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Let’s consider the following system:

A(x) = f, x ∈ D,

or more generally,

A(x) ∋ f, x ∈ D

where A is an operator defined on a space X and whose values are either points in a

space Y (in the first case) or subsets of Y (in the second case), f ∈ Y and D is a subset

of X . This operator A could be a (partial) differential operator, or simply represents

the amalgamated version of a linear or nonlinear system of equations; such systems might

represent the Karush-Kuhn-Tucker (KKT) conditions of an optimization problem involving

constraints or the Euler equation of a variational problem. The spaces X and Y are finite

or infinite dimensional normed linear spaces, or even more generally metric spaces. In

many situations, we have to allow for multi-valuedness, that’s why we need to also deal

with systems of the second type. Examples include KKT-conditions, differential systems

with turbulence, economic and biological models involving preference relations, etc.; for

more about this, refer to [4] and the references therein.

There are three basic questions that must be answered about such systems (with

equalities or inclusions): existence of a solution, uniqueness of the solution, and consis-

tency of the approximations. Although the ensuing development can shed some light on

existence and uniqueness, we are going to be concerned here with questions related to

approximations. This will be dealt with in the following framework: let

S(x) =

{

A(x) − f if x ∈ D;
∅ if x /∈ D.

The mapping S : X →→ Y is then a set-valued mapping with →→ indicating that it is not

necessarily single-valued. The preceding systems can now be formulated:

find x ∈ X such that S(x) ∋ 0.

An approximating system would then take the form:

find x ∈ X such that Sν(x) ∋ 0,

where Sν approximates S in some sense. We are going to be interested in approximating

systems where Sν is close to S in terms of their graphs. The graph of a set-valued mapping

S : X →→ Y is the subset of X × Y :

gphS := { (x, y) ∈ X × Y | y ∈ S(x) }.

Convergence of Sν to S would then be defined in terms of the convergence of their graphs.

The basic reason for the interest in graph convergence is that it’s the “weakest” convergence

notion that will “guarantee” the convergence of solutions [2, 5].
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However graph convergence of mappings, even when they are single-valued, isn’t al-

ways easy to verify. This paper explores the relationship between graph convergence and

some other convergence notions, in particular pointwise convergence.

After some preliminaries (§1) about set convergence and the continuity of set-valued

mappings, the notion of equi-semicontinuity for collections of set-valued mappings is intro-

duced in §3 to answer the question raised in §2 about the relationship between graph and

pointwise convergence. Equi-outer semicontinuity with respect to the Choquet-Wijsman

convergence of sets is explored in §4. Other convergence notions for set-valued mappings

are explored in §5 that culminates with a compactness result akin to the Arzelà-Ascol̀ı

theorem. The relationship between the notions of equi-outer semicontinuity for mappings

and equi-lower semi-continuity of extended real-valued functions is analyzed in §6. The re-

lationship between Mosco-pointwise and Mosco-graph-convergence of mappings is covered

in §7. The paper concludes with applications to the convergence of the subgradients of

convex functions (§8), maximal monotone operators (§9), and differential inclusions (§10).

1. Preliminaries.

Let (Y, dY ) be a metric space; a neighborhood system at a point y will be denoted by N (y)

and IB(y, ρ) and IBo(y, ρ) are the closed and open balls centered at y and of radius ρ.

Given a collection of sets {Cν ⊂ Y, ν ∈ N } with N an index space and H a filter on

N , its outer limit, also called the limit superior, is the set

lsH Cν = ls Cν :=
⋂

H∈H

cl

(

⋃

ν∈H

Cν

)

, (1.1)

and, its inner limit, also called the limit inferior, is the set

liH Cν = liCν :=
⋂

H∈H#

cl

(

⋃

ν∈H

Cν

)

(1.2)

where H# is the grill associated with the filter H, i.e., the family of subsets of N that meet

all sets H in H. The subscripts in lsH and liH will be used whenever the context might

require it, otherwise they will simply be omitted. If lsCν = liCν , this set, denoted lmCν ,

is the (Painlevé-Kuratowski or plain) limit of the collection and one writes Cν → lmCν to

indicate that the sets Cν converge (in the Painlevé-Kuratowski sense) to lmCν . All these

limit sets are closed as follows directly from the definitions. Moreover, since H ⊂ H#, one

always has

liCν ⊂ lsCν .

Some typical examples of filters and their grills are:

(i) H is the (topological) neighborhood system of a point ȳ ∈ N , in which case H# is the

collection of all sets that have ȳ in their closure;
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(ii) N = IN , H is the Fréchet filter consisting of all sets H ⊂ IN that are co-finite, and

H# consists of all sets H in IN of infinite cardinality.

It will be assumed throughout that the filter H on N has a countable base; e.g., H is

the Fréchet filter on IN or H is the neighborhood system –possibly punctured– of a point

ν ∈ N which has a countable base. Convergence to a point can then also be expressed in

terms of sequential limits.

It will be convenient to have at our disposal the following equivalent expressions for

the outer and inner limit sets:

ls Cν = { y | ∀V ∈ N (y), ∃H ∈ H#, ∀ ν ∈ H : Cν ∩ V 6= ∅ }

= { y | ∃H ∈ H#, ∃ yν ∈ Cν(ν ∈ H) with yν →
H y },

liCν = { y | ∀V ∈ N (y), ∃H ∈ H, ∀ ν ∈ H : Cν ∩ V 6= ∅ }

= { y | ∃H ∈ H, ∃ yν ∈ Cν(ν ∈ H) with yν →
H y }.

(1.3)

The next propositions provides a possibly new characterization of set convergence that

will serve as a stepping stone to the definition of equi-semicontinuity later on.

For ε ≥ 0, the ε-fattening of a set C ⊂ Y is defined by

εC :=

{

{ y ∈ Y | infz∈C d(z, y) =: d(y, C) ≤ ε } if C 6= ∅,
∅ if C = ∅.

(1.4)

The ε-fattening of the empty set is sometimes defined as the complement of a “ball” of

radius ε−1 and centered a some point in Y (usually the origin when Y is a linear space);

this alternative definition will not be used here.

Proposition 1.1. Let (Y, dY ) be a metric space, {Cν ⊂ Y, ν ∈ N} a filtered collection of

sets and C ⊂ Y a closed set.

(a) C ⊃ ls Cν if and only if for all compact set B and ε > 0 there exists H ∈ H such

that Cν ∩ B ⊂ εC for all ν ∈ H;

(b) C ⊂ liCν if and only if for every compact set B and ε > 0 there exists H ∈ H such

that C ∩ B ⊂ εCν for all ν ∈ H.

Proof. Sufficiency in (a): Let ȳ be an arbitrary point in lsCν , i.e., there exist H ∈ H#,

H countable, yν ∈ Cν for all ν ∈ H such that yν →
H ȳ; the restriction to countable H

is possible because H has a countable base. The set B = { ȳ, yν , ν ∈ H } is compact

since it is closed and sequentially compact. Thus, from the inclusion in (a), it follows that

for any ε > 0, one can find an index set Hε ∈ H such that yν ∈ Cν ∩ B ⊂ εC for all

ν ∈ H ∩ Hε. This means that ȳ is in εC for all ε > 0, which in turn implies that ȳ ∈ C

since C = ∩ε>0 εC is closed.

Necessity in (a): Suppose to the contrary that one can find a compact set B, ε > 0

and H ∈ H# such that for all ν ∈ H, there is yν ∈
[

Cν ∩B
]

\ εC. Let ȳ be a cluster point

of the yν ’s. Then ȳ ∈ ls Cν and ȳ /∈ (ε/2)C, and so lsCν can’t be included in C.
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Sufficiency in (b): Consider ȳ ∈ C and let B = {ȳ}. Then ȳ ∈ C ∩B, so for any ε > 0

there is an index set H ∈ H with ȳ ∈ εCν for all ν ∈ H, and this implies that ȳ ∈ liCν .

Necessity in (b): Suppose to the contrary that one can find a compact set B, ε > 0

and H ∈ H# such that for all ν ∈ H, there exists yν ∈
[

C ∩ B
]

\ εCν . Let ȳ be a

cluster point of the yν . Thus, there exists H2 ⊂ H, H2 ∈ H such that for all ν ∈ H2,

one has ε ≤ d(yν, Cν) ≤ d(ȳ, Cν) + d(ȳ, yν) ≤ d(ȳ, Cν) + ε/2. And consequently, ε/2 ≤

lim supν∈H2
d(ȳ, Cν). But this can’t actually occur when C ⊂ liCν : Since ȳ ∈ C, from

(1.3) it follows that there is an index set, say H4 ∈ H, such that IB(ȳ, ε/4) ∩ Cν 6= ∅ for

all ν ∈ H4 implying lim supν∈H2
d(ȳ, Cν) ≤ ε/4.

Corollary 1.2. Let (Y, dY ) be a metric space, {Cν ⊂ Y, ν ∈ N} a filtered collection of sets.

Then Cν → ∅ if and only if for all compact B there exists H ∈ H such that Cν ∩ B = ∅.

Proof. Follows from (a) in the proposition after observing that Cν → ∅ if and only if

ls Cν = ∅.

