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DERIVING THE CONTINUITY OF MAXIMUM-ENTROPY BASIS
FUNCTIONS VIA VARIATIONAL ANALYSIS∗

N. SUKUMAR† AND R. J.-B. WETS‡

Abstract. In this paper, we prove the continuity of maximum-entropy basis functions using
variational analysis techniques. The use of information-theoretic variational principles to derive
basis functions is a recent development. In this setting, data approximation is viewed as an inductive
inference problem, with the basis functions being synonymous with a discrete probability distribution,
and the polynomial reproducing conditions acting as the linear constraints. For a set of distinct
nodes {xi}ni=1 in R

d, the convex approximation of a function u(x) is uh(x) =
∑n

i=1 pi(x)ui, where
{pi}ni=1 are nonnegative basis functions, and uh(x) must reproduce affine functions

∑n
i=1 pi(x) = 1,∑n

i=1 pi(x)xi = x. Given these constraints, we compute pi(x) by minimizing the relative entropy
functional (Kullback–Leibler distance), D(p‖m) =

∑n
i=1 pi(x) ln

(
pi(x)/mi(x)

)
, where mi(x) is a

known prior weight function distribution. To prove the continuity of the basis functions, we appeal
to the theory of epiconvergence.
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1. Background and formulation. Consider a set of distinct nodes in R
d that

are located at xi (i = 1, 2, . . . , n), with D = con(x1, . . . , xn) ⊂ R
d denoting the

convex hull of the nodal set (Figure 1). For a real-valued function u(x) : D → R, the
numerical approximation for u(x) is written as

(1) uh(x) =

n∑
i=1

pi(x)ui,

where pi(x) is the basis function associated with node i, and ui are coefficients. If
pi(x) is a cardinal basis, pi(x

j) = δij , then uh(xi) = u(xi) = ui.

In the univariate case, Lagrange and spline bases are well known, whereas for
multivariate approximation, tensor-product splines, moving least squares (MLS) ap-
proximates [17], and radial basis functions [30] are popular. The need for scattered
data approximation arises in many fields, for example, curve and surface fitting, com-
puter graphics and geometric modeling, finite elements, and meshfree methods. Over
the past decade, meshfree approximation schemes have been adopted in Rayleigh–Ritz
(Galerkin) methods for the modeling and simulation of physical phenomena; see [4] for
a review of meshfree methods and [28] for a review of meshfree basis functions. For
second-order partial differential equations (PDEs), approximates that possess con-
stant and linear precision are sufficient for convergence in a Galerkin method (cf., for
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Fig. 1. Nodal locations xi. (a) One dimension; (b) pentagon; and (c) scattered nodes within a
square.

example, [25, Chapter 2]):

(2) ∀x,
n∑

i=1

pi(x) = 1 and

n∑
i=1

pi(x)xi = x.

Furthermore, if the nonnegative restriction is imposed on the basis functions (convex
combination), namely,

(3) pi(x) ≥ 0 ∀i, x,

then (1) is a convex approximation scheme [1] with many desirable properties: it
satisfies the convex hull property, is not prone to the Runge phenomena, interior nodal
basis functions pi(x) (xi /∈ bdryD) vanish on bdryD, which facilitates the imposition
of linear Dirichlet boundary conditions in a Galerkin method, and, in addition, optimal
conditioning can be established for nonnegative basis functions [8, 19].

In meshfree Galerkin methods, an approximation of the form in (1) is used, with
MLS being the most common choice. A recent development in this direction has been
the construction of maximum-entropy approximates [1, 26, 27]; continuity was ob-
tained by Arroyo and Ortiz [1] for the case when the prior distributions are Gaussian.
In this paper, we rely on variational analysis techniques, in particular on the theory
of epiconvergence, to establish the continuity of maximum-entropy basis functions for
any continuous prior distribution.

1.1. Minimum relative entropy principle. In information theory [7], the
notion of entropy as a measure of uncertainty or incomplete knowledge was introduced
by Shannon [22]. The Shannon entropy of a discrete probability distribution is

(4) H(p) = 〈− ln p〉 = −
n∑

i=1

pi ln pi,

where 〈·〉 is the expectation operator, pi ≡ p(xi) is the probability of the occurrence
of the event xi, p ln p

.
= 0 if p = 0, and the above form of H satisfies the axiomatic

requirements of an uncertainty measure; cf., for example, [14, Chapter 1].
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Jaynes used the Shannon entropy measure to propose the principle of maximum
entropy [11], in which it was shown that maximizing entropy provides the least-biased
statistical inference when insufficient information is available. It was later recognized
that for H to be invariant under invertible mappings of x, the general form of the
entropy should be [12, 15, 23]

