jf and J1 = J{. We argue by contradiction. Assume that for some 
p0 > 0 and 8o > 0 there exists a sequence {v(k), k = 1,... } that goes to + 00, and 
a sequence {Xk E H, k = 1, . . . } bounded in norm by po such that for all k: 

(2.56) J1 (k)xk - Jxk > -o. 

Since f = Mosco-epi-limV P 00 f V (on H) we have that for all x 

fl(x) = lim fiV(x), 
V --+ 00 

cf. (2.6), and 

(2.57) Jlx = strongH- lim Jlvx. 
V -+ 00 

From the definition (2.13) of Jl{x, we have 

f{ (X) =f (J{X) + 211X _ JX1XII 
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which implies 

fi(X) > f v(Jlx) 

Pick x0 E dom f. Then again f = Mosco-epi-lim, f "' implies the existence of a 
sequence { x v, v = 1, ... } strongly converging in H to x0 such that 

f(x0) = lim fv(xOV); 
V -400 

using here conditions (2.4) and (2.3). By definition of flJ 

f{ (X) <fv(X0v) + I1Ix - XOvI, 
and hence from the above, for k = 1, ... 

I V(k)( JV(k)xk) < f v(k)(xO,v(k)) + IIxk - x O(v) |H- 
Now, the {xO'>(k), k = 1,... } converge to x0 and the {Xk, k = 1,... } are norm- 
bounded (by po). Thus 

sup fv(k)(J (k)Xk) < 0 t 
k 

which implies that 

sup || Jl{(k)x k || < X 

k 

since the collection { f V(k) k = 1, ... } is equi-coercive. This means that the se- 
quence { Jl{(k)X k, k = 1,... } is (strongly) relatively compact in H since -* is a 
compact embedding of X into H. Similarly, the sequence {J1xk, k = 1,... } is 
relatively compact in H. We can thus extract subsequences that we still denote by 
{xk, k = 1,... } and {jl(k), k = 1,... } such that 

x = weakH- lim x k, 
k -- 0 

(2.58) u= strongH- lim Jlxk, 
k-+00 

v= strongH- lim Jl{(k)xk 
k - o 

for some u and v in H. 
For any y in H, from the monotonicity of the operator af '-the functions f" are 

convex- and (2.13) the definition of Jxx which implies x - Jl{x E af"(Jl{x) and 
y - Jl{y E af "(Jlfy), we have 

(Jly - 
Jflx, ( y - Jly )-(x - Jlx)) >0, 

that is 

(JVy - JX, y - X) > ||Jy - J1X 11H2 

From the continuity of x Jfx it follows that these operators are maximal 
monotone [13] from H into H. Moreover, the sequence of operators { JfP, v = 1, .... } 
is graph convergent to J1 as follows from (2.57), which implies the following closure 
property, see [9]: 

whenever x = weak H- lim xv; andy = strong - lim y", and 
(2.59) v -XO k -oo 

yV = Jl{x, it follows that y = Jlx. 
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Using this result, with the sequences identified by (2.58), it yields 

Jlx = strongH- lim Jlxk; Jlx = strongH- lim J{(k)xk; 
k- oo k- oo 

which clearly contradicts (2.56). 
(iii) -- (iv) -- (ii). This follows from Proposition 2.30 and Theorem 2.51. O 

3. Isometry for Wijsman-approximates. In [6, ?6] it is shown that the study of the 
epi-convergence of a sequence { ft, v = 1, ... } to a limit function f can be reduced 
to the study of the convergence of a parametrized family of functions {t f "(X; *); 
v = 1,..., X > 0) obtained from the fv by inf-convoluting them with a collection 
{ g(X, ), A > 0), called a cast in [6]. One is allowed to choose this collection 
{ g ( X, - ), A > 0) so as to endow the " regularized" functions { f v (A; * ); v = 1, . . ., 
A > 0) with some desired properties, provided naturally that as A I0 the f v(A; .) 
converge (pointwise) to fY, and that if f = epi-lim, f& , then a formula of the 
type 

lim lim f'(X,)=f 

holds. One possibility is to choose for A > 0 

g(A, .) = 
a . 