When Y = IRm, or more generally Y is a linear space whose closed balls are compact,

then rather than working with all compact sets, it suffices to check the inclusions in con-

ditions (a) and (b) of proposition 1.1 when taking the intersection with all balls centered

at the origin. The resulting (well-known) criteria when Y = IRm are recorded below.

Corollary 1.3. Let IB ⊂ IRm denote the unit ball with respect to a metric d topologically

equivalent to the euclidean metric. Let {Cν ⊂ IRm, ν ∈ N} a filtered collection of sets

and C ⊂ IRm a closed set.

(a) C ⊃ lsCν if and only if for all ρ ≥ 0 and ε > 0 there exists H ∈ H such that

Cν ∩ ρIB ⊂ εC for all ν ∈ H;

(b) C ⊂ liCν if and only if for all ρ ≥ 0 and ε > 0 there exists H ∈ H such that

C ∩ ρIB ⊂ εCν for all ν ∈ H.

Proof. The “if” implications follow from the “if” parts of the proposition, since for all

ρ ≥ 0, ρIB is compact. In the other direction, since every compact subset of IRm is

contained in some ball ρIB, one can appeal to the “only if” parts of the proposition.

Although ε-fattening of sets can be used effectively in the formulation of criteria for

set convergence, in general, set convergence isn’t preserved under ε-fattening. One actually

has the following:

Proposition 1.4. Let (Y, dY ) be a metric space, {Cν ⊂ Y, ν ∈ N} a filtered collection of

sets, and C ⊂ Y , a closed set. Then for all ε ≥ 0,

C ⊂ liCν implies εC ⊂ li εCν ,

but in general C ⊃ ls Cν does not imply εC ⊃ ls εCν .

Proof. This is certainly the case if C is empty. So, let’s assume that C is nonempty. If

y ∈ εC, there exists ŷ ∈ C such that d(ŷ, y) ≤ ε, and since ŷ ∈ liCν , there exist H ∈ H
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and for ν ∈ H, ŷν ∈ Cν such that ŷν → ŷ. The the points yν := ŷν + (y − ŷ) belong to

εCν for all ν ∈ H and the yν converge to y, i.e. y ∈ li εCν as follows from (1.3).

As an example of εC ⊃ ls εCν not being implied by C ⊃ lsCν , let (Y, d) = (ℓ1, ‖ · ‖1),

N = IN with H the Fréchet filter, Cν = {eν} where eν is the unit vector having a 1 in

the ν-th position. Then C := ∅ ⊃ lsCν . With ε = 1, εCν ∋ 0 for all ν, and consequently

{0} ∈ ls εCν but εC = ∅.

The situation is reversed when dealing with taking intersections.

Proposition 1.5. Let (Y, dY ) be a metric space, {Cν ⊂ Y, ν ∈ N} a filtered collection of

sets, and C, D ⊂ Y closed sets. For the outer limit, one has

ls Cν ⊂ C =⇒ ls(Cν ∩ D) ⊂ C ∩ D,

but in general, a similar implication isn’t valid when dealing with the inner limit, i.e.,

liCν ⊃ C doesn’t imply liCν ∩ D ⊃ C ∩ D.

Proof. The assertion about the outer limit follows directly from the characterization of

ls(Cν ∩D) and ls Cν provided by (1.3). For a case when Cν → C but li(Cν ∩D) 6⊃ C ∩D,

simply let (Y, d) = (IR, d) where d is the usual metric, N = IN with the Fréchet filter and

Cν = {1/ν} and C = D = {0}.

Now, let (X, τ) be a topological space, and S : X →→ Y a set valued-mapping that

associates to each x ∈ X a set, possibly empty, S(x) ⊂ Y . Continuity of such mappings

is defined in terms of the set-limits just introduced. The mapping S : X →→ Y is outer

semicontinuous (osc) at x̄ ∈ X if

S(x̄) ⊃ lsN (x̄) S(x) =
⋂

V ∈N (x̄)

cl

(

⋃

x∈V

S(x)

)

(1.5)

where N (x̄) = Nτ (x̄) is the neighborhood system of x̄, and thus convergence to x̄ is with

respect to the τ -topology. Similarly, S is inner semicontinuous (isc) at x̄ if

S(x̄) ⊂ liN (x̄) S(x) =
⋂

V ∈N#(x̄)

cl

(

⋃

x∈V

S(x)

)

. (1.6)

It is continuous at x̄ if it is both osc and isc at x̄. The mapping S is osc, isc or continuous

if the corresponding property holds at every point x̄ in X .

One could refer to these properties as plain, or Painlevé-Kuratowski, outer and inner

semicontinuity, but one usually just attaches modifiers to any other notions of continuity

or semicontinuity when the convergence of the images is other than (plain) convergence.

Define the ε-fattening εS of a mapping S to be such that (εS)(x) := ε(S(x)), i.e., for

every x, the ε-fattening of the set S(x) ⊂ Y . The next proposition is then an immediate

consequence of this definition and proposition 1.1.
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Proposition 1.6. Let (X, τ) be a topological space and (Y, dY ) a metric space. A set-valued

mapping S : X →→ Y , closed-valued at x̄, is

(a) osc at x̄ if and only if for every compact set B ⊂ Y and ε > 0, there exists a

neighborhood V of x̄ such that for all x ∈ V : S(x) ∩ B ⊂ εS(x̄);

(b) isc at x̄ if and only if for every compact set B ⊂ Y and ε > 0, there exists a

neighborhood V of x̄ such that for all x in V : S(x̄) ∩ B ⊂ εS(x).

The next (well-known) characterization of outer semicontinuity has sometimes led to

the use of the term “closed” when referring to outer semicontinuous mappings.

Proposition 1.7. Let (X, τ) be a topological space and (Y, dY ) a metric space. A mapping

S : X →→ Y is outer semicontinuous if and only if gphS ⊂ X × Y is closed.

Proof. Use the second identity in (1.3) for the outer limit. If ȳ ∈ lsN (x̄) S(x), there exists

V ∈ N#(x̄), y ∈ S(x) for x ∈ V such that y → ȳ as x → x̄. If gphS is closed, this means

that (x̄, ȳ) ∈ gphS, and hence ȳ ∈ S(x̄) implying S(x̄) ⊃ lsN (x̄) S(x).

In the other direction, let (x, y) → (x̄, ȳ) with y ∈ S(x). This implies that ȳ ∈

lsN (x̄) S(x). Since this latter set is included in S(x̄), it follows that (x̄, ȳ) ∈ gphS implying,

in turn, that gph S is closed.

2. Pointwise and graph convergence

Let {Sν : X →→ Y, ν ∈ (N,H) } be a filtered collection of set-valued mappings where (X, τ)

is a topological space and (Y, dY ) is a metric space.

The mappings Sν pointwise converge to S at x ∈ X if Sν(x) → S(x), and they are

said to pointwise converge if this hold at all x ∈ X . In general, the pointwise limit of a

collection of mappings {Sν , ν ∈ N } isn’t well defined, but one can always associate with

any collection its inner and outer pointwise limits: for all x in X ,

p-liSν(x) := liSν(x), p-lsSν(x) := lsSν(x). (2.1)

When p-liSν = p-ls Sν , this mapping is the pointwise limit of the collection and is denoted

by p-lmSν ; one also writes Sν →p S to indicate that the mappings Sν pointwise converge

to S. Note that these limit mappings are always closed-valued, i.e., p-liSν(x), p-lsSν(x)

and p-lm Sν(x) are closed sets for all x ∈ X as follows from the definitions of inner and

outer limits. Moreover, p-liSν ⊂ p-ls Sν ; given S1, S2 : X →→ Y , one writes

S1 ⊂ S2 when gphS1 ⊂ gphS2.

These definitions of inner and outer pointwise limits might be reminiscent of those for

the upper and lower pointwise limits of (extended) real-valued functions. However, even

when the mappings Sν are actually (extended) real-valued, one can’t identify the (usual)

pointwise lower and upper limits with the inner and outer pointwise limits just introduced.
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Consider the sequence of functions { fν : IR → IR, ν ∈ IN } where fν = f if ν is odd,

fν = −f if ν is even, and f(x) = 1 if x ∈ Q// and f(x) = −1 otherwise. The lower and

upper (pointwise) limits of this sequence are the constant functions −1 and 1. When

these functions {fν} are viewed as set-valued mappings x 7→ {fν(x)}, then p-li{fν} ≡ ∅

and p-ls{fν} ≡ {−1, 1}. Let’s also observe that in this example the mappings {fν} are

single-valued but the outer limit mapping isn’t.

Pointwise limits are not the only type of limit mappings that can be associated with a

collection {Sν : X →→ Y, ν ∈ N }. In fact, in terms of the potential applications mentioned

in the introduction, graphical limits play a more pivotal role. The inner and outer graphical

limits are the mappings g-liSν and g-ls Sν defined by the identities:

gph (g-liSν) = li (gphSν). gph (g lsSν) = ls (gphSν). (2.2)

By making use of the identities (1.3) for the outer and inner limit sets, one obtains the

following expressions for the outer and inner graphical limits:

g-liSν(x) = { y ∈ Y | ∃H ∈ H, xν →
H x, yν →

H y, yν ∈ Sν(xν) }

g-ls Sν(x) = { y ∈ Y | ∃H ∈ H#, xν →
H x, yν →

H y, yν ∈ Sν(xν) }
(2.3)

One always has g-liSν ⊂ g-ls Sν . If g-liSν = g-ls Sν , this mapping is called the graph

or graphical limit of the collection {Sν , ν ∈ N} and is denoted by lm Sν , and one writes

Sν →g lm Sν to indicate that the collection graph- or graphically converges to lmSν . Thus,

Sν →g S ⇐⇒ gph Sν → gphS.

