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A CHARACTERIZATION OF EPI-CONVERGENCE 
IN TERMS OF CONVERGENCE OF LEVEL SETS 

GERALD BEER, R. T. ROCKAFELLAR, AND ROGER J.-B. WETS 

(Communicated by Andrew M. Bruckner) 

ABSTRACT. Let LSC(X) denote the extended real-valued lower semicontinuous 
functions on a separable metrizable space X. We show that a sequence (fn) in 
LSC(X) is epi-convergent to f e LSC(X) if and only for each real a , the level 
set of height a of f can be recovered as the Painleve-Kuratowski limit of an 
appropriately chosen sequence of level sets of the fn at heights an approaching 
a. Assuming the continuum hypothesis, this result fails without separability. 
An analogous result holds for weakly lower semicontinuous functions defined 
on a separable Banach space with respect to Mosco epi-convergence. 

1. INTRODUCTION 

An extended real-valued function f: X -* [-oo, oc] on a metrizable space 
X is called lower semicontinuous provided its epigraph 

epif _ {(x, a): x c X, a c R, and a > f(x)} 

is a closed subset of X x R. Alternatively, f is lower semicontinuous provided 
for each real a, the level set at height a of f, lev(f, a) {_ x c X: f(x) < a}, 
is a closed subset of X. A fundamental convergence concept for sequences of 
lower semicontinuous functions in optimization theory, decision theory, homo- 
genization problems, the theory of integral functionals, algorithmic procedures, 
and variational analysis is the notion of epi-convergence (see, e.g., [MB, W1, 
W2, A, DG, V, RW, BL1, AF, BDM]). Given a sequence (fn) of lower semicon- 
tinuous functions on a metric space (X, d), we say that (fn) is epi-convergent 
to f, and we write f = e-limfn, provided at each x c X, the following two 
conditions both hold: 

(1) whenever (Xn) is convergent to x, we have f(x) < lim inffn (xn); 
(2) there exists a sequence (xn) convergent to x such that f(x) = 

lim fn (Xn ) 
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Epi-convergence of (f,) of f amounts to the Painlev&-Kuratowski convergence 
[K, ?29] of the sequence of epigraphs (epi f) to epif [A, Theorem 1.39]. 
Recall that given closed but possibly empty subsets A, A1, A2, A3, ... of X, 
(A,) is declared Painleve-Kuratowski convergent to A provided A = LiAn = 

LsA,, where 

Li A, = {x c X: there exists a sequence (a,) convergent to x 
with a, c A, for all but finitely many integers n}, 

LsA, = {x c X: there exist positive integers n, < n2 < n3 < and ak C Ank 

such that (ak) -* x}. 

When A = LiA, = LsA,, we write A = PK-limA,. Thus, (f,) is epi- 
convergent to f if and only if epi f = PK -lim epif,. As is well-known, even 
for convex functions, epi-convergence is neither stronger nor weaker than point- 
wise convergence [SW, WI]. 

The main result of this note asserts that for a separable metrizable space 
X, if f, fi, f2, f5, ... are lower semicontinuous functions on X and (fn) is 
epi-convergent to f, then for each real number a, lev(f, a) can be recovered 
as the Painlev&-Kuratowski limit of some sequence of level sets (lev(fn, can)) 
where (an) -* a. Furthermore, this level set convergence property actually 
characterizes epi-convergence. Finally, we show that this result necessarily fails 
without separability of X, assuming the continuum hypothesis. 

2. SOME BACKGROUND MATERIAL 

Unless otherwise specified, X will denote a metrizable space with an un- 
derlying metric d. When working with epigraphs, one must consider the 
product space X x R, and in this space, the box metric will be understood: 
P[(XI, a1), (X2, a2)] = max{d(xi, X2), Iai - a21}. For a c X and E > 0, 
we write S[a] for the open ball with center a and radius e. For A c X 
nonempty and x c X, d(x, A) = inf{d(x, a): a c A}, and we adopt the 
convention d(x, 0) = oo. The e-enlargement of a subset A of X is the set 

SJ[A]U Sja] = {x c X: d(x, A) < }. 
aEA 

In any metrizable space X (more generally in any first countable space), 
Painlev&-Kuratowski convergence of sequences of closed sets is compatible with 
the Fell topology [Fe], also called the topology of closed convergence, on the space 
of all closed subsets 2x of X (see, e.g., [FLL, p. 353] or [Bel, Lemma 1.0]). 
To introduce this topology, we need some notation. For E a nonempty subset 
of X, we designate the following subsets of 2X: 

E- _ {A c 2X: A n E / ol}, E+ _ {A c 2X: A c E}. 

