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1. Introduction

It is not unusual to have to deal with optimization problems involving discontinuous func-

tions, for example: optimization problems involving set-up costs or impulse controls (Ben-

soussan and Lions [5]), the control of discrete events systems (Gong and Ho [14], Rubin-

stein [36], Ermoliev and Gaivoronski [9]), and control problems with pre- and post-accident

regimes whose systems’ parameters do not evolve continuously. Even a convex optimization

problem is sometimes replaced by one involving discontinuous penalties such as indicator

or characteristic functions. Problems defined in terms of marginal functions, expressing

the dependence of the optimal value of some subproblem (as in stochastic programming

problems, for example) on certain parameters are in general discontinuous. In order to

deal with such applications, a number of efforts have been made to develop a subdiffer-

ential calculus for nonsmooth, and possibly discontinuous, functions. Among the many

possibilities let us mention the notions due to Rockafellar [31], Aubin [3], Clarke [6], Ioffe

[18], Frankowska [11], Michel and Penot [25] and Mordukhovich [26] in the context of

variational analysis, to Warga [43] for subdifferentials obtained via certain approximating

scheme, to Demyanov and Rubinov [7] for quasi-differentiable functions, and to Ermoliev

[9] and Polyak [30] in the context of stochastic approximation techniques for optimization

problems.

Another approach to the differentiation of “nonclassical” functions, which eventually

became known as the theory of distributions (in Russia, as the theory of generalized func-

tions), was developed in 1930’s by Sobolev [38] and Schwartz [37]. This technique is in

wide use in mathematical physics and related engineering problems. Although, one can

find in the literature occasional reference to a connection between these two developments,

the notion of differentiability in the sense of distributions is not used in variational analysis

or in the design of solution procedures for optimization problems involving “nonclassical”

functions. Probably, one of the reasons for this, is that in the theory of distributions,

(standard) functions defined on lRn are redefined as functionals on a certain functional

space. The same applies to their gradients.

In the development of a subdifferential calculus for (discontinuous) functions, we shall

appeal to some of the results of the theory of distributions, but our aim is to bring back

the algebraic manipulations to operations that can be carried out in lRn, in particular,

by assigning a family of distributions to a point in lRn. More specifically, we associate

with a point x ∈ lRn, a family of mollifiers (density functions) whose support tends toward

x and converge to the dirac function δ(x − ·). Given such a family, say {ψθ, θ ∈ lR+},

a “generalized” function associated with a function f : lRn → lR is then defined as the

clusters of all possible values generated by the pairings of f with ψν . A set of generalized

gradients, called here mollifier subgradients is defined in a similar fashion.

From another angle, one can also link this approach to a technique involving “aver-

aged” functions introduced by Steklov [39], [40] and Sobolev [38]. In the case of continu-

ous functions, these averaged functions converge uniformly to f , and is then related to an
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approach suggested by Warga [42-44], see also Frankowska [12].

For the gradients of averaged functions there are simple unbiased stochastic estima-

tors based on finite differences (some will be mentioned later on). This opens up the

possibility of minimizing the original (discontinuous) function through the minimization

of a sequence of smooth approximating averaged functions. Such an approach, initiated in

section 5, relies on the ideas inherent in stochastic quasi-gradient methods and dynamic

nonstationary optimization as were used by Ermoliev and Nurminski [10], Gaivoronski

[13], Katkovnik [19], Nikolaeva [27] in convex nondifferentiable optimization, by Gupal

[15], Mayne and Polak [24] in the Lipschitz continuous case, and by Gupal and Norkin

[17] in the discontinuous case.

Section 2 introduce a notion of convergence for discontinuous function, and prepares

the way to a justification that averaged functions are consistent approximating functions

when dealing with the minimization of a discontinuous functions. Section 3 is devoted

to the properties of averaged functions, and section 4 introduces the notion of a mollifier

subgradient based on the approximation of a discontinuous function by averaged functions.

Finally section 5, outlines some potential optimization procedures.

2. eh-Convergence

Let f : lRn → lR be a proper (f 6≡ ∞, f > −∞) extended real-valued function with

dom f = {x ∈ lRn|f(x) <∞} the (nonempty) set on which it is finite. Its epigraphical (or

lower semicontinuous) closure cle f is given by

cle f(x) := lim inf
x′→x

f(x′) = inf
xν→x

lim inf
ν→∞

f(xν)

and its hypographical (or upper semicontinuous) closure clh f is

clh f(x) := lim sup
x′→x

f(x′) = sup
xν→x

lim sup
ν→∞

f(xν);

inf and sup are taken over all sequences xν converging to x. The function cle f is lower

semicontinuous and clh f is upper semicontinuous.

For an arbitrary sequence of functions { fν : lRn → lR, ν ∈ lN }, we denote by e−li fν

its lower epi-limit, i.e.,

(e−li fν)(x) := inf
xν→x

lim inf
ν→∞

fν(xν),

and by h−ls fν its upper hypo-limit, i.e.,

(h−ls fν)(x) := sup
xν→x

lim sup
ν→∞

fν(xν);

here also inf and sup are calculated with respect to all sequences converging to x. It is easy

to see that e−li fν is lower semicontinuous and that h−ls fν is upper semicontinuous, if

necessary cf. [33] for more details; note that h−ls fν = − e−li(−fν).
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2.1. Definition. Given a sequence of functions { fν : lRn → lR, ν ∈ lN }, a function

f : lRn → lR is an epi-sublimit of the sequence {fν} if cle f ≤ e−li fν . It is a hypo-suplimit

if h−ls fν ≤ clh f . If f is both an epi-sublimit and a hypo-suplimit, we shall say that the

sequence fν eh-converges to f .

One can view eh-convergence as an extended graph-convergence. With gph fν , the

graph of the function fν , eh-convergence means that

Lim supν→∞ gph fν ⊂ { (x, α) ∈ lRn × lR | cle f(x) ≤ α ≤ clh f(x) }

where Lim sup is the outer (superior) set-limit; for a sequence of sets Cν , Lim supν C
ν

consists of the cluster points of all sequences {uν} with uν ∈ Cν for ν sufficiently large.