All the graphical limit mappings are closed-valued. In fact, because their graphs are limit

sets, their graphs are closed which not only implies that they are closed-valued, but also

that they all are osc, cf. proposition 1.7. However, in general, these limit mappings are

not isc, even when the mappings Sν are isc.

One can reexpress the identities (2.3), as follows:

(

g-liSν
)

(x̄) =
⋃

{xν→x̄}

liSν(xν),

(

g-lsSν
)

(x̄) =
⋃

{xν→x̄}

ls Sν(xν),

where the unions are taken over all xν → x. Thus, Sν converges graphically to S if and

only if, at each point x̄ ∈ X , one has

(

g-ls Sν
)

(x̄) ⊂ S(x̄) ⊂
(

g-liSν
)

(x̄). (2.4)

These inclusions lead to the notion of graphical convergence at a point: Sν converges

graphically to S if and only if it does so at every point. More generally, we say that Sν
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converges graphically to S relative to a set D if (2.4), with xν → x̄ constrained to D, holds

for every x̄ ∈ D; for closed D, this is the same as saying that the restrictions Sν
D converge

graphically to the restriction SD.

With S−1(y) := { x ∈ X | y ∈ S(x) }, one has gphS−1 = gph S from which it follows

that

Sν →g S ⇐⇒ (Sν)−1 →g S−1. (2.5)

In general, neither graph nor pointwise convergence implies the other. In fact, certain

collections can have graphical and pointwise limits that do not coincide.

Example 2.1. Consider the sequence {Sν : IR → IR, ν ∈ IN } with

Sν(x) =







−1 if x ≤ −ν−1,
νx if −ν−1 < x < ν−1,
1 if x ≥ ν−1.

The pointwise and graphical limits exist and, actually coincide for all x ∈ IR \ {0}, but

p-lm Sν(0) = {0}, g-lmSν(0) = [−1, 1].

There are however certain basic relations between graph and pointwise convergence

as recorded in the next proposition.

Proposition 2.2. Let {Sν : X →→ Y, ν ∈ N} be a filtered collection of set-valued mappings

with (X, τ) a topological space and (Y, dY ) a metric space. Then

p-ls Sν ⊂ g-ls Sν

∪ ∪
p-liSν ⊂ g-liSν

and so, if they exist, p-lm Sν ⊂ g-lmSν .

Proof. We already observed that outer limits always contain inner limits, so it will suffice

to check the “horizontal” inclusions. But those are also immediate. By (1.3), y belongs

to the outer (resp. inner) pointwise limit at x, if there exist H ∈ H# (resp. H ∈ H),

yν ∈ Sν(x) and yν →
H y, hence the condition in (2.3) for y to belong to g-ls Sν(x) (resp.

g-liSν(x)) is certainly fulfilled.

3. Equi-outer semicontinuity

As suggested by Example 2.1, pointwise limits can be properly included in graphical limits.

We are going to explore here the conditions under which equality will hold.
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Definition 3.1. Let (X, τ) be a topological space, (Y, d) a metric space and (N,H) a filtered

index set. A collection of set-valued mappings {Sν : X →→ Y, ν ∈ N } is (asymptotically)

equi-outer semicontinuous, or equi-osc, at x̄ ∈ X if for all compact set B ⊂ Y and ε > 0

there exist V ∈ Nτ (x̄) and H ∈ H such that

∀x ∈ V, ∀ ν ∈ H : Sν(x) ∩ B ⊂ εSν(x̄).

It is (asymptotically) equi-inner semicontinuous, or equi-isc, at x̄ ∈ X if for all compact

set B ⊂ Y and ε > 0 there exist V ∈ Nτ (x̄) and H ∈ H such that

∀x ∈ V, ∀ ν ∈ H : Sν(x̄) ∩ B ⊂ εSν(x).

It is equi-continuous at x̄ if it is both equi-osc and equi-isc at x̄.

The mappings are said to be equi-osc, equi-isc or equi-continuous if these properties

hold at every x̄ ∈ X .

Notice that the definition of equi-osc doesn’t require that the mappings Sν be them-

selves outer semicontinuous! They are only required to be outer semicontinuous “asymp-

totically.” If the Sν are outer semicontinuous, then equi-osc (as defined) would be more

precisely designated as “eventually equi-osc”. But in this paper it won’t be necessary to ap-

peal to these distinctions, and it will thus suffice to refer to the notion introduced as (plain)

equi-osc. The same observations apply to the definitions of equi-isc and equi-continuity.

One of the implications of the equi-osc condition is the following: let B again be a

compact set, for any H ∈ H# and any xν →
H x̄ there exists εν ց 0 such that

Sν(xν) ∩ B ⊂ ενSν(x̄),

which, assuming that for all ν ∈ H, Sν(xν) ∩ B is nonempty, in turn implies that there

exits always ŷν ∈ Sν(xν), yν ∈ Sν(x̄) such that d(ŷν , yν) → 0.

Dolecki [9, §3] introduced a notion related to equi-outer semicontinuity but signifi-

cantly stronger: Let (X, τ) be a topological space, (Y, d) a normed linear space and (N,H)

a filtered index set. A collection of osc mappings {Sν : X →→ Y, ν ∈ N } is (eventually)

quasi equi semicontinous at x̄, if for every ε > 0, one can find H ∈ H and V ∈ N (x̄) such

that

∀x ∈ V, ∀ ν ∈ H : Sν(x) ⊂ εSν(x̄).

This turns out to coincide with equi-outer semicontinuity at x̄ if the ranges of the mappings

Sν are contained in a compact set D, i.e., rgeSν ⊂ D for all ν. In general, however quasi

equi semicontinuity turns out to be too constringent for applications purposes —think of

epigraphical or subgradient mappings— and it wouldn’t yield the key theorem 3.3 below,

except for a quite restricted class of mappings.

In definition 3.1, the compact sets play the role of “test” sets for checking equi-

semicontinuity. When the metric space Y is actually IRm, or more generally, a linear
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vector space whose closed balls are compact, the class of test sets can be restricted to

that of the closed (compact) balls centered at the origin; when Y = IRm, one can further

restrict the test sets to the closed balls centered at origin with rational radius, we won’t

exploit this here.

When Y is a linear space, let

IB := IB(0, 1) denote the unit ball in Y.

Proposition 3.2. Let (X, τ) be a topological space, (Y, d) a linear space whose closed balls

are compact, and (N,H) a filtered index set. A collection of set-valued mappings {Sν :

X →→ Y, ν ∈ N } is equi-outer semicontinuous (equi-osc) at x̄ ∈ X if and only if for all

ρ ≥ 0 and ε > 0, there exist V ∈ Nτ (x̄) and H ∈ H such that

∀x ∈ V, ∀ ν ∈ H : Sν(x) ∩ ρIB ⊂ εSν(x̄).

It is equi-inner semicontinuous (equi-isc) at x̄ ∈ X if and only if for all ρ ≥ 0 and ε > 0

there exist V ∈ Nτ (x̄) and H ∈ H such that

∀x ∈ V, ∀ ν ∈ H : Sν(x̄) ∩ ρIB ⊂ εSν(x).

Proof. Since the closed balls are compact sets, the “if” conditions are immediate. On the

other hand, every compact set is contained in a sufficiently large ball ρIB, and this is all

that’s needed to obtain the “only if” direction.

Theorem 3.3. Let (X, τ) be a topological space, (Y, d) a metric space and {Sν : X →→ Y, ν ∈

N } a filtered collection of closed-valued mappings. If this collection is equi-outer semicon-

tinuous at x̄, then
(g-lsSν)(x̄) = (p-ls Sν)(x̄),

(g-liSν)(x̄) = (p-liSν)(x̄).

Thus in particular, if the collection is equi-osc, one has

Sν →g S if and only if Sν →p S.

More generally, for a set D ⊂ X and a point x̄ ∈ X , any two of the following conditions

implies the third:

(a) the collection is equi-osc at x̄ relative to D;

(b) Sν converges graphically to S at x̄ relative to D;

(c) Sν converges pointwise to S at x̄ relative to D.

Proof. To obtain the first identity it will suffice, in view of proposition 2.2, to show that

(g-lsSν)(x̄) ⊂ (p-ls Sν)(x̄). For any ȳ ∈ g-ls Sν(x̄) there exist an index set H ∈ H#, and

(xν , yν)→H (x̄, ȳ) with yν ∈ S(xν). With B = {ȳ, yν, ν ∈ H}, a compact subset of Y , and
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ε > 0, equi-outer semicontinuity at x̄ implies the existence of V ∈ N (x̄) and H0 ⊂ H,

H0 ∈ H# such that Sν(xν) ∩B ⊂ εSν(x̄) when xν ∈ V and ν ∈ H0, or equivalently (since

xν → x̄), for all ν ∈ H1 ⊂ H0 for some index set H1 ∈ H# such that xν ∈ V when ν ∈ H1.

