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Let X be a Banach space and T,(X) the space of proper lower semi- 
continuous convex functions defined on A’ and with values in ( - co, + co]; 
f is proper if its effective domain dom f := (x 1 f(x) < CC } is nonempty. If 
f E T,(X), its Legendre-Fenchel transform 

oHf*(u):=sup[(O,X)-f(X)] 
xsx 

(or conjugate function) belongs to Z-,(X*), where X* is paired with X 
through the bilinear form (., .). In [3], we introduce distance functions on 
T(X) for which the Legendre-Fenchel transform is an isometry. Most of 
the results were limited to the Hilbert space case, and those that dealt with 
general Banach spaces were existential, by opposition to operational, in 
nature. The notion of distance, or more exactly of a class of distances, that 
we introduce here are (relatively) easy to use in an operational setting for a 
wide class of Banach spaces, and still allows us to conclude that Legendre- 
Fenchel transform is isometric. 
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The definition of the distance function relies on an a class of 
approximate of (convex) functions. In the context of the duality theory for 
convex optimization problems, this type of functions appear in the work of 
Rockafellar [6] and, Aubin and Ekeland [4, Chap. 4, Sect. 61. 

To a function f: X+ ( - cc, cc], we associate the following approximate: 

where I > 0 and UE X*. We refer to this function as the approximate of 
parameter 1 and slope V; the use of the term “approximate” is justified by 
the fact that for J sufficiently small and u close to 0, ff (., u) and f should 
be close in value. In some cases it is useful to consider the following 
generalization 

fp(X,C):=j$ f(x+u)+~l~ull~-(u,u)] 
[ 

= inf 
usx [ 

j(u)+; I(x--Ullp- (u, u) + (u,x) 1 
that relies on the pth power, instead of the square of the norm, where 
1 < p < 00. We refer to this function as the approximate of order p with 
parameter 2 and slope u. We begin with recording some of the main proper- 
ties of fl #J in the convex case, i.e., when f is convex. 

PROPOSITION 1. Suppose f E T,,(X), X is a Banach space, and I > 0, 
1~ p < 00. Then (x, u) H ffJ'(x, u) is a convex-concave, continuous, finite- 
valued function. Moreouer, it is bounded on bounded subsets of X x X*. 

Proof. Clearly ff-" . is concave in u (as the infimum of affine functions), 
and convex in x, since 

is the sum of a linear term and the inf-convolution of two convex functions. 
This last expression also shows that it is finite, from which is follows that 
fFP is continuous. 

Now, to show that it is bounded on bounded sets, first pick any 
x,, E dom f and note that 

409/131 ‘2.8 
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and hence, if /1x(1 by and //u/I* bp we have that 

f,#3p(,T 0) d Y,(P, A PI 

for some constant y, > 0 that depends only on p for fixed 2 and p. 
To obtain a lower bound, observe that f~ f,(X), implies the existence of 

a scalar (Y such that for all u E X, 

f(u)+4Ilull+ 1130. 

In turn, this tells us that 

fTsp(x, u) > min 
u 

--a l~x+ull+~ IIuIIP- (0, u) --c1 1 
> min 

[ 
-o! 11x11 --tL Ilull +-j IluIIP- (4 u> --c( u 1 

> min u [ 
--cI Ilull +-$ Il~llp--ccp-P lbll]-a 

. 
1 

LP-((G(+I))t-U(1 +p) 
=z pl I 

whenever j/x/l <p and IIull* dp. This least quantity is finite (since p > 1) 
and depends only on p, 1, and p. And hence, for llxll < p and llull* G p, 

where y2 is constant that depends only on p for fixed ,4 and p. 1 

Special cases of these approximates of order p are the Moreau-Yosida 
approximates [3] with p = 2 and u =O. However f,"J' possess duality 
properties that are not shared by other approximates even by much more 
general classes of approximates that have been suggested in the literature 
[S, 71. It is closely connected to the perturbation theory for convex 
optimization of Rockafellar [6] and hence with duality theory. As a point 
of departure, let us consider, for f E T,(X), the problem: 

find x E X that minimizes f(x). 

We are interested in the stability of the solution-assuming that it 
exists-with respect to perturbations of f: Rockafellar’s approach is to 
embed the given problem is a class of optimization problems that depend 
on certain parameters. The class should be rich enough to carry sufficient 
information and simple enough to allow for easy manipulations. One class 
that incorporates both classical perturbations (adding a conditioning term 
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such as I(. \I*) and perturbations of the coefficients (“vertical” and/or 
“horizontal” perturbations) is given by 

f&v, 24) =f(x + u) ++ IMP 

for some fixed 1 < p < co, where (A, U) E (R + x X) are the parameters. Note 
that f(x, 0) =f(x), and f(x, -x) =f(O) + (l/+) llxll p involves only the 
conditioning term. The solutions and the value of 

find x E X that minimizes f,,,(x, u) 

depend on u and 1. If perturbations can be introduced in the problem at a 
“Cost” - (v, u), the problem is then to choose the perturbation that will 
allow us to reach the lowest value of fl,,(x, u) - (v, u), i.e. 

findxEXthatminimizesES/ ~~,+.)+~II,II~-(L,u)], 
[ 

or, equivalently, 

find x E X that minimizes ?S;f:~‘(x, v), 

The interpretation to be given to the term ( -v, u) depends on the 
application. It could correspond to the energy needed to generate these 
perturbations, or the cost of purchasing these perturbations, etc. These 
approximates are thus Lagrangian functions with v in the multipliers space. 
(Note that since ffJ’ is a Lagrangian, the fact that it is convex-concave 
follows directly from the convexity of f,,,.) 