This leads to the Moreau-Yosida approximates { fx, v = 1, . . . ), introduced in ?2, 
that have played such an important role in the theory and the applications of 
epi-convergence beginning with [9]; for a more recent account consult [8]. Another 
possibility is to choose the g(A,-) so that they are adapted to the sequence in 
question such as done by Fougeres and Truffert [14] in their work on lower 
semicontinuous regularizations, in particular of integral functionals, by a reference 
function. Each cast { g(A, .), A > 0) is potentially the source of new isometries for 
the Legendre-Fenchel transform. In this section, we work with g(A, *) = A -ll *1 to 
construct for given f, the "regularized" function: 

(3.1) f[X](x) := (f D A'-111 II)(x) = inf [f(y) + A-lllx - y 1]. 
y 

We refer to fix, as the Wijsman-approximate off of parameter A in recognition of the 
role played by this type of function in the seminal work of Wijsman [1]. Of course, 
we have that 

epi f[A] {(x, a = inf a) I(x , a) E epi f+ epiA- Xll 

and if f is a proper lower semicontinuous convex function, then so is f[x1 for all 
A > 0. Moreover, fl,] is Lipschitz assuming only that there exists a constant y > 0 
such that f(x) + y(lixil + 1) > 0 for all x (see [14, Theorem 3.2]). Here, unless 
specified, we let X be a Banach space with norm 11 11 paired with its dual X* 
through the bilinear form ( *, ). The norm on X* is denoted by * 11* Let f: 
X -- R be a proper lower semicontinuous convex function. Then 

(3.2) (f[) *(v) = f *(v) + J-x1B (V), 
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where {c is the indicator function of the set C, i.e. 

(3.3) (x)= [0 if x E C, 
L-ioo otherwise, 

and B* = { vIIvII* < 1} is the unit ball of X*. Also 

3.4. LEMMA. Suppose X is a reflexive Banach space and f is a proper lower 
semicontinuous convex function defined on X. Then 

(3.5) f[X](X) = sup [(v, x) -f*(v)]. 
IIvII AX-1 

PROOF. We have 

f[X](x) = inf [f(x - y) + X-lllylll 

= inf sup [v, x - y) - f *(v) + X-1I1 Y I] 
Y v 

= SuP[f*(V) + (v,X) - sup((V,y) -X-ly 
v Y 

= sup [(v,9x) - f*(v) pX-B*(V)], 
v 

where the interchange of infy and supv can be justified by the same arguments as 
those used in the proof of Theorem 2.9; we have also used the fact that * * = 

To begin with we exhibit a relationship between indicator and support functions. 
We need a couple of lemmas, whose proofs we include for easy reference. The 

second one is due to Hormander [15], whereas the first one is, or should be, part of 

the folklore. Recall that if C and D are two nonempty subsets of X, the Hausdorff 

distance between C and D is given by 

(3.6) haus(C, D):= sup [sup dist(x,C), sup dist(x, D)], 
- xCD xcC 

where dist(x, C):= infy E Cllx - YI. 

3.7. LEMMA. Suppose C and D are nonempty subsets of a Banach space X with norm 

such that haus(C, D) is finite. Then 

(3.8) haus(C, D) = sup I dist(x, C) - dist(x, D). 
xcX 

PROOF. Given any nonempty set S, and any pair (y, z) in X, we always have 

(3.9) IIY - zll + dist(y, S) > dist(z, S). 

Indeed, for any E > 0, let 

XE e-arg min(I|y - -11 + As):= { x E SI IIy - xJ1 - < dist(y, S)}, 

Then 

IIy - zl + dist(y, S) + E > IIy - zll + IIy - xIII >jz - X?II > dist(z, S) 
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which yields (3.9) since the above holds for all 8 > 0. Now take any point x E X, 
then for any 8 > 0 there always exists y E C such that 

(3.10) |dist(x, C) - dist(x, D) E dist(y, D) + , 

or a point z E D such that 

(3.11) |dist(x, C) - dist(x, D) < dist(z, D) + 

If dist(x, C) = dist(x, D) there is nothing to prove. Suppose that 

a:= dist(x, D) - dist(x, C) > 0. 