(5) H(p,m) = −
∫

p(x) ln

(
p(x)

m(x)

)
dx or H(p,m) = −

n∑
i=1

pi ln

(
pi
mi

)
,

where m is a prior distribution that plays the role of a p-estimate. In the literature,
the quantity D(p‖m) = −H(p,m) is also referred to as the Kullback–Leibler distance
(directed- or I-divergence) [16], and the variational principle is known as the principle
of minimum relative entropy [23]. If a uniform prior, mi = 1/n, is used in (5), then
the Shannon entropy (modulo a constant) given in (4) is recovered. The nonnegativity
of the relative entropy, D(p‖m) ≥ 0, is readily derived from Jensen’s inequality (cf.,
for example, [7, p. 25]).

Given a set of � + 1 linear constraints on an unknown probability distribution p
and a prior m, which is an estimate for p, the minimum relative entropy principle is
a rule for the most consistent (minimum-distance or -discrepancy from the prior m)
assignment of the probabilities pi [12]:

min
p∈Rn

+

(
D(p‖m) =

n∑
i=1

pi ln

(
pi
mi

))
so that

n∑
i=1

pi = 1,(6a)

n∑
i=1

pigr(x
i) = 〈gr(x)〉, r = 1, 2, . . . , �,(6b)

where gr(x) and 〈gr(x)〉 are known, and R
n
+ is the nonnegative orthant.

The initial emphasis of the principle of maximum entropy was on equilibrium and
nonequilibrium statistical mechanics [12], but it is equally applicable to any problem in
inductive inference. The interested reader can refer to [13] and [24] for the Bayesian
perspective on probability theory and rationale inference. The maximum entropy
and minimum relative entropy principles have found applications in many areas of
science and engineering—image reconstruction [10], natural language modeling [5],
microstructure reconstruction [18], and nonparametric supervised learning [9] are a
few examples.

Variational principles, which are used in finite element formulations, conjugate
gradient methods, graphical models, dynamic programming, and statistical mechan-
ics, also have strong roots in data approximation. For instance, kriging, thin-plate
splines, B-splines, radial basis functions [30], MLS approximates [17], and Delaunay
interpolates [20] are based on the extremum of a functional. In the same spirit, we
now present the variational formulation to construct entropy approximates, and in so
doing demonstrate its potential merits as a basis for the solution of PDEs.

1.2. Variational formulation for entropy approximates. To obtain the
maximum-entropy principle, the Shannon entropy functional and a modified entropy
functional were used in [26] and [1], respectively. In [27], as a unifying framework
and generalization, the relative entropy functional with a prior was used—a uniform
prior leads to Jaynes’s maximum-entropy principle, and use of a Gaussian (radial
basis function) prior, mi(x) = exp(−β|xi − x|2), results in the entropy functional
considered in [1]. The prior in the present context is a nodal weight function, and
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the variational principle in effect provides a “correction” that minimally modifies
the weight functions to form basis functions that also satisfy the linear constraints.
Clearly, if mi(x) a priori satisfies all the constraints, then one obtains pi(x) = mi(x)
for all i. The flexibility of choosing different prior distributions (for example, radial
basis functions, compactly supported weight functions used in MLS, etc.) within the
minimum relative entropy formalism would lead to the construction of a wider class of
convex approximation schemes. The parallels between the conditions on pi in (2) and
(3) and those on pi in a maximum-entropy formulation are evident. Unlike univariate
Bernstein basis functions (terms in the binomial expansion), where a probabilistic
interpretation in relation to the binomial distribution [24, Chapter 5] is natural, here
the connection is less transparent. Referring to the nodal sets shown in Figure 1, we
note that the basis function value pi(x) is viewed as the “probability of influence of a
node i at x.” With a uniform prior, global basis functions are obtained, which do not
lead to sparse system matrices in the numerical solution of PDEs. With a compactly
supported prior, the basis functions pi(x) also inherit the support properties of the
prior and hence are suitable in the Galerkin solution for PDEs. Entropic regulariza-
tion with a prior is a novel approach to constructing convex approximation schemes
with many desirable properties.