A notion of eh-convergence (for functions with values in a function space) also surfaced

in the study of the stability properties of integral functionals with discontinuous integrands,

Artstein and Wets [1].

3. Averaged functions

Averaged functions will be defined relative of a specific family of mollifiers; our usage of

the term mollifier differs somewhat from the standard one in that we do not require that

mollifiers be necessarily analytic.

3.1. Definition. Given a locally integrable function f : lRn → lR and a family of mollifiers

{ψθ : lRn → lR+, θ ∈ lR+ } that by definition satisfy
∫

lRn

ψθ(z) dz = 1, suppψθ := { z ∈ lRn |ψθ(z) > 0 } ⊂ ρθ lB with ρθ ↓0 as θ ↓0,

the associated family { fθ, θ ∈ lR+ } of averaged functions is defined by

fθ(x) :=

∫

lRn

f(x− z)ψθ(z) dz =

∫

lRn

f(z)ψθ(x− z) dz.

For example, the family of mollifiers could be of the following type: let ψ be a density

function with suppψ bounded, αθ ↓0 as θ ↓0, and

ψθ(z) :=
ψ(z/αθ)

(α
θ
)
n .

A mollifier is thus a probability density function defined on lRn but the family {ψθ} must

possess some specific properties. One can also express fθ as a convolution

fθ = f ⋆ ψθ.

Sobolev [38] introduced “averaged functions” in his study of generalized functions

(distributions) that could serve as solutions of certain equations in mathematical physics;

he also required that the mollifiers ψθ be analytic (of class C∞). In terms of the theory of

distributions, fθ(x) is the value of the distribution f at ψθ(x− ·), x playing the role of a

parameter.
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3.2. Theorem. Let { fθ, θ ∈ lR+ } be a family of averaged functions associated with a

locally integrable function f : lRn → lR, and suppose that xθ → x as θ ↓0. Then

cle f(x) ≤ lim inf
θ ↓ 0

fθ(x
θ) ≤ lim sup

θ ↓ 0

fθ(x
θ) ≤ clhf(x).

Consequently, the averaged functions fθ eh-converge to f .

Proof. It will suffice to prove the first inequality, the second one is evident and the proof

of the last one is similar to that of the first. eh-convergence is an immediate consequence

of this string of inequalities.

By definition of lower semicontinuity, for all x ∈ lRn and ε > 0 there exists V , a

neighborhood of 0, such that f(x− z) ≥ cle f(x)− ε for all z ∈ V . For θ sufficiently small,

suppψθ ⊂ V and then

fθ(x
θ) =

∫

lRn

f(xθ − z)ψθ(z) dz =

∫

V

f(xθ − z)ψθ(z) dz

≥

∫

V

cl f(xθ − z)ψθ(z) dz ≥ (cle f(xθ) − ε)

∫

ψθ(z) dz.

Hence, lim infθ ↓ 0 fθ(x
θ) ≥ cle f(x) − ε. The proof is completed by letting ε ↓0.

3.3. Corollary. Let f : lRn → lR be continuous, and {fθ, θ ∈ lR+} an associated family

of averaged functions. Then, the averaged functions fθ converge continuously to f , i.e.,

fθ(x
θ) → f(x) for all xθ → x. In fact, the averaged functions fθ converge uniformly to f

on every bounded subset of lRn.

Proof. Evident.

When the function f is not continuous, one cannot expect to have continuous conver-

gence of the averaged functions to f . But that is also more than what is required. For our

purposes, we only need to establish that the averaged functions converge to f is a sense

that will guarantee the convergence of minimizers and infima. This is precisely what is

accomplished by epi-convergence.

3.4. Definition (Aubin and Frankowska, [4], Rockafellar and Wets [33]). A sequence of

functions { fν : lRn → lR, ν ∈ lN } epi-converges to f : lRn → lR at x if

(i) lim infν→∞ fν(xν) ≥ f(x) for all xν → x;

(ii) limν→∞ fν(xν) = f(x) for some sequence xν → x.

The sequence {fν}ν∈lN epi-converges to f if this holds for all x ∈ lRn, in which case

we write f = e−lm fν .

Clearly, if f is the epi-limit of some sequence, then f is necessarily lower semicontin-

uous. Moreover, if the fν converge continuously, and a fortiori uniformly, to f , they also

epi-converge to f .
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For example, if (x, y) 7→ g(x, y) : lRn × lRm → lR is (jointly) lsc at (x̄, ȳ) and is

continuous in y at ȳ, then for any sequence yν → ȳ, the corresponding sequence of functions

{ fν(·, yν), ν ∈ lN } epi-converges to f(·, ȳ) at x̄.

3.5. Theorem (Attouch and Wets [2]). If the sequence of functions { fν : lRn → lR, ν ∈

lN } epi-converges to f : lRn → lR at all x ∈ D ⊂ lRn, then for any compact set K ⊂ D,

one has

infK f
ν −→ infK f,

and

∀xν → x : [ fν(xν) ≤ inf fν + εν , εν ↓0, ] =⇒ x ∈ argmin f.

Epi-convergence of the averaged functions fθ to f will be guaranteed by the following

property of f :

3.6. Definition. A function f : lRn → lR is strongly lower semicontinuous at x, if it is

lower semicontinuous at x and there exists a sequence xν → x with f continuous at xν

(for all ν) such that f(xν) → f(x). The function f is strongly lower semicontinuous if this

holds at all x.

Strong lower semi-continuity excludes the possibility of discontinuities that are lo-

calized on lower dimensional subsets of lRn. If we think of (x, f(x)) as the state of a

system, strong lower semicontinuity means that this state can always be reached by fol-

lowing a path along which the evolution of the system is continuous (with no jumps). If

x is “time-dependent”, then although we may expect sudden changes from one state to

another, either before or after the jump, the evolution will be continuous, one doesn’t

expect instantaneous jumps followed by an immediate return to normal regime.