For v= 1,..., let 

ye E (1/v)-arg min( JJx - - 11 + ' . 

Then by (3.9), for v = 1,.... 

dist(yv, D) > dist(x, D) - JJx - yVJ >, dist(x, D) - dist(x,C) - v 

which gives (3.10). We have to rely on (3.11) if a < 0. This means that 

sup Idist(x, C) - dist(x, D) = sup Idist(x, C) - dist(x, D) , 
xcX xCCUD 

which in view of (3.10) and (3.11) can also be written: 

sup [sup dist(x, D), sup dist( x, C) 
x xEC xCD 

and this is the definition of the Hausdorff distance. O 
The conjugate of the indicator function 4s of a set S is the support function of S 

denoted by {*, i.e. 

{*(V) = sup[ (v,x)Ix E s]. 

3.12. LEMMA [15]. Suppose C and D are nonempty closed convex subsets of a 
reflexive Banach space X with norm II such that haus(C, D) is finite. Then 

(3.13) haus(C, D)= sup I4C(V) - {D%(V) 
liV 11*1< 

PROOF. First, observe that for C nonempty convex we have 

dist(x, C) = (11 I 1 4C)(X) 

= sup[ (X,V) C(V) 
v 

= sup [(x, v) (iiv (V) + C(V))] 
v 

= sup [X, v) - 4C(V)] = (AC)[1](X); 

compare with (3.5). Now 

haus(C, D) = inf |1 > sup dist(x, D), 0 > sup dist(x, C) n[G x eC x eD 
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as follows from the definition of the Hausdorff distance. Since 

sup dist(x, C) = sup sup [Kx,v) - c(0v)] 
xeD xcD jIvjI*<1 

SUp [H C(V) + sup (X,V)] = sup [AD(v) - {*C(v) 

1v11* <1 x e D 11V11* < I 

we have that 

haus(C, D) = inf[010 > sup (C(V) -%D(v)), > SUp (#D(v) -{C(v))] 
11v11* < 1 11v11* < 1 

which is just another version of (3.13). o 
Equipped with these two formulas, we are now ready to state the main result of 

this section. For any pair (f, g) of proper functions defined on X, we define the 
Wijsman distance d[x] p between f and g as follows: 

(3.14) d[X] (f, g) = sup f[x] (X) - g[XJ(x)| 

If the functions are defined on the dual space X* then we write d[]p to 
emphasize the fact that the dual norm has been used in the definition of the 
Wijsman distance. 

3.15. THEOREM. Suppose X is a Hilbert space and C, D are closed convex subsets of 
X such that 0 E C n D. Then, for all A > 0 and p > 0 we have 

(3.16) d[x]bp(c, {D) = d D) 

PROOF. By definition (3.14) of d [A]p 

d[X].p(4C,4D)= SUp |(4C)[X](X) -(D)[X](X)j 

sup dist(x, C) - dist(x, D) 

= A-1 sup dist(x, C n pB) - dist(x, D n pB) , 
IIxI< p 

where B = {xIIx < 1} is the unit ball in X. The second equality follows from the 
definition of (4c)[xj, and the third one from the fact that, whenever C is a closed 
convex set containing the origin and x E X satisfies IlxII < p, then 

(3.17) dist(x, C) = dist(x, C n pB) . 

Let us first notice that dist(x, C) < dist(x, C n pB). On the other hand since X is 
a Hilbert space, the mapping y --> projC y is a contraction. From 0 E C it follows 
that 

11 proj cx 11 < 1 |x||1 < p. 