With this notation in mind, the Fell topology 'CF on 2x has as a subbase all 
sets of the form V- and V is an open subset of X, and all sets of the form 
(KC)+ where K is a compact subset of X. Notice that A c V- means that 
A hits the open set V, whereas A c (KC)+ means that A misses the compact 
set K. By the compatibility of Painlev&Kuratowski convergence with the Fell 
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topology, we mean precisely this: given closed subsets A, A1, A2, ... of X, 
A c LiA, if and only if for each open subset V of X with A n v 0, we 
have A, n V :A o eventually, and Ls A, c A if and only if for each compact 
subset K of X with A n K = 0, we have A, n K = 0 eventually. 

It turns out that TF is Hausdorff if and only if X is locally compact and that 
with no assumptions whatsoever on X, the hyperspace (2X, TF) is compact 
[A, p. 251]! If X is separable, then the topology is sequentially compact, 
i.e., each sequence (A,) in 2x has a subsequence that is Painleve-Kuratowski 
convergent to some closed set A (see, e.g., [K, p. 340] or [AF, p. 23]). If X is 
both locally compact and separable, then TF is metrizable as well as compact 
[A, Proposition 2.77]. 

LSC(X) will represent the lower semicontinuous functions with domain X 
and values in [-oo, oo]. For f c LSC(X), we denote inf{f(x): x E X} by 
v (f ) . We call f proper provided that f is somewhere finite and for each x, 
we have f(x) > -oo. For f proper and lower semicontinuous, the possibly 
empty closed subset of minimizers of f will be denoted by Argminf. The 
following facts about level sets and the value function f -* v (f ) are known: 

(a) if f = e-limfn, then v(f ) > limsupv(f,) [A, Proposition 2.9]; 
(b) if f = e-limf, and (an) -+ a, the lev(f, a) D Lslev(f,, a,) [V, p. 199; 

W2, Theorem 1]. 
(c) if f = e-limfn, and if each f, is convex, then f is convex and for each 

a > v(f), we have lev(f, a) = PK-limlev(fg, a) [Mo2, Lemma 3.1]; 
(d) if f = e-limf, and v(f) = limv(f,) and for each a > v(f ) we have 

lev(f, a) = cl{x: f(x) < a}, then f = e-limf, if and only for each a > v(f ), 
we have lev(f, a) = PK-limlev(f,, a) [St, Th6oreme 2.1; BL1, Theorem 5.1]. 

To appreciate properly our characterization of epi-convergence, some coun- 
terexamples are in order. First in the convex case, it is clear that f = e-limf, 
need not force Argmin f to agree with PK-lim Argmin f, , even if Argmin f, is 
nonempty and v (f) = lim v (fn) for each n . On the line, let f, fi, f2, f3, . 
be defined by 

1() 0 ifx>0, 
f 0 if x < 0; f(x) = jvo ifx<0; 

fn (X){ (l/n 2)Ix -nl ifx>- for n = 1, 2, 3. 

On the other hand, in the convex case, lev(f, a) = PK -lim lev(f,, a) for each 
a > v(f ) need not force f = e-limf,: on the line, take f _ 0 and f, =-n. 

For nonconvex but quasi-convex functions, f = e-limfn does not guaran- 
tee convergence of level sets at heights above v (f Let f, fi, f2, f3, *** be 
defined by 

f() 0 ifx=0, 
Iif x?h0; 

fifx=0{0 i f x o=0,. 

fn (x) ={1+1 if for n = 1, 2, 3, .... JnhXenl? l 
1ln ifP l x 0, 

Then lev(f,. 1) :$ PK-limlev(f,, 1). 
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3. THE MAIN RESULT 

Theorem 3.1. Let X be a separable metrizable space and let f, fi, f2, ... be 
extended real valued lower semicontinuous functions on X. 

(1) If f = e- limf,, then for each a c R there exists a sequence (a,) of 
reals convergent to a such that lev(f, a) = PK-limlev(f,, a,); 

(2) iffor each a c R there exists a sequence (a,) of reals convergent to a 
with lev(f, a) = PK-limlev(fn, an), then f = e-limfn. 