The variational formulation for entropy approximates is as follows: Find x �→
p(x) : R

d → R
n
+ as the solution of the constrained convex optimization problem

min
p∈Rn

+

f(x; p), f(x; p) =

n∑
i=1

pi(x) ln

(
pi(x)

mi(x)

)
,(7a)

subject to the constraint set from (2) and (3):

κ(x) =

{
p ∈ R

n
+

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pix
i = x

}
,(7b)

where mi(x) is a prior estimate, and the constraints form an underdetermined linear
system. By introducing the Lagrange multipliers, one can write the solution of the
variational problem as

pi(x) =
Zi(x)

Z(x)
, Zi(x) = mi(x) exp(−xi · λ),

where λ ∈ R
d, and Z(x) =

∑
j Zj(x) is known as the partition function in statistical

mechanics. The pi(x) in the preceding equation must satisfy the d linear constraints in
(7b). This yields d nonlinear equations. On using shifted nodal coordinates x̃i = xi−x
and considering the dual formulation, we can write the solution for the Lagrange
multipliers as (cf., for example, [21, Exercise 11.12] and [6, p. 222])

λ = arg min lnZ(λt),

where Z is appropriately redefined. Convex optimization algorithms (gradient de-
scent, Newton’s method, etc.) are suitable for computing these basis functions. Nu-
merical experimentation suggests that such basis functions may very well be contin-
uous on D [1, 26], and this will be confirmed here by variational analysis techniques.
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2. Continuity of the basis functions. One can always represent an opti-
mization problem, involving constraints or not, as one of minimizing an extended
real-valued function. In the case of a constrained-minimization problem, simply re-
define the effective objective as taking on the value ∞ outside the feasible region,
with the set determined by the constraints. In this framework, the canonical problem
can be formulated as one of minimizing on all of R

n an extended real-valued function
f : R

n → R. Approximation issues can consequently be studied in terms of the con-
vergence of such functions. This has led to the notion of epiconvergence (cf. [2, 3] and
[21, Chapter 7]; the latter will serve here as our basic reference). We provide a very
brief survey and some relevant refinements of this theory.

Thus, at a conceptual level, it is convenient to think of optimization problems as
elements of

fcns(Rn) =
{
f : R

n → R
}
,

the set of extended real-valued functions that are defined on all of R
n, even allowing for

the possibility that they are nowhere finite valued; definitions, properties, limits, etc.,
usually do not refer specifically to the domain on which they are finite. The effective
domain of f is dom f =

{
x ∈ R

n
∣∣ f(x) < ∞

}
. The epigraph of a function f is the set

of all points in R
n+1 that lie on or above the graph of f , epi f =

{
(x, α) ∈ R

n+1
∣∣α ≥

f(x)
}
. A function f is lsc (lower semicontinuous) if and only if its epigraph is closed

as a subset of R
n+1, i.e., epi f = cl(epi f) with cl denoting closure [21, Theorem 1.6].

The lsc-regularization of f is cl f defined by the identity epi cl f = cl epi f .
Definition 2.1 (epiconvergence and tight epiconvergence). Let

{
f, fν , ν ∈ N

}
be a collection of functions in fcns(Rn). Then, fν →e f if and only if the following
conditions are satisfied:

(a) For all xν → x, liminfν f
ν(xν) ≥ f(x).

(b) For all x, ∃xν → x such that limsupν f
ν(xν) ≤ f(x).

The sequence epiconverges tightly to f if, in addition, for all ε > 0, there exist a
compact set Bε and an index νε such that

∀ ν ≥ νε : infBε f
ν ≤ inf fν + ε.

Note that functions can be “epiclose” while “pointwise-far” (measured, for exam-
ple, in term of the �∞-norm); e.g., consider the two step-functions f(x) = 0 if x < 0,
f(x) = 1 when x ≥ 0, and g(x) = f(x− ε) with ε > 0 arbitrarily small.

The name “epiconvergence” is attached to this convergence notion because it
coincides [21, Proposition 7.2] with the set-convergence, in the Painlevé–Kuratowski
sense [21, section 4.B] of the epigraphs. It is known that (i) whenever C is a limit-set,
it is closed [21, Proposition 4.4]; (ii) C = ∅ if and only if the sequence Cν eventually
“escapes” from any bounded set [21, Corollary 4.11]; and (iii) if the sequence Cν → C
consists of convex sets, then also C is convex [21, Proposition 4.15]. This means that
when fν →e f , (i) f is lsc; (ii) f ≡ ∞(dom f = ∅) if and only if given any κ > 0,
fν ≥ κ for ν large enough; and (iii) the epilimit of convex functions is convex, if it
exists.

Theorem 2.2 (convergence of the minimizers and infimums). Let fν →e f , all in
fcns(Rn), with inf f finite. If fν →e f , xk ∈ argmin fνk for some subsequence {νk}k∈N

and xk → x̄, then x̄ ∈ argmin f and min fνk → min f .1

1One writes min when the infimum is actually attained.
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If argmin f is a singleton, then every convergent subsequence of minimizers con-
verges to argmin f .