Consequently, projC x belongs to C n pB and 

dist(x, C) = 11 x - projcx 11 > dist(x, C n pB) 

which combined with the opposite inequality yields (3.17). 
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Let us return to the computation of d[x,p(4c, 'D) and note that from (3.10) and 
(3.11) 

sup |dist(x, C n pB) - dist(x, D n pB) | 
xXs 

= sup |dist(x, C n pB) - dist(x, D n pB) , 

the supremum being achieved (up to an arbitrary small quantity) on the set 
(C u D) n pB. From Lemma 3.7 we obtain 

d[x],p(4c, AD) = X- haus(C n pB, D n pB). 

Lemma 3.12 yields the dual formulation of haus(C n pB, D n pB), that is, 

haus(C n pB, D n pB)= sup ('CnPB)X(V)L('DnpB)*(v) 
1101*< 1 

Let us observe that 

('CnpB)* = ('C + 'pB) =* r c 

Combining these last equalities and using the positive homogeneity of support 
functions, we finally obtain 

d[x],p('Cc D) SUp ('P)[p-1](v) -('D)*p-1](v) = d[C-l] -l('P ,'D). ? 

3.18. COROLLARY (ISOMETRY). Suppose X is a Hilbert space and C, D are closed 
convex subsets of X such that 0 E C and 0 E D. Then 

(3.19) d[1],('AC, 'D)= d[1,1l(C 'A% ) 

i.e. the Legendre-Fenchel transform is an isometry as a map between the space of 
indicator functions of convex sets and the space of support functions of convex sets when 
the distance is defined in terms of d[1]1. 

We recover in the Hilbert case the Walkup-Wets result [5] as a direct consequence 
of this corollary. Indeed if C and D are nonempty closed convex cones, then both C 
and D contain the origin and 

AC= 'po1C9 

wherepolC = {v E X* Iv,x) < Oforall x E C} is the polar cone of C. Then 

d[l],j('c, 'D) = haus(C n B, D n B) 

and 

d[l],l('POlc, polD) = haus(polC n B, pol D n B). 

Thus 

3.20. COROLLARY (ISOMETRY [5]). Suppose W is the space of nonempty closed convex 
cones included in a Hilbert space X. Then pol: W -* W is an isometry in the following 
sense: Given P and Q in W 

haus(P n B, Q n B) = haus(polP n B, pol Q n B). 
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Given { C", v = 1,... } a sequence of subsets of X, the formula (3.16) allows us to 
define a convergence rate for the epi-convergence of their support and indicator 
functions. Indeed we have 

3.21. THEOREM. Suppose X is a reflexive Banach space, and { f": X -R 

I = 1,... } and f: X -> R are a collection of proper lower semicontinuous convex 
functions uniformly minorized by the quadratic form - a(lIxIl + 1) for some a > 0, 
such that for all A > 0 and all p > 0 

lim d [Ax]p(f,f") = 0. 
V -- 00 

Then 

f = Mosco-epi-lim f. 
v- + 00 

Moreover, when X is finite dimensional, the reverse implication is also valid. 

PROOF. Let us first verify that given any sequence { x", v = 1,... } weakly 
converging to x, the inequality (2.3) holds, i.e. 

(3.22) lim inf f "(x") > f (x). 
V 

By definition of f["?], for every X > 0 

f "(x ) > f['x](x ). 

The sequence { x", v = 1,... }, being weakly convergent, is contained in a fixed ball 

Bp of X. By definition of d[x] p 

[X](x ) - f[X](x ) < d[x],p(f, f). 

Therefore 

f "(x") > f[X](XP) - 
d[x],p(f, f) 

Using the assumption that d[x]p(f f, f ) goes to 0 as v goes to ox, and the weak lower 
semicontinuity of the convex continuous function f[x], this inequality yields 

lim inf f 0(x0) > f[A](X) 

Since f = sUpx> of[x] (see [6, ?6]), we obtain (3.22). 
Let us now verify the second assertion (2.4) of the Mosco-epi-convergence 

definition, i.e., the existence of a sequence { x", v = 1, . . . } for every x E X strongly 
converging to x such that 