3.7. Theorem. For any strongly lower semicontinuous, locally integrable function f :

lRn → lR, and any associated family { fθ, θ ∈ lR+ } of averaged functions, one has that

f = e−lm fθ, i.e., for any sequence θν ↓0, f = e−lm fθν .

Proof. Pick any x. We are going to show that the fθ epi-converge to f at x. The strong

lower semicontinuity of f at x provides us with a sequence xν → x such that f(xν) → f(x)

with f continuous at xν . From corollary 3.3, it follows that for all ν, fθ(x
ν) → f(xν), and

consequently a standard diagonalization process will yield (for any sequence θk → 0 as

k → ∞) a sequence xk such that fθk(xk) → f(x). This yields condition (ii) in definition

3.4. For condition (i) of definition 3.4, we simply appeal to proposition 3.2.

Theorem 3.7 tells us that if one has to minimize the function f , the averaged functions

fθ could be used in a consistent approximation scheme, i.e., that implies the convergence of

the minimizers. However, before we follow this route, we would have to make sure that their

properties makes them amenable to minimization by existing —or possibly, modified—

algorithmic procedures. The remainder of this section is devoted to the continuity and
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differentiability properties of averaged functions, in particular for the class of Steklov

(averaged) functions.

3.8. Definition. Given a locally bounded function f : lRn → lR, the Steklov (averaged)

functions are defined as follows: for α > 0

fα(x) =

∫

lRn

f(x− z)ψα(z) dz

where

ψα(z) =

{

1/αn, if max1,...,n |zi| ≤ α/2;
0, otherwise.

Equivalently,

fα(x) =
1

αn

∫ x1+α/2

x1−α/2

dy1 . . .

∫ xn+α/2

xn−α/2

dyn f(y).

This class of averaged functions were introduced by Steklov [39] in 1907, and used by

Kolmogorov and Fréchet for compactness tests in Lp. In the context of smooth optimiza-

tion, they were used by Katkovnik [19], Nikolaeva [27], Gupal [15-16] and Mayne and

Polak [24].

The next proposition records the well-know fact that Steklov functions are locally

Lipschitz continuous.

3.9. Proposition. For locally bounded functions f : lRn → lR, the associated Steklov

functions fα are locally Lipschitz continuous, i.e., on each compact set K ⊂ lRn, the

function fα is Lipschitz continuous on K with Lipschitz constant κ,

κ = (2n/α) sup
x∈Kα

f(x), where Kα := { x+ z | x ∈ K, max
i=1,...,n

|zi| ≤ α/2 }.

Differentiability of average functions, however, cannot be guaranteed in general, unless

the mollifiers ψθ are sufficiently smooth or if f itself has a sufficient level of continuity.

3.10. Proposition (Sobolev [38], Schwartz [37]). Let f : lRn → lR be a locally inte-

grable. Whenever the mollifiers ψθ are smooth (of class C1), so are the associated averaged

functions fθ with gradient

∇fθ(x) =

∫

lRn

f(y)∇ψθ(x− y) dy

3.11. Proposition (Gupal [15]). For f : lRn → lR locally Lipschitz, the Steklov (aver-

aged) functions fα are continuously differentiable, and their gradients are given by

∇fα(x) =
n

∑

i=1

ei
1

αn − 1

∫ x1+α/2

x1−α/2

dy1 · · ·

∫ xi−1+α/2

xi−1−α/2

dyi−1

∫ xi+1+α/2

xi+1−α/2

dyi+1 · · ·

∫ xn+α/2

xn−α/2

dyn

1

α
[f(y1, . . . , yi−1, xi −

1
2α, yi+1, . . . yn) − f(y1, . . . , yi−1, xi +

1
2α, yi+1, . . . yn)]
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where ei is the i-th unit coordinate vector.

This gradient can also be expressed as

∇fα(x) =
n

∑

i=1

ei

∫

1
2

−
1
2

dξ1 · · ·

∫

1
2

−
1
2

dξi−1

∫

1
2

−
1
2

dξi+1 · · ·

∫

1
2

−
1
2

dξn λα(x, ξ)

where

λα(x, ξ) =
1

α
[f(x1 + αξ1, . . . , xi−1 + αξi−1, xi +

1
2α, xi+1 + αξi+1, . . . , xn + αξn)

− f(x1 + αξ1, . . . , xi−1 + αξi−1, xi −
1
2α, xi+1 + αξi+1, . . . , xn + αξn)].

This means that ∇fθ(x) is the expectation of the random vector λλλα(x, ξξξ) where ξξξ =

(ξξξ1, . . . ξξξn) is a random vector, whose elements are independent and uniformly distributed

on [−1/2, 1/2 ]. In other words, λλλα(x, ξξξ) is an unbiased estimator of the gradient of fα at

x.

3.12. Remark. Although, in the case of discontinuous functions f , we cannot “reach”

differentiability for Steklov functions, it is always possible to do so, if the averaging process

is repeated a second time. This follows immediately from propositions 3.9 and 3.11. Given

a locally integrable function f : lRn → lR, let

fαβ(x) :=

∫

lRn

fα(x− z)ψβ(z) dz

=

∫

lRn

dy

∫

lRn

dz f(x− y − z)ψα(y)ψβ(z)

with the densities ψα and ψβ as in definition 3.8. We can also express this as an expectation,

fαβ(x) = E{f(x− αξξξ − βηηη)}

with ξξξ and ηηη random vectors whose elements are independent and uniformly distributed

on [−1/2, 1/2 ]. The gradient can be calculated from proposition 3.11. One has

∇fαβ(x) =

∫

1
2

−
1
2

dξ1 · · ·

∫

1
2

−
1
2

dξn

(

∫

1
2

−
1
2

dη1 · · ·

∫

1
2

−
1
2

dηi−1

∫

1
2

−
1
2

dηi+1 · · ·

∫

1
2

−
1
2

dηn λαβ(x, ξ, η)
)

where, with zαβi (ξ, η) := xi − αξi − βηi,

λαβ(x, ξ, η) :=

n
∑

i=1

ei
[

f(zαβ1 (ξ, η), . . . , zαβi−1(ξ, η), xi + αξi +
β

2
, zαβi+1(ξ, η), . . . , z

αβ
n (ξ, η))