This means that yν ∈ εSν(x̄) for all ν ∈ H1. Since such a H1 ∈ H# exists for every ε > 0,

from the identity (1.1) defining lsSν(x̄), one has that ȳ ∈ p-lsSν(x̄).

The proof of the second assertion is identical, except H0 and H1 are taken to belong

to H instead of H#.

For the rest, we can redefine Sν(x) to be empty outside of D if necessary in order to

reduce without loss of generality to the case of D = X . Then the implication (a) and (b)

⇒ (c) and the implication (a) and (c) ⇒ (b) both follow directly from the identities just

established. There remains only to show that (b) and (c) ⇒ (a). Suppose this isn’t true,

i.e., that despite both (b) and (c) holding at x̄ ∈ D, the collection fails to be equi-osc at

x̄: This means that there exist ε > 0, a compact subset B of Y , H ∈ H# and xν →
H x̄ such

that

Sν(xν) ∩ B 6⊂ εSν(x̄) when ν ∈ H.

When this is the case, for each ν ∈ H we can find yν ∈ Sν(xν)∩B \εSν(x̄). The collection

{yν}ν∈H then has a cluster point ȳ ∈ B, which by virtue of (b) must belong to S(x̄). Yet

d(yν , Sν(x̄)) ≥ ε for all ν ∈ H and hence, there exists H ′ ⊂ H, H ′ ∈ H# such that for all

ν ∈ H ′, d(ȳ, Sν(x̄)) ≥ ε/2. This in turn implies that lim supH d(ȳ, Sν(x̄)) ≥ ε/2 which,

in view of proposition 4.2(b) , would lead to the conclusion that d(ȳ, S(x̄)) ≥ ε/2 since

Sν(x̄) → S(x̄) by (c). This excludes the possibility that ȳ belongs to S(x̄), in contradiction

with the earlier conclusion that ȳ ∈ S(x̄).

4. Choquet-Wijsman convergence

Choquet-Wijsman convergence, (cw-convergence) of a filtered collection of sets, {Cν ⊂

Y, ν ∈ N} to a set C is defined in terms of the pointwise convergence of the distance

functions:

Cν
−→cw C if dCν →p dC .

The next proposition records an important (and well-known) relationship between

set convergence and the pointwise convergence of the associated distance functions. The

distance function dC or d(·, C) associated to a set C ⊂ Y is defined by

dC(y) = d(y, C) :=

{

inf{ d(y, z) | z ∈ C } if C 6= ∅;
∞ if C = ∅.

The continuity of the function y 7→ d(y, C) is immediate from the following observations:

Let yν converge to y, i.e., such that d(yν, y) → 0, then the (triangle) inequalities

d(yν , C) ≤ d(y, C) + d(yν , y), d(y, C) ≤ d(yν , C) + d(yν, y)
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yield lim supν d(yν , C) ≤ d(y, C) ≤ lim infν d(yν , C) if C 6= ∅; if C = ∅ then dC ≡ ∞.

Actually, distance functions are equi-continuous (with modulus of continuity 1) since for

any set C one has:

dC(y1) ≤ dC(y2) + d(y1, y2).

Proposition 4.1 [8, 11, propositions 2.1 and 2.2]. Let (Y, dY ) be a metric space, {Cν ⊂

Y, ν ∈ N} a filtered collection of sets, and C ⊂ Y , a closed set. Then, for all y ∈ Y ,

(a) lim infH d(y, Cν) ≥ d(y, C) if and only if for any pair 0 < ε < η, there exists H ∈ H

such that for all ν ∈ H,

C ∩ IB(y, η) = ∅ implies Cν ∩ IB(y, ε) = ∅;

(b) lim supH d(y, Cν) ≤ d(y, C) if and only if there exists H ∈ H such that for all

ν ∈ H,

C ∩ IBo(y, ε) 6= ∅ implies Cν ∩ IBo(y, ε) 6= ∅.

The relationship between Choquet-Wijsman convergence and Painlevé-Kuratowski

(plain) convergence is clarified by the next proposition.

Proposition 4.2 [11, proposition 2.3, theorem 2.6]. Let (Y, dY ) be a metric space, {Cν ⊂

Y, ν ∈ N} a filtered collection of sets, and C ⊂ Y , a closed set. If d(y, Cν) → d(y, C) for

every y ∈ Y then Cν → C, more precisely

(a) C ⊃ lsCν if lim infH d(y, Cν) ≥ d(y, C) for all y ∈ Y ;

(b) C ⊂ liCν if and only if lim supH d(y, Cν) ≤ d(y, C) for all y ∈ Y .

Thus, cw-convergence implies (plain) convergence. These two notions are identical if the

closed balls of Y are compact, i.e., (a) becomes also an “if and only if” condition.

Moreover, if the distance functions dCν converge pointwise to dC then they also con-

verge uniformly on every compact subset of Y .

The difference between (plain) convergence and cw-convergence is illustrated by the

following simple example. Again consider the sequence {Cν = {eν} ⊂ ℓ1, ν ∈ IN } with

eν the unit vector in ℓ1 with a 1 in the ν-th position. One has lm Cν = ∅, but there is no

“cw-limit” set; a sequence converging to the empty set must eventually escape from every

compact set, whereas a sequence cw-converging to the empty set must eventually escape

from every bounded set.

Cw-convergence does imply the (cw-)convergence of ε-fattenings.

Proposition 4.3. Let (Y, dY ) be a metric space, {Cν ⊂ Y, ν ∈ N} a filtered collection of

sets, and C ⊂ Y , a closed set. Then, for any y ∈ Y and ε ≥ 0,

d(y, Cν) → d(y, C) =⇒ d(y, εCν) → d(y, εC).

Proof. Propositions 1.4 and 4.2, together, already yield lim supH d(y, εCν) ≤ d(y, εC) for

all y ∈ Y , it thus suffices to show that lim infH d(y, εCν) ≥ d(y, εC) for all y ∈ Y , or
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equivalently (proposition 4.1), for any pair 0 < θ < η, there exists H ∈ H such that for all

ν ∈ H,

d(y, εC) > η ⇒ d(y, εCν) > θ,

given that for any pair 0 < θ′ < η′, there exists H ′ ∈ H such that for all ν ∈ H ′,

d(y, C) > η′ ⇒ d(y, Cν) > θ′.

If d(y, εC) > θ, then d(y, C) > ε + θ, and this implies that there exists H ∈ H such that

d(y, Cν) > θ′ for all θ′ ∈ (0, ε+θ) which in turn implies that d(y, εCν) > θ for all θ ∈ (0, θ)

for all ν ∈ H.

Remark 4.4. A mapping S : X →→ Y is cw-osc (cw-isc, cw-continuous) at x̄ ∈ X if

for all y ∈ Y , lim infN (x̄) d(y, S(x)) ≥ d(y, S(x̄)) (lim supN (x̄) d(y, S(x)) ≤ d(y, S(x̄)),

limN (x̄) d(y, S(x)) = d(y, S(x̄))). Observe that as consequence of proposition 4.2, one has

that cw-osc conincides with osc, and that a mapping is isc (continuous) at x̄ whenever it’s

cw-isc (cw-continuous) at x̄.

5. Continuous and uniform convergence

Two more classical concepts of convergence are often useful in identifying graph conver-

gence and equi-outer semicontinuity properties.

Again, (X, τ) is a topological space, (Y, d) a metric space and N and index space

with filter H. A filtered collection of mappings Sν : X →→ Y converges continuously to a

mapping S at x̄ if Sν(xν) → S(x̄) for all xν → x̄. It does so relative to a set D ⊂ X if this

holds at all x̄ ∈ D when xν ∈ D.

The mappings Sν converge uniformly to S on a set D ⊂ X if for every ε > 0 and

compact set B ⊂ Y there exists H ∈ H such that
{

Sν(x) ∩ B ⊂ εS(x)

S(x) ∩ B ⊂ εSν(x)

}

for all x ∈ D when ν ∈ H. (5.1)

The inclusion property for uniform convergence should be compared to the one auto-

matically present by virtue of proposition 1.1. when the mappings Sν converge pointwise,

i.e., S = p-lmSν at x̄: for every ε > 0 and compact set B ⊂ Y , there exists H ∈ H such

that
Sν(x̄) ∩ B ⊂ εS(x̄)

S(x̄) ∩ B ⊂ εSν(x̄)

}

when ν ∈ H. (5.2)

By the same token, continuous convergence of Sν to S at x̄ can be identified with the

condition that for every ε > 0 and compact set B ⊂ Y , there exists H ∈ H along with a

neighborhood V ∈ N (x̄) such that

Sν(x) ∩ B ⊂ εS(x̄)

S(x̄) ∩ B ⊂ εSν(x)

}

for all x ∈ V when ν ∈ H. (5.3)
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For continuous convergence relative to D, x must of course be restricted to D. Continuous

convergence can be viewed as a “localized” version of uniform convergence.

It is also possible to define these notions of convergence for mappings in terms of the

cw-convergence of sets (as well as in terms of any other notions of convergence for sets).