(3.23) f(x) > limsupf"(x"). 
V 

For X > 0, and 1,2, ..., let 

(3.24) J['P]x E argminyEy{fv(y)+?l9x-YlI} 

which means that 

(3.25) f[X'](x) =f (J[A]x) + A IIx -J[X|| 



ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 55 

Note that J[A]X is not necessarily unique. Since f [> and f[X] = limV p f[X], it 
follows that for every x E X, 

f (X) >' lim sup lim sup f[ A(X 
Vi p--300 

which with (3.24) yields 

(3.26) f (X) > lim sup lim sup [f ( J[ A]X) + X|x -J 
A I 0 p X-3-00 

We can now rely on a diagonalization process [8], to choose a sequence { X,,, v E N } 
decreasing to zero such that 

(3.27) f(x)>limsup [f (J(X]x)?+ x -JX]x[ 

If f(x) = x, there is nothing to prove, the inequality (3.23) is trivially satisfied by 
any sequence, converging to x. So let us assume that f(x) < ox. Since the functions, 

{ fP, v = 1, . . . } are uniformly minorized by x - a( IxIx + 1), we have that 

f (J[ x) < -a( J[V]p x + I 

and hence for v sufficiently large 

(3.28) f(x) + 1 > [-a( J[X ]X + I) + x - J,X 

This in turn implies that 

(3.29) x - J[XV]XIIA 1 - (f(x) + allx + a + i). 

Since XV ,j 0, it follows that with xv J[1 ]X that 

x = strong- lim xV, 
v -) 00 

which with (3.27) yields (3.23). 
For the converse observe that for all X > 0, the functions { f[X = 1,... } and 

f[x] are equi-Lipschitz and this combined with pointwise convergence [6, Theorem 5] 
implies, by the Arzela-Ascoli Theorem, the uniform convergence on compact sets, 
which in finite dimensions correspond to the closed bounded sets, i.e. for all X > 0 
and p > 0 

0 = lim sup If[X](x) - Vf[AI(X) ' lim d[x'sp(ff,')- v O? IxI<p 
pV 00 

3.30. COROLLARY [16, P. 523; 17, ?4]. Suppose X is a reflexive Banach space and 
{ C; CP, v = 1,... } is a collection of closed nonempty convex subsets of X and for all 
p > 0, 

lim haus(C n pB, D n pB) = 0. 
V -- 00 

Then C = Mosco-lim V CV, i.e. 4'c = Mosco-epi-lim, P c'P. Moreover, if X is a 
finite dimensional Euclidean space, the reverse implication is also valid. 
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PROOF. Returning to the beginning of the proof of Theorem 3.15, we see that in 
general 

d[x]p (4Ac, XD)-=X sup dist(x, C n pB) -dist(x, D n pB)I 

<X-1 sup dist(x,CnpB)-dist(x,DnpB)I 

= X- haus(C n pB, D n pB), 

with equality if X is a Hilbert space. Thus, lim, , . haus(C n pB, Cv n pB) = O 
implies in the reflexive Banach case that lim,r, n d [X]p(4c, 'c4) = 0, and is equiva- 
lent to that condition when X is the finite dimensional Euclidean space. It now 
suffices to apply Theorem 3.21 with f = 4'c and fV = c C1 

Note finally that as a consequence of this corollary, (3.16), and (3.13), in finite 
dimension, we have that 

{ = epi-lim 4Cv 
V -3. 00 

if and only if 

(3.31) lim [ sup I (C)[x](V) - ( C)[x](v) 1 . = . 

It is not known, as is the case for Moreau-Yosida approximates, if the pointwise 
convergence of all the Wijsman approximates does actually imply Mosco-conver- 
gence, although it is natural to conjecture that it does. 

As with the distance functions dx,p and d p generated by the Moreau-Yosida 
approximates (see (2.25) and (2.26)), we can define a Hausdorff metric on the spaces 
of indicator and support functions, equivalently on the space of closed convex sets, 
for which the Legendre-Fenchel transform is an isometry. We would refer to it as the 
Wijsman metric. We can also go one step further in using the preceding results to 
build a distance function on the space SCC(X) of proper lower semicontinuous 
convex functions defined on X. One way to achieve this is detailed in ?4; here we 
record another possibility. Let f, g E SCC(X) and p > 0 such that C:= epif n 
(pB X R) and D:= epi g n (pB X R) are nonempty. 