Let us also observe that if 1 converges to 0, the function f,,, epi-con- 
verges to (x, U) of + 6,,,,,(u) (here 6c is the indicator function of C) 
which implies that ff*p epi/hypo-converges to f(x), see [ 1, Theorem 3.21. 
This, and the usual relationship between a convex function and its 
conjugate, suggests the following key formula. 

PROPOSITION 2. Suppose f E T,(X) with X a reflexive Banach space, 
1>0,andl<p<co.ThenforaNx~X,v~X*,wehave 

(f*):qV,X)+f~~P', (x, VI= (v, x>, 

where l/p + l/p’ = 1 and I’ = A-J”lP. 
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Proof. We have 

(f*):qu, x)= ,y$ 
1 

SUP((~‘, x’> -.fW)) 
x’ t x 

+-+-v’ll:-(u’.5) +(v,x) 
1 

= sup -f(x’) + (II, x’) 
x’ [ 

<II-,+x>-‘/IO-u’/I$ 
PA 11 

= -Min ip’p 11x-x’IlP’- (II, x’) 
X’E x c 

f(~‘)+~ 
1 

= - [f$-P’(X, u) - (v, x)], 

where the second equality follows from the minimax theorem 14, 
Theorem 6.2.71 and the third one from the formulas 

for all a>0 

where L+‘= 1; 
P P’ 

for this last identity see [4, Proposition 4.4.81 and use the fact that the 
space is reflexive. 4 

COROLLARY 3. Suppose A> 0, f E T,(X), where X is a reflexive Banach 
space. Then 

(f *)A-l(v) = -ff(Q U)> 

where (f *)I is the Moreau-Yosida approximate off * of parameter 1. 

Proof We know that 

-fj+(O, u)= -fp(o, U)=(f*)jY(v, O)=(f*),x,(u,O) 

and, by definition 

(f*)jqo, 0) = hfx 
[ 
f*(u + u) +& Ilull’] = (f *),x(v). I 
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DEFINITION 4. For 1 < p < co, A> 0, p 2 0, we define the distance dQ’ 
of order p, between f, g E f,(X) by 

d$p(f, g) := Sup Iff~‘(x, u) - g:*P(x, v)l. 
b/I c P IUllrGP 

THEOREM 5. Suppose f, g E T,,(X) with X a reflexive Banach space 
1 < p < cg and p > 0. Then 

d$p(sl g) = d$,$‘(f*, g* 1. 

This means that when 1 < p < co, for all p > 0, the Legendre-Fenchel trans- 
form is an isometry for any pth order distance d$p on T,(X) and d$;P’ is the 
corresponding distance of order p’ on T,(X*). 

Proof. From Proposition 2 it follows that 

(f*)l#qtl,X)-(g*)I#qu,X)=ff~P'(X,u)- gl"~"'(x,u) 

from which the result follows since it implies that 

SUP lu-*):sP(o, xl- (s*)I’@(b XII 
IdI c P 

IUll*GP 

= sup 1 fF*P'(x, u)- gl"J(x, u)l. 1 
1x11 s P 

Id*CP 

Remark 6. The distance functions introduced in [3] are defined in 
terms of the function values, whereas here we also include in addition dual 
quantities (slopes). We could put the accent on conjugate values, by relying 
on the formula of Corollary 3. Let 

dn*,p(f, g) := SUP In- (g*),(v)I. 
lld <P 

Then for all J. > 0 and p > 0, S, g E T,(X) and X a reflexive Banach space, 
we have the tautological isometry: 

df,p(L g) =d,,,(f*, g*), 

where d, p is the distance function introduced in [3, Section 23. In other 
words, the Legendre-Fenchel transform is an isometry 

from (~oW)v d?,,) into (rdX*), dl,,). 

In the Hilbert case, when we identify X and X*, and observing that 

f1"(0,x)=f,(x)-i llx.ll*, 
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it follows directly from Corollary 3, that 

f,(X)+.fi*(x) =+ 11-~112: 

and hence 

dl,,(J; 8) = SUP If,(x) - g,(x)l 
II YII G I 

= d?p(f, 8). 

This yields an isometry for the Hilbert space case, already found in [3, 
Corollary 2.221. 

Remark 7. The distance function d,#i2 that introduces the term 
- (v, u) does not bring us anything new’in the Hilbert space case with 
respect to the results of [3]. Indeed, we have then 

and hence 

d,f,*(f, g) = sup L&(x- 0) - &(X - u)l = 42p(L g)- 
13 2,” 

To conclude let us record that this convergence with respect to this 
distance does imply Mosco-epi-convergence, and in the finite-dimensional 
case it is actually equivalent to epi-convergence. 

THEOREM 8. Suppose 1 < p < co, {f; f “, v = 1, . . . } c T,(X) with X a 
Banach space. Then, the condition: for all 1> 0, and p > 0, 

implies that f = Mosco-epi-lim, _ m f’. Moreover, if X is finite dimensional, 
the converse also holds. 

ProoJ The argument is the same as in [3, Theorem 2.511 after one 
observes that for f, g in T,,(X): 

where 

dz;p(f, g) 2 sup If;,,(x) - &,(x)1, 
llxll < p 

f;,Jx) := inf 
{ 

1 
f(x + U) +- llullp , 

” PA 1 

and that the resolvent (of order p) is well defined and can be used in the 
same way as in [3] to build the sequences that converge to x. f 
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