The collection of mappings {Sν : X →→ Y, ν ∈ N} cw-converge pointwise at x̄ ∈ X if

d(y, Sν(x̄)) → d(y, S(x̄)), ∀ y ∈ Y ; (5.4)

if this holds at all x̄ ∈ X , the mappings Sν are said to cw-converge pointwise. Continuous

cw-convergence at x̄ ∈ X means that for all xν → x̄, one has

d(y, Sν(xν)) → d(y, S(x̄)), ∀ y ∈ Y ; (5.5)

and the mappings Sν are said to continuously cw-converge to S if (5.5) holds for all x̄ ∈ X .

Finally, uniform cw-convergence on a set D means that for all y ∈ Y and ε > 0 there exists

H ∈ H such that

|d(y, Sν(x)) − d(y, S(x))| ≤ ε, ∀x ∈ D, ∀ ν ∈ H. (5.6)

Remember that in view of proposition 4.2, the notions based on the Choquet-Wijsman

convergence of sets are more restrictive than those based on (Painlevé-Kuratowski) con-

vergence; they coincide if Y has compact balls.

Proposition 5.1. Let (X, τ) be a topological space, (Y, d) a metric space, and let {Sν :

X →→ Y, ν ∈ N } a filtered collection of closed-valued mappings. If the mappings Sν

converge continuously to S relative to a set D, then S is continuous relative to D.

Proof. Let x̄ ∈ D. From (5.3) it follows that given any compact set B ⊂ Y and ε > 0,

there exist V ∈ N (x̄) and H ∈ H such that for all x ∈ V, ν ∈ H: S(x) ∩ B ⊂ εSν(x̄), and

Sν(x̄) ∩B ⊂ εS(x̄). These two inclusions imply S(x) ∩B ⊂ (2εS)(x̄). Since this holds for

every compact B and ε > 0, it follows from proposition 1.1 that S(x̄) ⊃ lsN (x̄) S(x).

Again from (5.3), continuous convergence implies that for every compact set B and

ε > 0, there exist V ∈ N (x̄) and H ∈ H such that S(x̄)∩B ⊂ εSν(x) for all x ∈ V ∩D, ν ∈

H. Moreover, since for every x ∈ V ∩ D, S(x) = lmSν(x) as a consequence of continuous

convergence on D, there exists Hx ∈ H such that for all ν ∈ H ∩ Hx, Sν(x) ∩ B ⊂ εS(x),

cf. proposition 1.1. Hence S(x̄) ∩ B ⊂ (2εS)(x) for all x ∈ V , and from proposition 1.1

it then follows that S(x̄) ⊂ liN (x̄) S(x). This with the inclusion obtained in the previous

paragraph, yields the continuity of S at x̄ for all x̄ ∈ D.

Theorem 5.2. Let (X, τ) be a topological space, (Y, d) a metric space and {Sν : X →→ Y, ν ∈

N } a filtered collection of closed-valued mappings.

(a) Continuous convergence of the mappings Sν to S relative to D implies uniform

convergence on any compact subset of D.
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(b) Assuming that S is cw-continuous relative to D ⊂ X , then uniform cw-convergence

on all compact subsets of D implies continuous cw-convergence relative to D.

Proof. We begin with (a). Suppose to the contrary that the first inclusion in (5.1) fails,

i.e., that there exists a compact set C ⊂ X , ε > 0, a compact set B ⊂ Y , H ∈ H#

and xν ∈ C, ν ∈ H such that Sν(xν) ∩ B 6⊂ εS(xν) for all ν ∈ H. For ν ∈ H, let

yν ∈ Sν(xν)∩B \ εS(xν) and (x̄, ȳ) a cluster point of the collection {(xν , yν), ν ∈ H}, say

(xν , yν)→H0
(x̄, ȳ) for H0 ∈ H#.

Continuous convergence of Sν to S relative to D implies in particular that S(x̄) ⊃

lsH0
Sν(xν), implying that ȳ ∈ S(x̄). On the other hand, d(yν , S(xν)) > ε for all ν ∈ H0.

Since d(ȳ, S(xν)) + d(ȳ, yν) ≥ d(yν, S(xν) > ε and yν →
H0

ȳ, one has

lim supH d(ȳ, S(xν)) ≥ lim supH0
d(ȳ, S(xν)) ≥ ε.

Since S is continuous (proposition 5.1) at x̄ relative to D, d(ȳ, S(x̄)) ≥ ε > 0 (proposition

4.2(b)), it also follows that ȳ /∈ S(x̄) and this is in contradiction with the earlier assertion

that ȳ ∈ S(x̄).

The same argument applies if the second inclusion in (5.1) fails, after interchanging

the roles played by the sets Sν(xν) and S(xν).

We now proceed with (b). Let xν → x̄, all in D. We have to show that given any

y ∈ Y for all ε > 0 there exists Hε ∈ H such that |d(y, Sν(xν))−d(y, S(x̄))| ≤ ε, but that’s

an immediate consequence of |d(y, Sν(xν)) − d(y, S(xν))| ≤ ε/2 for all ν ∈ H0 for some

H0 ∈ H as follows from uniform cw-convergence (5.6) on the compact set {xν , ν ∈ H},

and |d(y, S(xν))− d(y, S(x̄))| ≤ ε/2 for all ν ∈ H ⊂ H0 with H ∈ H and this follows from

the cw-continuity of S relative to D.

Theorem 5.3. Let (X, τ) be a topological space, (Y, d) a metric space and {Sν : X →→ Y, ν ∈

N } a filtered collection of closed-valued mappings. For mappings S, Sν : X →→ Y and a

set D ⊂ X , the following properties at a point x̄ ∈ X are equivalent:

(a) Sν converges continuously to S at x̄ relative to D;

(b) Sν converges graphically to S at x̄ relative to D, and the collection is (asymptoti-

cally) equi-continuous at x̄ relative to D.

Proof. Suppose first that (a) holds. Obviously this condition implies that Sν converges

both pointwise and graphically to S at x̄ relative to X , and therefore by theorem 3.3 that

the collection is equi-osc relative to D. We must show that the collection is also equi-isc

relative to D. If not, there would exist ε > 0, B ⊂ Y compact, H ∈ H# and xν →
H x̄ in X

such that

Sν(x̄) ∩ B 6⊂ εSν(xν) when ν ∈ N.

It would be possible then to choose for each ν ∈ H an element yν ∈ Sν(x̄) ∩ B \ εSν(xν).

Let ȳ be a cluster point of the yν , i.e., such that yν →
H′ ȳ for H ′ ⊂ H, H ′ ∈ H#. This
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point ȳ necessarily belongs to S(x̄) ∩ B because Sν(x̄) → S(x̄). On the other hand, since

d(yν , Sν(xν)) > ε and yν →
H′ ȳ, d(ȳ, Sν(xν)) > ε/2 for all ν ∈ H ′

0 ⊂ H ′, H ′
0 ∈ H#. Hence,

ε/2 ≤ lim supH′
0
d(ȳ, Sν(xν) ≤ lim supH d(ȳ, Sν(xν) ≤ d(ȳ, S(x̄)),

with the last inequality coming from proposition 4.2(b) since Sν(xν) → S(x̄). And one

would have that ȳ can’t belong to S(x̄) in contradiction with our earlier statement, conse-

quently, the collection of mappings Sν must also be equi-isc.

Now suppose that (b) holds. Consider any xν → x̄ in X . Graphical convergence

yields that lsSν(xν) ⊂ S(x̄), so there remains only to show for arbitrary ȳ ∈ S(x̄) that

ȳ ∈ liSν(xν). Because the mappings Sν are equi-osc and Sν →g S at x̄ relative to D, one

has Sν(x̄) → S(x̄) by theorem 3.3, so for indices ν in some set H0 ∈ H one can find

H1 ⊂ H0, H1 ∈ H, yν ∈ Sν(x̄) with yν →
H1

ȳ. Now, since the mappings Sν are also equi-isc

at x̄, with B = {yν, ν ∈ H}, for all ε > 0 there exists Vε ∈ N (x̄) and H2 ⊂ H1, H2 ∈ H

such that

Sν(x̄) ∩ B ⊂ εSν(x), ∀x ∈ V, ∀ ν ∈ H1.

Then for some Hε ∈ H with Hε ⊂ H2 one has xν ∈ Vε, yν ∈ εSν(xν) for all ν ∈ Hε. Since

this holds for all ε > 0, by letting ε ց 0, one can generate points ŷν ∈ Sν(xν) that converge

to ȳ, and this guarantees ȳ ∈ liSν(xν).

Corollary 5.4. Let (X, τ) be a topological space, (Y, d) a metric space and {F ν : X →

Y, ν ∈ N } a filtered collection of single-valued mappings. The following hold:

(a) F ν converges graphically to F at x̄ implies F ν converges continuously to F at

x̄ provided the collection {F ν , ν ∈ N} is eventually locally compact, i.e., there exist

V ∈ N (x̄), H ∈ H and a compact set B ⊂ Y such that F ν(x) ∈ B for all x ∈ V when

ν ∈ N ;

(b) F ν converges continuously to F at x̄ implies F ν converges graphically to F at x̄.

Proof. From theorem 5.3 and the definition of continuous convergence, one has that (b)

implies (a). On the other hand, the local compactness in (a) implies that every collection

of points {F ν(xν)} with xν → x̄ is eventually in B, while the graphical convergence in (a)

along with the single-valuedness of F ensures that the only possible cluster point of such

a collection is F (x̄). Hence, F ν(xν) → F (x̄) whenever xν → x̄.