Then, by (3.13), 
(3.32) 

haus(epif n(pB x R), epig n(pB x R))= sup 4C(v,#3)-44(v,3)J 

since here the Hausdorff distance is finite. By straightforward convex calculus we 
have 

Pepif n(pBXR)(V, ) - sup [ (v, x) + a/3a > f(x)] 

+L if/3>0, 

sup (v,x) if/3=0, 
- IIXII'p 

sup [(v,x)-(-3)f(x)I if/<0. 
IIxII<p 
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For h E SCC(X) and 6 E R+, the epigraphical multiplication 6 * h is defined by 

( * h)(x)= 
0 if 

h(= x)x = 0, ( )) h (-lx) if 6 > 0. 

For 6 > 0, we have 

(O * h)*(v) = 6h*(v). 
Thus for 3 < 0 

sup V,X) -(-3)f(x)] = sup [(v,x) -((3)* f *)*(x) 

= ((-A)* f*)[P-1](v) 

as follows from (3.5). Also for / = 0 we have a similar formula and thus 

4Iepif n(pBXR)(V,13) = ((- f *)[p-1](V). 

Substituting this in (3.32), with an obvious change of variable and epi[P]f= 
{ (X, a) If(x) < xx, llxll < p }, we get 

haus(epi[p]f, epi[p]g) = sup (1 * A *)[p-1](V) -(1 * g*)[p-1](v)|- 
liv, pl. < 

From this relation we could extract a notion of distance between f and g and their 
conjugates. 

4. The cosmic distance. In [18, ?1.F] Rockafellar and Wets introduce the notion of 
extended real vector space by adjoining to the finite dimensional space R' its 
horizon, hor R', consisting of all direction points; each direction point corresponding 
to an equivalence class determined by the congruence relation that identifies parallel 
closed half-lines. In contrast to a 1-point compactification of R , the compactifica- 
tion by direction points allows us to discriminate between different directions of 
unboundedness of sets and sequences. Geometrically, one can identify this extended 
space with the surface of an n-dimensional hemisphere with the rim (the horizon) 
representing the direction points, and the open half-sphere the points of R", cf. 
Figure A. Given any normed linear space (X, 11 * 11), the same construction enables 
one to identify the extended real vector space X u hor X, where hor X consists of the 
direction points of X, with a closed hemisphere in X x R_; the unit ball in X x R 
iS {(X, q)I(IIX112 + 'q2)1/2 s< 1}. In general this is not a compactification of X but it 
suggests defining a metric on X that makes it a bounded space. The cosmic metric 
was introduced in [18, Definition 1F3] when X is a finite dimensional Euclidean 
space. Here we extend its definition to a more general setting. 

4.1. DEFINITION. The cosmic distance between two points x and y of an extended 
normed linear space X U hor X, denoted by distc(x, y) is the geodesic distance between 
the corresponding elements of the hemisphere H, i.e. the distance along the great circle 
joining the elements in question. 

We shall not pursue here a detailed study of the cosmic metric. This is done in the 
Euclidean case in [18, ??1F and 3B]. We only use it to exhibit an isometry for the 
Legendre-Fenchel transform that does not rely on approximates. 
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Hemisphere - 

hor X 

FIGURE A. The cosmic view of X 

Every extended-real-valued function f defined on X, a reflexive Banach space, is 
completely determined by its epigraph, epi f, a subset of X x R. Given any subset 
of ( X x R), in particular epi f, we can identify it as in [6] with a closed convex cone 
in (X X R) x R, viz.: 

clt X(x,a, -1)I(x,a) E epif, X > 0} =:clcn(epifx{-1}), 

or equivalently with a closed subset of the hemisphere H in (X x R) x R-. Given 
two proper functions f and g we can use as a measure of the distance between them 
the Hausdorff distance between the (bounded) subsets of the hemisphere determined 
by the preceding construction or equivalently, in view of Definition 4.1, the 
cosmic-Huasdorff distance, denoted by hausc, between the (unbounded) subsets epi f 
and epigof X x R, 