They epiconverge tightly if and only if inf fν → inf f .
Proof. The first two assertions follow from [21, Proposition 7.30, Theorem 7.33],

and one can deduce the last one from [21, Theorem 7.31].
Let us conclude this review by a compilation of the facts that are going to be of

immediate relevance to the problem at hand.
Corollary 2.3 (epiconvergence under strict convexity). Suppose

{
fν : R

n →
(−∞,∞]

}
ν∈N

is a collection of convex functions such that

(a) for all ν, dom fν ⊂ B, where B and each dom fν are compact;
(b) the functions fν are finite valued, lsc, and strictly convex on dom fν . Then,

for all ν, ∅ �= argmin fν is a singleton.
Moreover, if fν →e f and argmin f is also a singleton, then argmin fν → argmin f .
Proof. In view of (a) and (b), for each ν the minimization of fν is equivalent

to minimizing a finite-valued, lsc, strictly convex function on a compact set, and
such a problem always has a unique solution. Moreover, because for all ν, dom fν

is a (compact) subset of the compact set B, fν →e f implies that they epiconverge
tightly. The convergence of argmin fν → argmin f follows from combining the two
last assertions of Theorem 2.2.

Our task now is to show that the continuity of the basis functions can be derived
as a consequence of this corollary. We begin with the strict convexity of the criterion
function. The Kullback–Leibler criterion is a separable function, i.e.,

k(x; p) =
n∑

i=1

ki(x; pi), where ki(x; pi) = pi ln(pi/mi(x)),

and its properties can be directly derived from those of the one-dimensional functions
ki(x; ·) : R+ → [0,∞].

• When mi(x) > 0, ki(x, ·) is finite valued, continuous, and strictly convex
on R+; recall that 0 ln(0) = 0. Indeed, the second derivative on (0,∞) is
1/pi > 0, which implies strict convexity [21, Theorem 2.13(c)]. The quantity
pi ln(pi/mi(x)) is strictly increasing and converges to 0 as pi ↘0, yielding
both strict convexity and continuity on R+.

• When mi(x) = 0, ki(x; pi) = ∞ unless pi = 0 and then ki(x; 0) = 0.
It is conceivable, but certainly not reasonable, that the (continuous) weight functions{
mi : R

n → R+, i = 1, . . . , n
}

have been chosen so that for some x ∈ D, mi(x) = 0
for all i = 1, . . . , n. In such a situation, in the process of minimizing the Kullback–
Leibler criterion, we would be led to choosing p = 0 and, of course, this would make
it impossible to satisfy the constraint

∑n
i=1 pi = 1; i.e., the problem, so formulated,

would be infeasible! This brings us to the following assumption, in which we let
• s-suppmi =

{
x ∈ R

d
∣∣mi(x) > 0

}
denote the strict support of mi, and

• suppmi = cl(s-suppmi) the support of mi.
Assumption 2.1 (well-posed assumption). For each i = 1, . . . , n, the function

mi : R
n → R+ is continuous such that s-suppmi, and consequently also suppmi, is

nonempty.2 Moreover, with I=0 =
{
i
∣∣mi(x) = 0

}
and I>0 =

{
i
∣∣mi(x) > 0

}
,

∀ x ∈ D : x ∈ con(xi
∣∣ i ∈ I>0).

2Note that the continuity of mi implies that s-suppmi is an open subset of R
d, and thus so is⋃n

i=1 s-suppmi.
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This assumption requires that every x ∈ D be obtained as a convex combination of
some subcollection of the nodal locations xi that are associated with weight functions
mi that have mi(x) > 0. In particular, this implies that κ(x) is never empty, or
equivalently, that the constraints (7b) are certainly satisfied whenever x ∈ D.

Proposition 2.4 (the Kullback–Leibler criterion). Under the well-posed As-
sumption 2.1, for all x ∈ D, the Kullback–Leibler criterion p �→ k(x; p) =

∑n
i=1 pi ln

(pi/mi(x)) is a strictly convex, lsc function on R
n
+, taking into account the identity

0 ln(0) = 0.
Proof. Convexity is well known; see [7, p. 30], [21, Exercise 3.51], for example.