− f(zαβ1 (ξ, η), . . . , zαβi−1(ξ, η), xi + αξi −
β

2
, zαβ(ξ, η), . . . , zαβn (ξ, η))

]

β−1.
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Again, λλλαβ(x, ξξξ, ηηη) is an unbiased estimate of the gradient ∇fαβ(x) with ξξξ, ηηη random

vectors whose elements are independent and uniformly distributed on [−1/2, 1/2 ].

3.13. Remark. Let us also record an important relationship between the estimates of

the gradients of averaged functions and stochastic gradients. We consider the following

averaged functions:

fθ(x) =
1

θn

∫

lRn

f(z)ψ(
x− z

θ
) dz =

∫

lRn

f(x− θz)ψ(z) dz,

with f locally integrable, ψ is a density function with compact support and such that ∇ψ

is Lipschitz continuous. Then, the gradient of fθ,

∇fθ =
1

θn+1

∫

lRn

f(z)∇ψ(
x− z

θ
) dz

is locally Lipschitz with constants proportional to 1/θ2. The following random vector (cf.

Gupal [16])

λλλθ,△(x, ξξξ, ηηη) =
1

△
[ f(x− θξξξ + △ηηη) − f(x− θξξξ) ]ηηη

is a stochastic quasi-gradient of fθ at x (Ermoliev [9]), where ξξξ is distributed in accordance

with the density function ψ, and ηηη is a random vector whose elements are independent

and uniformly distributed on [−1, 1 ]. To see this, note that

Eξ,η{λλλθ,△(x, ξξξ, ηηη)} = Eη
1

△
[ fθ(x+ △ηηη) − fθ(x) ]ηηη

=
2

3
∇fθ(x) +

△

2
O(x, θ,△)

where O(x, θ,△) is locally bounded.

Observe also that if ξξξ is distributed in accordance with the density function ψθ and ηηη

is a random vector whose elements are independent and uniformly distributed on [−1, 1 ],

then

λλλθ,△(x, ξξξ, ηηη) =
1

△
[ f(x− ξξξ + △ηηη) − f(x− ξξξ) ]ηηη

is a quasi-gradient for the averaged function fθ, i.e., it provides a, possibly biased, estimate

of the gradient of fθ as calculated in proposition 3.10.

3.14. Remark. To complete this analysis of averaged functions, let us point out that the

class of averaged functions that we have introduced is based on convolutions with mollifiers

that are of the same nature as those used in theory of distributions. One could however

have worked with a more general class and still obtain a convergence result similar to that

of theorem 3.2; in fact, not just eh-convergence, but most of the results in this section.

Let {ϕθ : lRn → lR+, θ ∈ lR+ } be a class of integrable functions such that
∫

ϕθ(z) dz = 1.
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Suppose that the function f : lRn → lR and the {ϕθ} are such that fθ = f ⋆ ϕθ is well-

defined (on lRn) and that for all δ > 0:

limθ ↓ 0

∫

|z|>δ

|f(z)|ϕθ(x− z) dz = 0, uniformly in x, limθ ↓ 0

∫

|z|≤δ

ϕθ(z) dz = 1;

To see that the functions fθ still eh-converge to f , note for all x ∈ lRn and ε > 0 there

exists V , a neighborhood of 0, such that f(x− z) ≥ cle f(x)− ε for all z ∈ V and that for

xθ → x as θ ↓0, for all δ > 0 and θ sufficiently small,

fθ(x
θ) =

∫

|z|≤δ

f(z)ϕθ(x
θ − z) dz +

∫

|z|>δ

f(z)ϕθ(x
θ − z) dz

≥ (cle f(x) − ε)

∫

|z|>δ

ϕθ(z) dz +
ε

2

and hence lim infθ ↓ 0 fθ(x
θ) ≥ cle f(x) (after letting ε ↓0). For example, let ϕ be the

gaussian density function, i.e.,

ϕ(y) =
1

(2π)n/2
e−|y|2 .

Consider the following family of functions

fθ(x) =
1

θn

∫

lRn

f(y)ϕ(
x− y

θ
) dy, θ > 0.

Suppose that |f(x)| ≤ γ1 + γ2|x|
γ3 with γ1, γ2, γ3 positive constants. Then, the functions

fθ eh-converge to f as θ ↓0 and each functions fθ is analytic. One has

∇fθ(x) =
1

θn+2

∫

lRn

f(x− y)ϕ(
y

θ
) dy =

1

θ

∫

lRn

[ f(x− θz) − f(x) ]zϕ(z) dz;

passing differentiation under the integral sign is justified by the theory of tempered distri-

butions, cf. Schwartz [37]. Thus the random vector λλλθ(x, ξξξ), defined by

λθ(x, ξ) =
1

θ
[ f(x− θξ) − f(x) ]ξ

with ξξξ a gaussian random variable (density ϕ), is an unbiased statistical estimator of

∇fθ(x).



10

4. Mollifier subgradients

We are going to exploit the fact that averaged functions determine an epi-convergent family

of approximating functions, and that rather explicit expressions can be obtained for their

gradients, to define a new notion of subgradient based on a family of mollifiers. In the

next section, these subgradients are used to design minimization procedures aimed, in

particular, at the minimization of discontinuous functions.