Proof of Theorem 3. 1. (1) Fix a c R. As mentioned in ?2, it is well known that 
for any sequence (a,) convergent to a, we have Lslev(f,, a,) c lev(f, a). 
For completeness, we supply a proof. Suppose x c Lslev(f,, an), i.e., there 
exist indices nI < n2< n3 <. and Xnk c lev(fnk ,ank) for k = 1, 2, 3, ... 
such that (xnk) -* x. For n ? {nk: k E Z+}, set Xn = x. Then (xn) x; 
so, by epi-convergence, we have 

f(x) < lim inf fn (Xn) < lim inffnk (Xnk ) < lim inf ank = a. 
n--+oo k--*oo k--*oo 

This proves that x c lev(f, a). 
To establish the companion inclusion lev(f, a) c Li lev(fn, an) requires 

separability and a judicious choice of the scalars (an) . Let (xi) be a sequence in 
lev(f, a) whose set of cluster points is lev(f, a) (this is a stronger requirement 
than density of {xi: i c Z+} in lev(f, a)). Since epif c Liepifn, for each 
positive integer mr, there exists a positive integer Nm such that Vn > Nm there 
exists points {(w (m), a (m): i = 1, 2 ,3, ..., m} in epifn such that for each 
i E { 1,5 2, . .. , mI}, we have both d(w (nm), Xi) < 1 /m and la (m) - a1 < 1/m . 
Without loss of generality, we may assume that (Nm) is a strictly increasing 
sequence. We now may define our sequence of scalars (an): take an = a + 1 
for n<Ni andfor Nm n<Nm+1,take an=a+1/M, m= 1,2, 3,4 . 
We now show that this choice does the job. 

To show that lev(f, a) c Li lev(fn, an), we find it convenient to work with 
the Fell topology equivalent as described in ?2. To this end, suppose lev(f, a) n 
V 7& 0 where V is an open subset of X. Pick x c lev(f, a) n V and E > 0 
such that Se[x] c V. Since x is a cluster point of (xi), we may choose 
k c Z+ so that both 1/k < e/2 and d(xk, x) < e/2. Fix n > Nk; then 
there is a largest integer m such that n > Nm. We have d(wk), Xk) < 1/r 
and la(m) - al < 1/m. Since fn(wkm)) < a(m) < a + 1/m = an, we have 
W(M) c lev(fn, an). Also, 

d(wm), x) < d(w(m) , Xk) + d(Xk X) < - + +< 

so that w (m) c V. This means that for each n > Nk , we have V n lev(fn, an) 0 kn 
0. We may now assert that lev(f, a) c Lilev(fn, ?an) so that lev(f, a) = 
PK -lim lev(fn, 5an) 

(2) The condition lev(f, a) c Lilev(fn, an), valid for each a c R and 
for some sequence (an) convergent to a, immediately implies that epi f c 
Liepi f. In fact, if we just know that lev(f, a) c Lilev(fn, ?an) for each 
a > v (f), then epi f c Li epi fn holds. The details are left to the reader. 



A CHARACTERIZATION OF EPI-CONVERGENCE 757 

To see that Ls epi f, c epi f, suppose to the contrary that (x, /3) c Ls epi f, 
but that (x, /3) ? epi f. Then /3 < f(x). We can find an increasing se- 
quence of integers n1 < n2 < n3 < n4 < ... and (Xk, /3k) c epifflk such that 
((Xk, /3k)) is convergent to (x, /3) . Choose a scalar a between /3 and f(x), 
and let (a,) be a sequence of scalars convergent to a for which lev(f, a) = 
PK -lim lev(f,, a,). Then for all k sufficiently large, we have /3k < alk. For 
all such k, we have Xk E lev(ffk, afk) and the condition Lslev(fg, an) C 

lev(f, oa) now yields x E lev(f, a). This contradicts f(x) > a. El 

The proof of the second assertion in the statement of Theorem 3.1 does 
not use separability of X. On the other hand, if we accept the continuum 
hypothesis, the first assertion fails in each nonseparable space. 

Example. Let (X, d) be a nonseparable metric space. By Zorn's Lemma, for 
each E > 0 we can find a maximal e-discrete subset We of X, i.e., for each w1 
and w2 in WeJ, we have d(w1, w2) > e. By the maximality of WeJ, we have 
Se[W,] = X. Thus, by nonseparability, there exists some g0 > 0 for which 
W _W'J0 is uncountable. Let Q be the following set of rational sequences: 

Q={g: Z+ -*Q:VkEZ+, g(k) >O, and lim g(k) =O} 

Then Q has the cardinality of the continuum; so, by the continuum hypothesis, 
there exists a one-to-one function (o: Q -* W. Let f: X -* R be the charac- 
teristic function of (0(Q)C. We produce a sequence (fr) of real-valued lower 
semicontinuous functions epi-convergent to f for which condition (1) in the 
statement of Theorem 3.1 fails. 