This section conclude with a statement of a result that becomes “classical” when

collections of equi-continuous single-valued mappings (equivalently, functions from X to

Y ) are involved. To do so, we are in need of the remarkable compactness property of the

space of mappings equipped with the topology induced by graph-convergence:

Lemma 5.5. Let (X, dX), (Y, dY ) be metric spaces and {Sν : X →→ Y, ν ∈ N} a filtered

collection of set-valued mappings. Then, either this collection escapes to the horizon, i.e., if

for every pair of compact sets D ⊂ X , B ⊂ Y , there exists H ∈ H such that Sν(x)∩B = ∅
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for all x ∈ D, ν ∈ H, or there exists a subcollection of the mappings that converges

graphically to a mapping S : X →→ Y with dom S = { x ∈ X |S(x) 6= ∅ } nonempty.

Proof. The key to the proof is to view graph convergence as the set convergence of the

graphs and appeal to Mrówka’s theorem [6, p.149, 12] which asserts that every filtered

family of subsets of X × Y has a subfamily that converges, in the Painlevé-Kuratowski

sense, to some set. This could be the empty set which would correspond to the graphs of

the Sν “escaping to the horizon”. This eventuality is characterized by Corollary 1.2 which

leads to the criterion adopted here; note that if the graphs gphSν of the mappings Sν

eventually miss every compact set of type D × B with D ⊂ X and B ⊂ Y , then they also

eventually miss every compact subset of X × Y .

With the help of this lemma, we obtain a generalization of the classical Arzelà-Ascol̀ı

as a corollary of theorem 5.3.

Corollary 5.6 (Arzelà-Ascol̀ı Theorem for mappings). Let (X, dX), (Y, dY ) be metric spaces

and {Sν : X →→ Y, ν ∈ N} a filtered collection of mappings, equi-continuous relative to a

set D ⊂ X . Then, there exists a subcollection converging uniformly on all compact subsets

of D to a mapping S : X →→ Y that is continuous relative to D.

Moreover, if at some point x̄ in D this collection of mappings is eventually locally

compact, then D = dom S = {x|S(x) 6= ∅}; a collection {Sν , ν ∈ IN} is eventually locally

compact at x̄ if there exists V ∈ N (x̄), H ∈ H and a compact set B ⊂ Y such that

Sν(x) ∩ B 6= ∅ for all x ∈ V , ν ∈ H.

Proof. The preceding lemma guarantees the existence of a subcollection, say for ν ∈

H, H ∈ H#, graph converging to a mapping S : X →→ Y , possibly empty-valued. One

now appeals to theorem 5.3 to claim that in fact these mappings {Sν , ν ∈ H} actually

continuously converge to S, since the Sν are equi-continuous, and S must then be contin-

uous. Uniform convergence on compact subsets of D then follows from theorem 5.2.

If the {Sν} are locally compact a some point x̄ ∈ D then S(x̄) cannot be empty, and

since S is continuous on D it implies that S in nonempty valued on D, i.e., domS = D.

6. Equi-lower semicontinuity

A filtered collection of lower semicontinuous (lsc) functions {fν : X → IR, ν ∈ (N,H)} is

(eventually) equi-lower semicontinuous (equi-lsc) at x̄ if to every ε > 0 and ρ > 0 one can

associate some V ∈ N (x̄) and H ∈ H such that

∀ ν ∈ H : inf
x∈V

fν(x) ≥ min [ fν(x̄) − ε, ρ ].

The fν are equi-lsc if this holds at every x̄ ∈ X .

This notion was introduced in [14] for sequences of convex lsc functions defined on

a Banach space, and for filtered families of (arbitrary) functions defined on a topological
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space in [10]. In particular, it was shown that the equi-lsc condition is both necessary

and sufficient for pointwise and epi-convergence to coincide. The only purpose of this

section is to record the fact that equi-lower semicontinuity for functions corresponds to the

equi-outer semi-continuity of the (upper) profile mappings associated with these functions.

For f : X → IR, let’s call

Uf : X → IR with Uf (x) =







IR if f(x) = −∞,
[ f(x),∞) if f(x) ∈ IR,
∅ if f(x) = ∞,

the (upper) profile mapping associated with the function f . One has,

gph Uf = epi f = { (x, α) |α ≥ f(x) } ⊂ X × IR. (6.1)

Recall that a filtered collection of lsc functions {fν : X → IR, ν ∈ (N,H)} epi-

converges to f at x̄ if

e-lsH fν(x̄) ≤ f(x̄) ≤ e-liH fν(x̄),

where
e-liH fν(x̄) = sup

V ∈N (x̄)

inf
H∈H

sup
ν∈H

inf
x∈V

fν(x),

e-lsH fν(x̄) = sup
V ∈N (x̄)

sup
H∈H

inf
ν∈H

inf
x∈V

fν(x).

Proposition 6.1. Let (X, τ) be a topological space, {fν : X → IR, ν ∈ (N,H)} a filtered

collection of lsc functions, and {Ufν : X → IR, ν ∈ N} the associated (upper) profile

mappings. Then, the fν epi-converge to f at x̄ if and only if the profile mappings Ufν

graph-converge to Uf at x̄.

Proof. This is immediate from the definitions and (6.1).

Proposition 6.2. Let (X, τ) be a topological space and {fν : X → IR, ν ∈ N} a filtered

collection of extended real-valued lsc functions. This collection is equi-lsc at x̄ if and only

if the (upper) profile mappings {Ufν : X → IR, ν ∈ N} are equi-osc at x̄.

Proof. For B ⊂ IR, compact, let ρ := max [ α |α ∈ B ]. Then, the condition:

Ufν (x) ∩ B ⊂ Uν
f (x̄) + ε[−1, 1], ∀x ∈ V ∈ N (x̄), ∀ ν ∈ H ∈ H

will be satisfied if and only if for all x ∈ V , ν ∈ H,
{

fν(x) > ρ when fν(x̄) − ε > ρ,
fν(x) ≥ fν(x̄) − ε when fν(x̄) − ε ≤ ρ,

which is just another way to formulate the equi-lsc condition.

When theorem 3.3, relating pointwise and graph-convergence of mappings, is applied

to the profile mappings, one is able to relate the pointwise and epi-convergence of lsc

functions.
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6.3 Theorem [10]. Let (X, τ) be a topological space and {fν : X → IR, ν ∈ (N,H)} a

filtered collection of lsc functions and a point x̄ ∈ X . If the collections is equi-lsc at x̄,

then
e-li fν(x̄) = p-li fν(x̄) = lim inf

ν∈N

fν(x̄),

e-ls fν(x̄) = p-ls fν(x̄) = lim sup
ν→∞

fν(x̄).

Thus, when the fν are equi-lsc, fν →e f if and only if fν →p f .

More generally, relative to an arbitrary set D ⊂ X containing x̄, any two of the

following conditions implies the third:

(a) the collection is (eventually) equi-lsc at x̄ relative to D;

(b) fν →e f at x̄ relative to D;

(c) fν →p f at x̄ relative to D.

Proof. This is immediate from the corresponding result for mappings in theorem 3.3 by

virtue of the equivalences in propositions 6.1 and 6.2.

Remark 6.4. The following is a sufficient, but not necessary condition for equi-lower semi-

continuity at x̄ ∈ X : Given a filtered collection of lsc functions {fν : X → IR, ν ∈ N},

suppose that to every ε > 0 and ρ > 0, one can associate V ∈ N (x̄) and H ∈ H such that

inf
x∈V

fν(x) ≥

{

fν(x̄) − ε for all ν ∈ H such that fν(x̄) < ∞,
ρ for all ν ∈ H such that fν(x̄) = ∞.

To see that this condition isn’t necessary, consider the sequence of lsc functions

{ fν(x) = δ(−∞,1](x) + max [ 0, νx ], ν ∈ IN },

which is equi-lsc at x̄ = 1, but doesn’t satisfy the preceding condition at x̄ = 1.

7. Mosco-graph-convergence

Let Y be a normed linear space, and let’s denote by σ and ω the strong and weak topologies

on Y . A filtered collection of sets {Cν ⊂ Y, ν ∈ (N,H) } is said to Mosco-converge to a

set C ⊂ Y if

C = lmσ Cν = lmω Cν ,

with lmσ and lmω indicating that the limits are calculated with respect to the strong and

weak topologies. Since σ ⊃ ω, this is equivalent to requiring that

lsω Cν ⊂ C ⊂ liσ Cν .

One then writes,

Cν →M C or C = M- lmCν .

Let’s begin with an observation that complements proposition 1.1.
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Proposition 7.1. Let (Y, σ) be a normed linear space, {Cν ⊂ Y, ν ∈ N} a filtered collection

of sets and C ⊂ Y a closed set. If for all B ⊂ Y , ω-compact and ε > 0 there exists H ∈ H

such that for all ν ∈ H, Cν∩B ⊂ εC, then C ⊃ lsω Cν . Consequently, Cν Mosco-converges

to C whenever this condition and that in 1.1(b) are satisfied.

Proof. One can use the same argument as for “sufficiency in (a)” of proposition 1.1, except

that convergence of the yν ⇀
H ȳ will be with respect to the weak topology and one observes

that B = { ȳ, yν, ν ∈ H } is weakly compact.