4.1. Definition. Let f : lRn → lR be locally integrable and {fν := fθν , ν ∈ lN} a sequence

of averaged functions obtained from f by convolution with the sequence of mollifiers {ψν :=

ψθν : lRn → lR, ν ∈ lN } where θν ↓0 as ν → ∞. Assume that the mollifiers are such that

the averaged functions fν are smooth (of class C1), as would be the case if the mollifiers

ψν are smooth. The set of the ψ-mollifier subgradients of f at x is by definition

∂ψf(x) := Lim supν→∞{∇fν(xν) | xν → x },

i.e., the cluster points of all possible sequences {∇fν(xν)} such that xν → x. The full (Ψ-)

mollifier subgradient set is

∂Ψf(x) :=
⋃

ψ
∂ψf(x)

where ψ ranges over all possible sequences of mollifiers that generate smooth averaged

functions.

The set ∂ψf(x) of ψ- mollifier subgradients is closed, and clearly depends on the choice

of the sequence {ψν} that is used in its construction. The full mollifier subgradient set

∂Ψf(x) is also convex and clearly does not depend on any particular choice of mollifiers.

The sets ∂ψf(x) and ∂Ψf(x) are always nonempty if the function f is almost everywhere

smooth and its gradient is locally bounded on the set where it exists (as in corollary 3.3

but applied here to ∇f).

4.2. Definition. Let f : lRn → lR be locally integrable and {fν := fθν , ν ∈ lN} a sequence

of averaged functions obtained from f by convolution with the sequence of mollifiers {ψν :=

ψθν : lRn → lR, ν ∈ lN } where θν ↓0 as ν → ∞. Assume that the mollifiers are such that

the averaged functions fν are smooth (of class C1), as would be the case if the mollifiers

ψν are smooth ψν are smooth (of class C1). The ψ-mollifier subderivative of f at x in

direction u is

f ′
ψ(x; u) := h−ls (fν)′(x; u) = sup

{xν→x}

lim sup
ν→∞

(fν)′(xν ; u)

where (fν)′(x; u) is the derivative of fν at x in direction u; sup is taking with respect to

all sequences xν → x. The full (Ψ-)mollifier subderivative of f at x in direction u is

f ′
Ψ(x; u) := sup

ψ
f ′
ψ(x; u)
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where ψ ranges over all possible sequences of mollifiers generating smooth averaged func-

tions.

Henceforth, when referring to f we always assume that it is locally integrable and

that {fν} is a sequence of smooth averaged functions obtained from f by convolution with

a sequence of mollifiers {ψν , ν ∈ lN }.

4.3. Proposition. The ψ-mollifier subgradient mapping x 7→ ∂ψf(x) is outer semicon-

tinuous (closed graph) and f ′
ψ(x; ·) is upper semicontinuous. Also

f ′
ψ(x; u) ≥ sup{ 〈g, u〉 | g ∈ ∂ψf(x) },

f ′
Ψ(x; u) ≥ sup{ 〈g, u〉 | g ∈ ∂Ψf(x) }.

Proof. Follows directly from the definitions; ff ′
ψ(x; ·) is a hypo-limit.

4.4. Proposition. The function u 7→ f ′
ψ(x; u) is sublinear, i.e., f ′

ψ(x; ·) is convex and

positively homogeneous. The set-valued mapping

x 7→ Gψ(x) := { g ∈ lRn | 〈g, u〉 ≤ f ′
ψ(x; u), ∀u ∈ lRn }

is closed-, convex-valued.

Proof. Since the functions fν are smooth, one has

(fν)′(xν ; u1 + u2) = (fν)′(xν ; u1) + (fν)′(xν ; u2).

Taking limsup on both sides over all sequences xν → x yields

f ′
ψ(x; u1 + u2) ≤ f ′

ψ(x; u1) + f ′
ψ(x; u2).

Similarly, the positive homogeneity of f ′
ψ(x; ·) follows from the linearity of the derivatives

of the functions (fν)′(x; ·). The assertions about the set-valued mapping Gψ follow directly

from the sublinearity of f ′
ψ(x; ·).

4.5. Proposition. One always has

con ∂ψf(x) ⊂ Gψ(x) := { g ∈ lRn | 〈g, u〉 ≤ f ′
ψ(x; u), ∀u ∈ lRn }

where con denotes the convex hull. If ∂ψf(x) is bounded then con ∂ψf(x) = Gψ(x).

Proof. We begin with the inclusion. To any g ∈ ∂ψf(x), there corresponding a sub-

sequence {νk} ⊂ {ν} and xk → x such that ∇fνk(xk) → g. Since (fνk)′(xk; u) =

〈∇fνk(xk), u〉, it follows that

〈g, u〉 = lim
k→∞

〈∇fνk(xk), u〉 = lim
k→∞

(fνk(xk; u) ≤ f ′
ψ(x; u).
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Thus ∂ψf(x) ⊂ Gψ(x) and the convexity of Gψ(x) then yields con ∂ψf(x) ⊂ Gψ(x).

Suppose now that ∂ψf(x) is bounded. If h ∈ Gψ(x) \ con ∂ψf(x), i.e., Gψ(x) 6⊂

con ∂ψf(x), then by the separation theorem for convex sets, there exists ū such that 〈h, ū〉 >

〈g, ū〉 for all g ∈ con ∂ψf(x). But f ′
ψ(x; ū) ≥ 〈h, ū〉 and, passing to a subsequence whenever

necessary, there exists xν → x so that

∇fν(xν) −→ g ∈ ∂ψf(x)

and

(fν)′(xν ; ū) = 〈∇fν(xν), ū〉 −→ f ′
ψ(x; ū).

Thus, we would have that

f ′
ψ(x; ū) = 〈g, ū〉 ≥ 〈h, ū〉 > 〈g, ū〉,

clearly contradicting the existence of such a h.