(4.2) hausc(epif, epig) 

max sup distc((x,a),epig), sup distc((y,13),epif)] 
(x,a)Eepif (y,fO)Eepig 

and 

distc((x, a), epi g):= inf distc((x, a), (y,/3)). 
(y,fO)Eepig 

If f and g are convex functions on a Hilbert space X, then the closed cones they 
generate in ( X x R) x R - are also convex. For closed convex cones we already have 
an isometry for the polar map in terms of the Hausdorff distance between their 
intersections with the unit ball, or equivalently between their intersections with the 
unit sphere. Since, by construction and definition of the cosmic distance, 

(4.3) 
hausc(epi f, epi g) = haus(cl cn(epi f x {1}) n H, cl cn(epi g x {1}) n H), 

which by Corollary 3.20 equals 

haus[(pol cn(epif x { -1})) n H, (pol cn(epi g x { -1})) n H], 

which again by Definition 4.1 is equal to 

hausc( Ef*, Eg*), 
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where 

E1*:= { (v,/3) I( v,-1, /) E polcn(epif x {-1})} 

and E * is defined similarly. Now observe that (v, /3) belongs to Ef if and only if g 

(v,x)- a - /3 0 forall(x,a) E epif, 

or equivalently if (v, /) E epi f *. And thus 

(4.4) hausc(epi f, epi g) = hausc(epi f *, epi g*). 

Let us denote by dc(f, g) the cosmic distance between two proper functions f and g, 
defined by 

(4.5) dc(f, g) = hausc(epi f, epi g). 

We thus obtain the theorem below that completes a similar result to Rockafellar and 
Wets [18, Chapter 3]: 

4.6. THEOREM. Suppose X is a Hilbert space and f and g are proper lower 
semicontinuous convex functions defined on X. Then 

(4.7) dc(f, g) = dc(f*, g*). 

Given a collection of convex functions { f r, v = 1,... } defined on X, a reflexive 
Banach space, we can introduce a notion of convergence in terms of the cosmic 
distance. We say that f is the cosmic-epi-limit of the sequence { fr', v = 1,... } 
which we write 

f= epic-limf^, if lim dc(fv,f) = 0. 
v -00 v 0 

The next theorem justifies referring to f as an epi-limit. 

4.8. THEOREM. Suppose X is a reflexive Banach space and { f; f r, v = 1, ... } is a 
collection of proper lower semicontinuous convex functions defined on X such that 
f= epi'-lim. ,, 3 0 f Then 

f = Mosco-epi-lim f. 
v * 00 

Moreover, if X is a finite dimensional Euclidean space, then f = epi-lim,, f ' if and 
only if f = epic-limg, f V. 

PROOF. We know that 

lim hausc(epi fv, epif) f 0 
V -+ 00 

if and only if 

lim haus([cl cn(epif x {-1})] n B, [cl cn(epif x {-1})] n B) = 0. 
V + 00 

The last equality holds if and only if the same holds with B replaced by pB with any 
p > 0, the sets involved being closed convex cones. We now apply Corollary 3.30 
and we see that the above implies that 

cl cn(epifx {- }) = Mosco-lim cl cn(epi f x { -1}), 
V + 00 
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and this in turn implies that 

epi f = Mosco-lim epi fr'. 
1' -43-00 

If X is the Euclidean n-space, to obtain the second assertion we argue as above 
except that we rely on the second part of Corollary 3.30: 

lim hausc(epi f v, epif) = 0 
V -00 

if and only if 

cl cn(epi f x {-1})= lim cl cn(epi f x {-1}). 
v -X 00 

By [6, ?4] this occurs if and only if epi f = lim,, epifr, or equivalently, f= 

epi-lim . -- 0 fv. C1 
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