Remark 7.2. The converse doesn’t hold in general, and thus Mosco-convergence doesn’t

imply the condition of proposition 1.1. To see this, let X be a Hilbert space and consider

the sequence of sets {Cν = {0, eν}, ν ∈ IN } where the eν are the unit vectors of an or-

thonormal base. Clearly, Cν Mosco-converges to C = {0}, but the condition of proposition

7.1 doesn’t hold .

A filtered collection of mappings {Sν : X →→ Y, ν ∈ N } with (X, σX), (Y, σY ) normed

linear spaces, Mosco-pointwise converges to S: X →→ Y at x̄ if Sν(x̄)−→M S(x̄), i.e.,

lsω Sν(x̄) ⊂ S(x̄) ⊂ liσ Sν(x̄)

where the subscripts of ls and li refer to the weak and strong topologies on Y . One writes

Sν −→M-p S when this holds for all x̄ ∈ X . The collection Mosco-graph-converges to S if

gphSν −→M gphS, and one then writes Sν −→M-g S. Graph-convergence at a point x̄ means

that
(

g-ls×ω Sν
)

(x̄) ⊂ S(x̄) ⊂
(

g-li×σ Sν
)

(x̄)

where the subscripts of ls and li now refer to the weak and strong product topologies on

X × Y , i.e.,
(

g-li×σ Sν
)

(x̄) =
⋃

{xν→x̄}

liσ Sν(xν),

(

g-ls×ω Sν
)

(x̄) =
⋃

{xν⇀x̄}

lsω Sν(xν),

where the unions are taken over all xν → x̄ for the inner limit, and all xν ⇀ x̄ for the

outer limit, ⇀ denoting weak convergence.

To relate Mosco-pointwise convergence to Mosco-graph-convergence, one relies on

strengthened version of equi-outer semicontinuity.

Definition 7.3. Let (X, σX), (Y, σY ) be normed linear spaces, and (N,H) a filtered index

set. A collection of set-valued mappings {Sν : X →→ Y, ν ∈ N } is (asymptotically) M-equi-

osc at x̄ ∈ X , if for every ωY -compact set B ⊂ Y and ε > 0, one can find H ∈ H, and

V ∈ NωX
(x̄), i.e., a neighborhood of x̄ with respect to the weak topology, such that

∀x ∈ V, ∀ ν ∈ H : Sν(x) ∩ B ⊂ εSν(x̄).
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The mappings are said to be M-equi-osc if this property hold at every x̄ ∈ X .

When Y = IRn is finite dimensional, ωY = σY , and M-equi-outer semicontinuity takes

on a simplified form to which one could refer as “weak equi-outer semicontinuity”.

Definition 7.4. The definition of ω-equi-osc at a point x̄ is the same as that of equi-osc at

x̄ (definition 3.1) except that it guarantees the existence of a neighborhood V ∈ Nω(x̄)

(with respect to the weak topology) and H ∈ H so that

∀x ∈ V, ∀ ν ∈ H : Sν(x) ∩ B ⊂ εSν(x̄).

Theorem 7.5. Let (X, σX), (Y, σY ) be normed linear spaces, and consider {Sν: X →→ Y, ν ∈

N } a filtered collection of closed-valued mappings. If this collection is M-equi-osc at x̄,

then
(g-ls×ω Sν)(x̄) = (p-lsω Sν)(x̄),

(g-li×σ Sν)(x̄) = (p-liσ Sν)(x̄).

Thus in particular, if the collection is M-equi-osc , one has

Sν −→M-g S if and only if Sν −→M-p S.

Moreover, when Y is finite dimensional, any two of the following conditions implies the

third:

(a) the collection is ω-equi-osc at x̄;

(b) Sν −→M-g S at x̄;

(c) Sν → S at x̄.

Proof. Since σ ⊃ ω, M-equi-osc implies equi-osc, and thus from theorem 3.3 it follows that

∀x ∈ X : p-liσ Sν(x) = g-li×σ Sν(x).

From the definitions of pointwise and graphical outer limits (2.3), one has,

∀x ∈ X : p-lsω Sν(x) ⊂ g-ls×ω Sν(x).

Therefore, there remains only to show that

∀x ∈ X : g-ls×ω Sν(x) ⊂ p-lsω Sν(x).

Let ȳ ∈ g-ls×ω Sν(x̄). i.e., there exist H ∈ H#, xν ⇀
H x̄, yν ⇀

H ȳ such that yν ∈ Sν(xν).

Since the set B = {ȳ, yν , ν ∈ H} is ωY -compact, M-equi-osc implies that for all ε > 0,

there exists H ′ ∈ H such that Sν(xν) ∩ B ⊂ εSν(x̄) for all ν ∈ H ∩ H ′. This means that
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for all ε > 0, there exists Hε ∈ H# such that ȳ ∈ εSν(x̄) for all ν ∈ Hε, from which it

follows that ȳ ∈ p-lsω Sν(x̄).

Next, let’s show that (b) and (c) =⇒ (a) when Y is finite dimensional. Then

p-lsω Sν(x̄) = p-ls Sν(x̄),
(

g-ls×ω Sν
)

(x̄) =
⋃

{xν⇀x̄}

ls Sν(xν).

Now suppose, in particular, that S(x̄) = g-ls×ω Sν(x̄) = p-ls Sν(x̄) but the collection

{Sν : X →→ Y, ν ∈ N } is not ω-equi-osc at x̄, i.e., there exist a compact set B, ε > 0,

H ∈ H#, xν ⇀
H x̄, and yν ∈

(

Sν(xν)∩B
)

\ εSν(x̄). Since B is compact, {yν , ν ∈ H} must

have a cluster point, say ȳ. Mosco-graph-convergence implies

ȳ ∈ g-ls×ω Sν(x̄) = S(x̄).

On the other hand, ȳ /∈ p-ls Sν(x̄) = S(x̄) since by assumption Sν(x̄) → S(x̄); using the

same argument as in the proof of theorem 3.3. Thus g-ls×ω Sν(x̄) and p-lsSν(x̄) couldn’t

be equal as assumed.

Remark 7.6. When dealing with the profile mappings associated with a collection of func-

tions, one has Y = IR. Following the same analysis as that in §6, one shows that a

collection of functions {fν : X → IR, ν ∈ N} is ω-equi-lsc (at a point x̄) if and only if the

(upper) profile mappings defined by {Ufν , ν ∈ N} are ω-equi-osc (at x̄). The notion of an

ω-equi-lsc collection of functions was introduced in [10].

8. Pointwise convergence of subgradients mappings

This first example shows that the subgradient mappings of a convergent family of convex

functions are equi-osc at every point where the limit function is differentiable. Somewhat

weaker versions of theorem 8.3 below were already obtained by Rockafellar [13, theorem

24.5] and Birge and Qi [7] by (much) different techniques.

The following fact about the convergence of connected sets will be used; for a proof

one could consult [15]. The Fréchet filter on IN will be denoted by N∞, and N (x̄) will

designate the neighborhood system of x̄.

Lemma 8.1. Let {Cν ⊂ IRn, ν ∈ H} be connected, and assume that lsH Cν is bounded and

nonempty. Then, for all ε > 0 there exists an index set H ∈ H such that Cν ⊂ lsH Cν +εIB

for all ν ∈ H, where IB is the unit ball in IRn.

Proposition 8.2. Let {Sν : IRn
→→ IRd, ν ∈ IN } be closed- and connected-valued. If

g-ls Sν(x̄) is bounded, then for all ε > 0 there exist N ∈ N∞ and V ∈ N (x̄) such that for

all ν ∈ N , x ∈ V , Sν(x) ⊂ g-ls Sν(x̄) + εIB.
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Proof. The assertion follows from the preceding lemma and formula (2.3) for g-lsSν(x̄)

with H = N∞ ⊗N (x̄).

Theorem 8.3. Let { f, fν : IRn → IR, ν ∈ IN } be lsc, convex functions such that fν →e f ,

and let x̄ ∈ int dom f . Then, for all ε > 0, there exist H ∈ N∞, V ∈ N (x̄) such that

∂fν(x) ⊂ ∂f(x̄) + εIB, ∀x ∈ V, ν ∈ N.

If f is differentiable at x̄, then actually

lm ∂fν(x̄) = ∇f(x̄),

and the subgradient mappings { ∂fν : IRn
→→ IR, ν ∈ IN } are equi-osc at x̄.

Proof. Since the function fν epi-converge to f , it follows from Attouch’s Theorem [1, 5,

Theorem 7.6.4], that the subgradient mappings ∂fν graph-converge to ∂f . These mappings

are closed-, convex-valued and if x̄ ∈ int dom f , ∂f(x̄) is bounded, from which the first

assertion follows via proposition 8.2.

If f is differentiable at x̄, one then has that for all ε > 0 there exists Nε such that for

all ν ∈ Nε, ∂fν(x̄) ⊂ IB(∇f(x̄), ε). Since graph-convergence also implies that ls∂fν(x̄) ⊂

{∇f(x̄)}, it follows lm ∂fν(x̄) = ∇f(x̄). Theorem 3.3, then guarantees the (eventual) equi-

outer semicontinuity (at x̄) of the subgradient mappings, since one has that p-lmSν(x̄) =

g-lmSν(x̄).