4.6. Remark. The approach laid out here could be used to define subdifferentials of

higher order. For example, if the mollifiers ψθν are of class C2, then the resulting averaged

function fν are also twice continuously differentiable. With ∇2fν(x) the hessian of fν at

x, we could define the second order ψ-mollifier subhessian of f at x as

∂2
ψf(x) := Lim supν→∞{∇2fν(xν) | xν → x },

i.e., the cluster points of all possible sequences {∇2fν(xν)} of matrices with xν → x. The

function

f ′′
ψ(x;H) := lim sup

xν→x
〈∇2fν(xν), H〉 = lim sup

xν→x

n
∑

i,j=1

∂

∂xi∂xj
fν(xν)hij

could be called the second order ψ-mollifier subderivative of f in directionH. The mapping

x 7→ ∂2
ψf(x) is closed, the function f ′′

ψ(x; ·) is upper semicontinuous and one has

con ∂2
ψf(x) = {H ∈ lRn

2

|Hu ≤ f ′′
ψ(x;U), ∀U ∈ lRn

2

}.

The next theorem justifies a minimization approach based on mollifier subgradients.

4.7. Theorem. Suppose that f : lRn → lR is strongly lower semicontinuous and locally

integrable. Then, for any sequence {ψν} of smooth mollifiers, one has

0 ∈ ∂ψf(x) whenever x is a local minimizer of f.

Proof. Let x be a local minimizer of f . For V a compact neighborhood of x sufficiently

small, define

ϕ : V → lR with ϕ(z) = f(z) + |z − x|2.
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The function ϕ achieves its global minimum (on V ) at x. Consider also the averaged

functions

ϕν(z) =

∫

lRn

ϕ(y − z)ψν(y) dy = fν(z) + βν(x, z)

where βν(x, z) =
∫

|y − z − x|2ψν(y) dy. From theorem 3.10, it follows that the function

ϕν are continuously differentiable and theorem 3.7 implies that they epi-converge to ϕ on

V . Suppose ϕν achieves its minimum at some point zν ∈ V . It follows from theorem 3.5

that zν → x, and thus

∇ϕν(zν) = ∇fν(zν) + ∇βν(x, zν) = 0.

Hence

∇fν(zν) = −∇βν(x, zν) −→ 0 as ν → ∞,

and consequently 0 ∈ ∂ψf(x).

In the remainder of this section we explore the relationship between mollifier subgra-

dient and some other subgradients notions.

For function f : lRn → lR continuous on a neighborhood V of x, Warga [42-44] defines

subgradients of f at x as follows: Let {fk, k ∈ lN} be a sequence of smooth functions

converging uniformly to f on V , we shall refer to

∂W f(x) =
∞
⋂

j=1

⋂

δ>0

cl [
⋃

k≥j,|x−y|≤δ

∇fk(y) ]

as the set of Warga-subgradients of f at x (cl denotes closure).

4.8. Proposition. For f : lRn → lR be continuous on V a neighborhood of x, and

{fk, k ∈ lN} a sequence of smooth functions converging uniformly to f on V , then

∂W f(x) = Lim supk→∞{∇fk(xk) | ∀xk → x }.

Consequently, when f is continuous, ∂W f(x) coincides with ∂ψf(x) if in the construction

of ∂W f(x) the fk are averaged functions generated by the sequence of smooth mollifiers

{ψk}.

Proof. Let

D(x) = Lim supk→∞{∇fk(xk) | ∀xk → x }.

Let us first show thatD(x) ⊂ ∂W f(x). Let g ∈ D(x) be such that, passing to a subsequence

if necessary, g = limk∇f
k(xk) for some specific sequence xk → x. We have to show that

for all j and δ > 0,

g ∈ Gj,δ(x) := cl [
⋃

k≥j,|x−y|≤δ

∇fk(y) ].
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Obviously, if k ≥ j and |xk − x| ≤ δ, then

∇fk(xk) ∈ Gj,δ(x).

Since Gj,δ(x) is closed, each cluster point of the sequence {∇fk(xk)} belongs to Gj,δ(x).

Hence, g ∈ ∂W f(x) and D(x) ⊂ ∂W f(x).

To prove the converse inclusion, one needs to show that for each point g in ∂W f(x)

one can find a sequence xk → x such that ∇fk(xk) → g. By definition of ∂W for all j and

δ > 0, g ∈ Gj,δ(x). Let us choose a sequence δj ↓0 as j → ∞. Since g ∈ Gj,δj
(x) for all j,

g ∈ cl{∇fk(y) : k ≥ j, |y − x| ≤ δj }.

Thus in this set, there exists an element gj = ∇fkj (yj) such that |gj − g| < 1/j. Clearly

yj → x, kj → ∞ and gj → g, so that g ∈ D(x) and ∂W f(x) ⊂ D(x).

The equality between the Warga- and the ψ-mollifier subgradient sets then follow from

the formula we just proved, and the definition of ψ-mollifier subgradients.

In variational analysis, the Clarke subderivative of a function f : lRn → lR is

(dCf)(x; u) = lim sup
y→x,λ ↓ 0

1

λ
[ f(y + λu) − f(y) ]

with the lim sup calculated with respect to all sequences y → x, λ ↓0. The set of Clarke

subgradients is

∂Cf(x) = { g ∈ lRn | 〈g, u〉 ≤ dCf(x; u), ∀u ∈ lRn }.

This notion was proposed by Clarke [6] for locally Lipschitz continuous functions;

for just lower semicontinuous functions this notion needs further adjustments, consult

Rockafellar [31].

4.9. Proposition. For f : lRn → lR locally integrable, one has f ′
ψ(x; ·) ≤ dCf(x; ·). If f

is also continuous, then f ′
ψ(x; ·) = dCf(x; ·).

Proof. By definition of dCf(x; u) it follows that for an arbitrary ε > 0, there exist δ1, δ2
such that whenever |y − x| < δ1, and λ ∈ (0, δ2),

1

λ
[ f(y + λu) − f(y) ] < dCf(x; u) + ε.

Let fν be the averaged function obtained as the convolution of f and the mollifier ψν .