For each g E Q, let us write wg for (0(g) . We define f: X -*R by 

fn (X) 
{g(n) if x = Wg for some g, 

1 otherwise. 

Clearly (fn) is pointwise and epi-convergent to f . Let (an) be an arbitrary 
sequence of reals tending to zero. We show that 

(0(Q) = Argminf = lev(f, 0) ? Lilev(fn, an). 

First, without loss of generality, we may assume that an > 0 for each n, for 
replacing an by max{an, 1 /n} results in a larger level set for each n. Now 
choose g E Q such that for each n we have an < g(n) < 2an . We claim that 

although wg E lev(f, 0), we have wg ? Li lev(fn, an). To see this, notice 
that Se0 (wg) contains no other points of W, so that for each positive integer 
n with g(n) < 1 we have 

inf{fn(x): X E Seo(wg)} = fn(wg) = g(n) > an. 

Thus, for all n sufficiently large, we have Se0(wg) n lev(fn v an) = 0 

The general line of reasoning in our last example can be adapted to show 
that the sequential compactness of Painleve-Kuratowski convergence fails with- 
out separability. Let X be the set of all functions f: Z+ -* {0, 1 } such 
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that f(n) = 1 for infinitely many n, and let V/ be a bijection from some 
uncountable e-discrete subset W of X onto S. For each n E Z+, let 
An= {x E W: yi(x)(n) = 1}. Now let (An,) be an arbitrary subsequence of 
(An) . We claim that Li Ank is a proper subset of Ls Ank . To see this, choose 
x E W such that Vg(x) is the characteristic function of {n2, n4, n6, ... 

Since x E An2k for each k , we have x E Ls Ank . However, by the e-discreteness 
of W, x ? LiAnk . 

In metric spaces in which closed and bounded sets are compact, Painlev& 
Kuratowski convergence of sequences of sets agrees with other convergence no- 
tions that are, in more general settings, much stronger. The most important of 
these is certainly convergence with respect to the metrizable bounded Hausdorff 
topology 'CbH, which when specialized to epigraphs, is called the epi-distance 
topology [AW, ALW, AP, Be3, BL2, P]. Convergence of a sequence (An) to A 
in this sense means uniform convergence of the associated sequence of distance 
functionals (d(., An)) to d(., A) on bounded subsets of X. Alternatively, it 
can be shown [AP] that (An) is TbH-convergent to A if and only if for each 
nonempty bounded subset B of X and each E > 0, there exists N c Z+ such 
that for each n > N we have both A n B c Se[An] and An n B c Se[A]. Notice 
that 0 = TbH-limAn if and only if An is eventually outside each bounded set. 
This is not the case for Painlev&-Kuratowski convergence in a general metric 
space. 

It is indeed possible to give a shorter proof of Theorem 3.1 when closed 
and bounded sets are compact, using the coincidence of the two convergence 
notions. By virtue of the next example, we see that Theorem 3.1 remains valid 
when Painlev&Kuratowski convergence is replaced by TbH-convergence only in 
this restrictive setting. 

Example. Let (X, d) be a metric space in which some closed and bounded set is 
noncompact, and fix xo c X. We produce a sequence f, fA, f2, ... in LSC(X) 
with f = -cbH-limfn and with Argmin f = {xo} , but such that whenever (an) -* 

v(f), we do not have Argminf = TbH-limlev(fnf, an). Choose p > 0 such 
that B = {x E X: d(x, xo) < p} is noncompact. Let X1, X2, X3, ... be a 
sequence in B without a cluster point, and let j = inf{d(xo, Xk): k E Z+}. 
We define our functions f and fn as follows: 

0O if x =x 

f(x) = Ik ifX =Xk forsomek> 1, 

t 1 otherwise; 
jl/n ifx=xO, 

fn(x)= 1/k if x=xk forsome k > 1, forn = 1, 2, 3 .... 
1 otherwise, 

Evidently, we have uniform convergence of (fn) to f, from which TbH-conver- 
gence of epigraphs follows. Clearly, Argminf = {xo} and v(f) = 0. Fix 
r c Z+ . For the inclusion 

B n Argmin f c Sj (lev(fn, an)) 

to hold, we must have a,n > 0. But for each an > 0, lev(fn, ?an) must contain 
all Xk for k sufficiently large, so that the inclusion 

B n lev(fn, an) c S, (Argmin f) 
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must fail whenever B n Argminf C S,(lev(fn, an) holds. As a result, 
(lev(f,, an)) cannot converge in the bounded Hausdorff topology to Argmin 
f for any choice of (an) convergent to zero. 