9. Pointwise limits of maximal monotone operators

Let H be a Hilbert space. Recall that A : H →→ H is called a monotone operator if

∀x, x′ ∈ H, y ∈ A(x), y′ ∈ A(x′) : 〈y − y′, x − x′〉 ≥ 0,

where domA = { x ∈ H |A(x) 6= ∅ }. Furthermore, A is said to be maximal monotone if

it is monotone and there is no other monotone operator whose graph includes gphA. The

following results are well known:

Proposition 9.1 [1, 5, proposition 7.1.7]. For {A, Aν : H →→ H, ν ∈ IN } a countable

collection of maximal monotone operators defined on a Hilbert space H,

A ⊂ g-liAν ⇐⇒ Aν →g A.

Proposition 9.2 [3, proposition 3.1]. Let {Aν : IRn
→→ IRn, ν ∈ IN } be a sequence of

maximal monotone operators defined on IRn. Then,

An →g A =⇒ A maximal monotone.

However, the pointwise limit of a sequence of maximal monotone operators is not, in

general, maximal monotone. For an example of a sequence of maximal monotone operators

with a graphical limit different from its pointwise limit, cf. [2, proposition 3.56]. The

following proposition will provide the exact condition under which the pointwise limit is

maximal monotone:
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Proposition 9.3. Let {Aν : IRn
→→ IRn, ν ∈ IN } be a sequence of maximal monotone

operators defined on IRn, and A := p-lm Aν . Then,

A maximal monotone ⇐⇒ the collection {Aν , ν ∈ IN } is equi-osc.

Proof. Under equi-outer semicontinuity, pointwise convergence implies graph-convergence

(theorem 3.3), and thus by proposition 9.1, A is maximal monotone. On the other hand,

if A = p-lm Aν is maximal monotone, since p-lmAν ⊂ g-liAν (proposition 2.2), from

proposition 9.2, it follows that Aν →g A. Equi-outer semicontinuity then follows from

theorem 3.3 since the Aν converge to A both pointwise and graphically.

10. Differential inclusions

Let’s consider the following differential inclusion:

ẋ(t) ∈a.e. A(x(t)), t ∈ [0, T ],

x(t) ∈a.e. K, t ∈ [0, T ],

x ∈ W 1,1([0, T ]; IRn),

where A : IRn
→→ IRn is closed-valued, K ⊂ IRn is closed, and W 1,1([0, T ]; IRn) is the

Sobolev space of L1([0, T ]; IRn)-functions with (distributional) derivatives also in L1. The

formulation includes as special cases systems of ordinary linear or nonlinear differential

equations, as well as many control problems. Consider, for example, the following closed

loop control problem:
ẋ(t) =a.e. f(t, x(t), u(t)), t ∈ [0, T ],

u(t) ∈ U(t, x(t)), t ∈ [0, T ],

x(t) ∈a.e. K, t ∈ [0, T ],

where u, the control function, must be measurable, and U : [0, T ]× IRn
→→ IRm is a closed-

valued mapping. For the corresponding differential inclusion, simply set A(t, x(t)) :=

f(t, x(t), U(t, x(t)). For more about differential inclusion, consult [4] and the reference

therein.

We shall begin with a result based on the existence of a W 1,1-cluster point to a

sequence of solutions of the approximating problems (DIν). This condition will be relaxed

later, but this will require imposing some additional condition of the mappings Aν .

We shall begin with a result based on the existence of a W 1,1-cluster point to a

sequence of solutions of the approximating problems (DIν). This condition will be relaxed

later, but will in some sense be replaced by extra conditions on the mappings Aν .

Proposition 10.1. Consider the differential inclusions: for ν ∈ IN ,

ẋ(t) ∈a.e. Aν(x(t)), t ∈ [0, T ],

x(t) ∈a.e. Kν , t ∈ [0, T ],

x ∈ W 1,1([0, T ]; IRn),

(DIν)
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and
ẋ(t) ∈a.e. A(x(t)), t ∈ [0, T ],

x(t) ∈a.e. K, t ∈ [0, T ],

x ∈ W 1,1([0, T ]; IRn),

(DI)

where {Kν ⊂ IRn, ν ∈ IN } are closed sets, K = lm Kν , {Aν : IRn
→→ IRn, ν ∈ IN } are

closed-valued mappings and A = p-lm Aν .

If the mappings Aν are equi-osc, and {xν , ν ∈ IN} is a sequence of solutions to (DIν)

and x0 a W 1,1-cluster point of this sequence, then x0 is a solution of (DI).

Proof. Let {xνk , k ∈ IN} be the subsequence W 1,1-converging to x0, i.e., there is a

(sub)sequence {xνk , k ∈ IN} such that xνk →p x0 and ẋνk →p ẋ0. A = p-lm Aν and equi-

outer semicontinuity of the Aν imply, via theorem 3.3, that A = g-lm Aν , for any fixed t,

one has

ẋνk(t) ∈ Aνk(xνk(t)), k = 1, . . . , =⇒ ẋ0(t) ∈ A(x0(t)),

and since K = lm Kν , xνk(t) ∈ Kνk implies x0(t) ∈ K.

A mapping A is sublinear (also called a “convex process” [13, 5]) if gphA is a closed

convex cone. Differential inclusions with A a sublinear mapping include as special cases

that of systems of linear ordinary differential equations as well as various applications

involving nonlinear dynamics, cf. [5, chapter 2]

10.2 Corollary. For ν ∈ IN , let Aν : IRn
→→ IRm be sublinear closed-valued mappings such

that for all x, supν d(0, Aν(x)) < ∞. Then the Aν are equi-continuous.

Proof. It follows from the Uniform Boundedness Principle [5, theorem 2.3.1] for sublinear

mappings that there exist ρ > 0 and {yν
x ∈ Aν(x), ν ∈ IN} such that |yν

x| ≤ ρ|x|. Let x1, x2

be any point in IRn, and yν ∈ Aν(x2 − x1) such that |yν | ≤ ρ|x1 − x2|. For ν ∈ IN , let

yν
1 ∈ Aν(x1), then

yν
2 = yν + yν

1 ∈ Aν(x2) ⊃ Aν(x2 − x1) + Aν(x1), |yν
2 − yν

1 | ≤ ρ′|x1 − x2|.

Since the choice of the yν
1 was arbitrary, one has Aν(x1) ⊂ Aν(x2) + ρ|x1 − x2|, which

certainly implies equi-continuity since this inclusion holds for all ν ∈ IN .

Note that a bit more has actually been proved, namely, that these sublinear mappings

are equi-lipschitzian continuous with respect to the Pompeiu-Hausdorff distance. Finally,

combining the two last propositions, yields the following:

Corollary 10.3. For ν ∈ IN , let xν be a solution to the differential inclusion:

ẋ(t) ∈a.e. Aν(x(t)), t ∈ [0, T ],

x(t) ∈a.e. Kν , t ∈ [0, T ],

x ∈ W 1,1([0, T ]; IRn).
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If for the closed-valued sublinear mappings Aν : IRn
→→ IRm, supν d(0, Aν(x)) < ∞ for all

x, A = p-lmAν , and K = lmKν , then any W 1,1-cluster point of the {xν , ν ∈ IN} is a

solution of the differential inclusion:

ẋ(t) ∈a.e. A(x(t)), t ∈ [0, T ],

x(t) ∈a.e. K, t ∈ [0, T ],

x ∈ W 1,1([0, T ]; IRn).

Rather than assuming that the solutions of the approximating problems (DIν) have a

W 1,1 cluster point, let’s now relax this rather strong requirement to only inisting on weak

convergence of the derivatives. To do this we rely on a convergence theorem for differential

inclusions.

Theorem 10.4 [4, 5, theorem 7.2.1]. Let {Aν : IRn
→→ IRn, ν ∈ IN} be locally bounded.

Suppose ẋν(t) ∈a.e. Aν(xν(t)) for all ν, xν →p x0 almost everywhere, ẋν ⇀ z (weakly in

L1) with z ∈ L1. Then z(t) ∈a.e. cl con A(x(t)) when Aν →g A.

Proposition 10.5. Again consider the differential inclusions (DIν) and (DI) where {Kν ⊂

IRn, ν ∈ IN } are closed sets, K = lm Kν , {Aν : IRn
→→ IRn, ν ∈ IN } are locally bounded,

closed-, convex-valued mappings and A = p-lmAν .

If the mappings Aν are equi-osc, and {xν , ν ∈ IN} is a sequence of solutions to (DIν)

such that for some subsequence with ν ∈ N , xν →
N x0 in L1 and ẋν →

N ẋ0 weakly in L1,

then x0 is a solution of (DI).

Proof. Passing to a subsequence, if necessary, one has that with ν ∈ N , xν →p x0 for almost

all t ∈ [0, T ]. Since equi-outer semicontinuity and pointwise convergence imply graph-

convergence (theorem 3.3), from the convergence theorem 10.4 for differential inclusions

follows that ẋ(t) ∈a.e. A(x0(t)); recall that by assumption the mapping A is convex-valued.

Hence x0 is a solution of (DI).

A particular case to which this proposition is applicable is when the mappings Aν are

maximal monotone. It then follows from proposition 9.3, that A is also maximal monotone,

and then these mappings are closed-, convex-valued.

Acknowledgement. Thanks to a referee for suggesting the relaxation of the con-

vergence conditions on trajectories in proposition 10.5.
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