Consider the finite differences

△ν(y, u, λ) :=
1

λ
[ fν(y + λu) − fν(y) ] =

∫

lRn

1

λ
[ f(y − z + λu) − f(y − z) ]ψν(z) dz.
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If |y − x| < δ1/2, λ < δ2/2 and |z| ≤ δ1/2, then

△ν(y, u, λ) ≤ (dCf(x; u) + ε)

∫

|z|≤δ1/2

ψν(z) dz.

Thus for y close enough to x,

(fν)′(y; u) = lim
λ ↓ 0

△ν(y, u, λ) ≤ (dCf(x; u) + ε)

∫

|z|≤δ1/2

ψν(z) dz

from which, after letting ε ↓0, it follows that f ′
ψ(x; u) ≤ dCf(x; u).

We next set out to prove the reverse inequality, assuming that f is continuous. Let

xν → x and λν ↓0 be such that

dCf(x; u) = lim
ν→∞

1

λν
[ f(xν + λνu) − f(xν) ].

From corollary 3.3, we know that when f is continuous, the averaged functions fν converge

uniformly to f on some neighborhood, say V , of x. Thus, with εν = λν/ν, one can always

find kν such that

sup
y∈V

|f(y)− fkν (y)| < εν .

Now from the mean value theorem follows the existence of yν := xν + τνu, τν ∈ [ 0, λν ]

such that
1

λν
[ fkν (xν + λνu) − fkν (xν) ] = (fkν )′(yν ; u).

Thus for ν sufficiently large, with xν ∈ V and xν + λµu ∈ V , one has

[ f(xν + λνu) − f(xν) ]

= [ fkν (xν + λνu) − fkν (xν) ] + [ f(xν + λνu) − fkν (xν + λνu) ] − [ f(xν) − fkν (xν) ]

≤ λν((f
kν )′(yν; u) + 2/ν).

Taking lim sup with respect to ν yields

dCf(x; u) ≤ lim sup
ν→∞

(fkν )′(yν ; u) ≤ f ′
ψ(x; u),

which completes the proof.

4.10. Theorem. If f : lRn → lR is lower semicontinuous and locally integrable, then

con ∂ψf(x) ⊂ ∂Ψf(x) ⊂ ∂Cf(x).

If, in addition f is locally Lipschitz continuous, then

con ∂ψf(x) = ∂Ψf(x) = ∂Cf(x).

Proof. The first inclusion follows from the relationship between ∂ψf(x) and ∂Ψf(x) (with

this last set convex), and the second inclusion follows from the preceding proposition. If f

is locally Lipschitz, then also the averaged functions fν are locally Lipschitz and ∂ψf(x)

is bounded. Equality then follows from propositions 4.5 and 4.9.
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4.11. Corollary (Gupal [15]). If f is locally Lipschitz continuous, then for all αν ↓0 and

xν → x, all clusters points of the sequences {∇fαν
(xν) belong to ∂Cf(x).

4.12. Remark. For the sake of completeness, let us also record the fact that for convex

functions, f : lRn → lR, we actually have that

∂ψf(x) = ∂Cf(x) = { g ∈ lRn | f(z) ≥ f(x) + 〈g, z − x〉, ∀ z ∈ lRn }.

For convex functions, as is well known, the set of gradients can be characterized in terms

of the expression on the right, cf. [32], for example. In view of the preceding theorem, it

will thus be sufficient to show that if g ∈ ∂Cf(x), then g is also included in ∂ψf(x). Let

us consider the function

ϕ(y) = f(y) + |y − x|2 − f(x) − 〈g, y − z〉.

The function ϕ ≥ 0 and attains its minimum (= 0) at x; due to the strict convexity of ϕ,

x is a unique minimizer of ϕ. Let

ϕν(y) =

∫

lRn

ϕ(y − z)ψν(z) dz

= fν(y) + βν(x, y)− f(x) − 〈g, y − x〉 −

∫

lRn

〈g, z〉ψν(z) dz

be the averaged functions associated with ϕ by convolution with the ψν ; here βν(x, y) =
∫

|y− z−x|2ψν(z) dz. The averaged functions ϕν uniformly converge of ϕ on some neigh-

borhood V of x (corollary 3.3). Due to the strict convexity of ϕ, for ν sufficiently large,

the averaged functions ψν have a (global) minimizer on V , say yν . Moreover, yν → x,

since x is a unique minimizer of ϕ = e−lmϕν (theorem 3.7). The averaged functions ϕν ,

fν and βν(x, ·) are smooth (theorem 3.10), and thus

∇ϕν(yν) = ∇fν(yν) + ∇yβ
ν(x, yν) − g,

∇yβ
ν(x, y) =

∫

lRn

∇y|y − z − x|2ψν(z) dz = 2(y − x) − 2γν ,

γν =

∫

lRn

zψν(z) dz.

From the conditions imposed on the mollifiers ψν , it follows that γν → 0, and hence

∇yβ
ν(x, yν) → 0, and

∇fν(yν) = g −∇yβ
ν(x, yν) −→ g as ν → ∞

which means that g ∈ ∂ψf(x), as claimed.
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5. Numerical procedures

Let us consider the problem of minimizing a strongly lower semicontinuous ϕ on X , a

compact subset of lRn. Let

1lX(x) =
{

1 if x ∈ X ;
0 if x /∈ X .

Then, instead of the original problem, one could work with one of the following uncon-

strained problems involving discontinuous penalty functions:

minimize f(x) := ϕ(x)1lX(x) + γ(1− 1lX(x))

or

minimize f(x) := ϕ(x)1lX(x) + γ(1 − 1lX(x))d(x,X)

where d(x,X) = min{ |x− y| : y ∈ X } and γ is sufficiently large.

If the function ϕ is bounded on X and γ > sup{|ϕ(x)| : x ∈ X}, all local minima of

ϕ on X are also locally minima of the function f .