The reader may consult [BL2,?3] for the interplay between convergence of 
convex functions in the epi-distance topology and the convergence of their level 
sets in a general normed space. 

4. THE WEAKLY LOWER SEMICONTINUOUS CASE 

In a seminal paper in the theory of set convergence, Mosco [Mo 1] introduced 
an analogue of Painleve-Kuratowski convergence for sequences of closed convex 
sets in a Banach space and sequences of lower semicontinuous convex functions 
as identified with their epigraphs. This convergence notion has been widely 
studied over the past twenty years and is invariably called Mosco convergence 
in the literature. A sequence of closed convex sets is declared Mosco convergent 
(A = M-lim An) to a closed convex set A provided A = Li An = Ls An with re- 
spect to the metric given by the norm, and in addition, A = w-Li A, = w-Ls An, 
where w-LiAn and w-LsAn denote the lower and upper limits of the sequence 
with respect to the weak topology. It is well known and easy to verify that 
A = M-lim A, if and only if A c Li A, and w-Ls An c A. Mosco convergence 
so defined has been a particularly productive notion in the setting of reflexive 
spaces, for then A = M-lim An implies AO = M-lim AO and if f = M-lim fn, 
i.e., epi f = M-lim epi fn, then f* = M-limfn* [Mo2]. Here, AO represents 
the polar of a convex set A, and f* represents the conjugate of a convex func- 
tion f, and closedness and nonemptiness of sets and properness of functions 
is understood. Continuity of such maps has been subsequently shown to char- 
acterize reflexivity [BB]. We also note that in the reflexive setting, interesting 
connections between Mosco convergence and Banach space geometry have been 
revealed by several authors (see, e.g. [A, So, T, BF, BP]). 

Without reflexivity, Mosco convergence of sequences of convex sets and con- 
vex functions in any Banach space is compatible with a topology of the Fell 
type identified in [Be2]. This topology of Mosco convergence TM on the closed 
convex subsets C(X) of a Banach space has as a subbase all sets of the form 
V- where V is an open subset of X, and all sets of the form (KC)+ where 
K is a weakly compact subset of X (this should come as no surprise). Thus, 
we have in any Banach space X, A = M-lim An if and only if A = TM-lim An 
[Be2, Theorem 3.1]. Reflexivity for the Mosco topology seems to parallel local 
compactness for the Fell topology: TM is Hausdorff if and only if X is reflexive 
[BB], and if X is separable and reflexive then the space of nonempty closed 
convex subsets equipped with TM iS completely metrizable [A, Be2, T]. 

Although it has not been frequently observed, Mosco convergence and the 
associated Mosco topology are also compatible for the larger class of weakly 
closed subsets of X and for the weakly lower semicontinuous functions on X 
(weak lower semicontinuity of f: X -* [-oo, oo] means that epif is weakly 
closed in X x R) . Moreover, a standard proof in the convex case [Mo 1, Lemma 
1.10] shows that for weakly lower semicontinuous functions f, fi, f2, f3, ... 

on X, the relation epi f = M-lim epi fn locally amounts to the conjunction of 
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the expected two conditions: at each x c X, 
(1) whenever the sequence (x,) is weakly convergent to x, we have f (x) < 

lim inf fn (Xn ); 
(2) there exists a sequence (x,) convergent strongly to x such that f (x) = 

lim fn (Xn) . 

A straightforward modification of the proof of Theorem 3.1 yields this analog: 

Theorem 4.1. Let X be a separable Banach space and let f, fi, f2, ... be 
extended real valued weakly lower semicontinuous functions on X . 

(1) If f = M-limf,, then for each a E R there exists a sequence (a,) of 
reals convergent to a such that lev(f , a) = M- lim lev(fg, a,); 

(2) iffor each a E R there exists a sequence (a,) of reals convergent to a 
with lev(f, a) = M- limlev(fg, an), then f = M- lim fn . 

Recall that an extended real-valued function defined on a normed linear space 
is called quasi-convex provided its level sets are convex. As weak lower semi- 
continuity and lower semicontinuity for such functions coincide, we have this 
corollary of interest. 

Corollary 4.2. Let X be a separable Banach space and let f, fi, f2, ... be 
extended real-valued lower semicontinuous quasi-convex functions on X . 

(1) If f = M-limf,, then for each a E R there exists a sequence (a,) of 
reals convergent to a such that lev(f, a) = M-limlev(f%, a,); 

(2) iffor each a E R there exists a sequence (a,) of reals convergent to a 
with lev(f, a) = M- limlev (f, a,), then f = M- lim fn . 
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