Assuming that f is also strongly lower semicontinuous, in view of theorems 3.7 and

3.10, on can always find a sequence of smooth averaged functions fν (generated by mollifiers

{ψν}) that epi-converge to f , and by theorem 4.7, the condition 0 ∈ ∂ψf(x∗) is necessary

for a point x∗ to be a local minimizer of f

Let us now consider some optimization procedures for f making use of the approxi-

mating averaged function fν .

5.1. Method. Suppose a sequence {xν} of global minimizers of fν can be calculated.

Then, according to theorem 3.5 any cluster point of such a sequence is a (global) minimizer

of f .

However finding global minimizers of the fν could be quite complicated. This leads

us to consider the next method.

5.2. Method. Here a sequence of approximating solutions {xν} is build in accordance

with the following rule. Each function fν is minimized —initiating the procedure at xν−1—

until a point xν is found such that |∇fν(xν)| ≤ εν where εν ↓0; the starting point x0 is

chosen arbitrarily. In this method, if x̄ is a cluster point of the sequence {xν}, then by

definition of ∂ψf(x̄), passing to a subsequence if necessary,

lim
ν→∞

∇fν(xν) = 0 ∈ ∂ψf(x̄).

Moreover, this would also mean that 0 ∈ ∂Cf(x̄) (theorem 4.10), i.e., dCf(x; u) ≥ 0 for all

u ∈ lRn.

This approach requires estimates of |∇fν(xν)| during the iteration process. In general,

this could be computationally expensive involving the calculation of multidimensional inte-

grals. One can however, produce these estimates in parallel with the optimization process

by a well-known averaging procedure (cf. Ermoliev [8]): let
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x0, z0 be chosen arbitrarily in lRn;

xk+1 = xk − ρkz
k, k = 0, 1, . . .;

zk+1 = zk − τk(z
k − λk(x

k)), k = 0, 1, . . .;

where xk approximates argmin fν , zk are averaged estimates of ∇fν(xk), λν(x
k) are

stochastic (finite-difference unbiased) estimates for ∇fν(xk) such that their mathemat-

ical expectation E{λν(x
k)} = ∇fν(xk) (see the observations that follow proposition 3.11),

ρk ≥ 0 and τk > 0 are sequences such that

∞
∑

k=0

ρk = ∞,

∞
∑

k=0

ρ2
k <∞, lim

k→∞
ρk/τk = 0.

5.3. Proposition (Ermoliev [8, theorem V.8]). If the sequences {xk}, {zk} are almost

surely bounded, then almost surely

lim
k→∞

|zk −∇fν(xk)| = 0, and xk −→ {x | ∇fν(x) = 0}.

Thus in method 5.2, we can proceed with the minimization of each fν until the

estimate zk of the gradient of ∇fν(xk) satisfy the condition |zk| ≤ εν .

5.4. Method. A sequence of approximate solutions xν is generated by the following

rule

x0 ∈ lRn is chosen arbitrarily;

xν+1 = xν − ρνλν(x
ν), ν = 0, 1. . . .

where λλλν(x
ν) is a stochastic (finite-difference unbiased) estimator for ∇fν(xν) with expec-

tation E{λλλν(x
ν)} = ∇fν(xν) (see the observations following proposition 3.11 and remark

3.12), ρν ≥ 0 is a deterministic sequence of multipliers.

This method combines ideas from the method of stochastic quasi-gradients with those

of dynamic nonstationary optimization techniques, see Ermoliev and Nurminski [10] and

Gaivoronski [13]. The following theorem is an example of the possible convergence results.

5.5. Theorem (Gupal and Norkin [17]). Suppose the gradient estimates are those in

example 3.12, i.e., λν(x) = λαναν
(x, ξ, η), the sequence {xν} belongs to some compact set

and ρν ≥ 0, αν satisfy the conditions

∞
∑

ν=1

ρν = ∞,

∞
∑

ν=1

(
ρν
α2
ν

)2 <∞, lim
ν→∞

αν = lim
ν→∞

αν − αν+1

ανρν
= 0.

Then, almost surely, the sequence {xν} admits a cluster point x∗ such that 0 ∈ ∂ψf(x∗).

5.6. Example. Let us consider the minimization of a probability function:

f(x) = P [ g(x, ω) ≥ 0 ].
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We can express f as a mathematical expectation

f(x) =

∫

Ω

1l{g(x,ω)≥0}(ω)P (dω).

Since the function 1l{·} is discontinuous, the function f will in general, not be differentiable.

To estimate f(x) and its “gradient,” Tamm [41] and Lepp [21] proposed the use of Parzen-

Rosenblatt kernel-type estimates [29], [35]:

fε(x) =
1

ε

∫

Ω

P (dω)

∫ 0

−∞

dτ ψ(
τ + g(x, ω)

ε
),

∇fε(x) =
1

ε

∫

Ω

ψ(
g(x, ω)

ε
)∇xg(x, ω)P (dω)

where ψ is some symmetric density function on [−∞,∞]; more recently Marti [23] has

suggested a similar approach to deal with reliability constraints in structural optimization.

The funcion fε can also be written as

fε(x) =

∫

Ω

ψε(g(x, ω)P (dω),

where

ψε(t) =
1

ε

∫ t

−∞

ψ(
τ

ε
) dτ

=
1

ε

∫ ∞

−∞

1l{t−τ≥0}(τ)ψ(
τ

ε
) dτ =

1

ε

∫ ∞

−∞

1l{t+τ≥0}(τ)ψ(−
τ

ε
) dτ

Thus ψε is an averaged function (with base function 1l{·≥0}). Instead of the original

function f , we have a sequence of approximating function fε constructed (indirectly) by

means of averaged functions. Tamm [41] in the differentiable case, and Norkin [28] in

the nondifferentiable (but continuous) case, provided conditions under which fε converges

uniformly to f , and they proposed methods, similar to method 5.2., to minimize f making

use of the approximating functions fε. Lepp [22] and Roenko [34] analyzed stochastic

iterative methods, like method 5.4, for the minimization f when it is differentiable, using

statistical estimates for ∇fε(x).
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