Again, with I=0 =
{
i
∣∣mi(x) = 0

}
and I>0 =

{
i
∣∣mi(x) > 0

}
,

k(x; p) =
∑
i∈I=0

ki(x; pi) +
∑
i∈I>0

ki(x; pi),

dom k(x; ·) =
∏

I=0
{0} ×

∏
I>0

R+, and I>0 nonempty by Assumption 2.1. From our

analysis of the functions ki(x; ·), it follows that k(x; ·) is strictly convex, continuous
on its effective domain dom k(x; ·).

The tools are now at hand to derive our main result.
Theorem 2.5 (continuity of the basis functions). For x ∈ D, as in the formula-

tion of maximum entropy (7), let

f(x; p)) =

{∑n
i=1 pi ln(pi/mi(x)) if p ∈ κ(x),

∞ otherwise,

where

κ(x) =

{
p ∈ R

n
+

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pix
i = x

}
,

and where

p(x) = (p1(x), . . . , pn(x)) = argmin f(x; ·).

Under the well-posed Assumption 2.1, when xν → x̄ with xν ∈ D, κ(x̄) is nonempty
and

f(xν ; ·)→e f(x̄; ·) and p(xν) → p(x̄).

In other words, the basis functions p(·) are continuous on D.
Proof. Since for all x ∈ D, κ(x) is a compact, nonempty subset of the unit

simplex Δ =
{
p ∈ R

n
+

∣∣ ∑n
i=1 pi = 1

}
, it follows that for all x ∈ D, dom f(x; ·) ⊂ Δ

and, consequently, condition (a) of Corollary 2.3 is trivially satisfied. The rest of the
proof is concerned with condition (b) and the epiconvergence of the sequence f(xν ; ·)
to f(x̄; ·) when xν → x̄.

The functions f(xν ; ·) and f(x̄; ·) can be written as k(xν ; ·) + ικ(xν) and k(x̄; ·) +
ικ(x̄), where k(x; p) is the Kullback–Leibler criterion defined on R

n
+ and ιC is the

indicator function of the set C ⊂ R
n with ιC = 0 on C; otherwise, ιC = ∞ on R

n \C.
The epiconvergence of f(xν ; ·) to f(x̄; ·) follows from [21, Theorem 7.46(b)], which

asserts that the sum of two sequences of functions epiconverge to the sum of their
limits if one sequence epiconvergences and the other converges continuously.
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To obtain the epiconvergence of the indicator functions, or equivalently [21,
Proposition 7.4(f)] the set convergence of the sets κ(xν) → κ(x̄) with κ(x̄) �= ∅,
we exploit the fact that these are polyhedral sets and that, on the bounded polyhe-
dral set D = con(x1, . . . , xn) ⊂ R

d, the mapping x �→ κ(x) is Lipschitz continuous
with respect to the Pompeiu–Hausdorff distance dl∞, i.e.,

∀x, x′ ∈ D : dl∞(κ(x), κ(x′)) ≤ M |x− x′|
for some constant M > 0; here | · | denotes the Euclidean norm; cf. [29, Theorem 1];
see also [21, Example 9.35]. Of course, this means that κ is continuous on D and, in
particular, for any xν → x̄ in D, given any sequence pν ∈ κ(xν) → p̄, then p̄ ∈ κ(x̄).

Thus, to assert continuous convergence of the functions k(xν ; ·) to k(x̄), one needs
to show that k(xν ; pν) → k(x̄; p̄) for such pairs (xν , pν). Let I=0 =

{
i
∣∣mi(x̄) =

0
}

and I>0 =
{
i
∣∣mi(x̄) > 0

}
. By Assumption 2.1, κ(x̄)

⋂
(
⋃

I>0
s-suppmi) �= ∅.

Furthermore, the open set
⋃

I>0
s-suppmi not only includes x̄ but also xν for all

ν large enough. Thus, for all i ∈ I>0, pνi ln(pνi )/mi(x
ν) → p̄i ln(p̄i)/mi(x̄). When

i ∈ I=0, again for ν large enough, pνi = 0 = p̄i; otherwise the corresponding vectors
pν and p̄ would not belong to dom k(xν ; ·) or dom k(x̄; ·). Hence, k(xν ; pν) → k(x̄; p̄).
So, f(xν ; ·) → f(x̄, ·).

There only remains to observe that, for ν large enough, argmin f(xν ; ·) is unique,
i.e., for i /∈ I>0, p

ν
i (x

ν) = 0, whereas for i ∈ I>0, p
ν
i (x

ν) = argminpi≥0 pi ln(pi/mi(x
ν);

the strict convexity guarantees that argmin is a singleton. Since the same holds for
x̄, we are in the framework of Corollary 2.3, and thus p(xν) = argmin f(xν ; ·) →
argmin f(x̄; ·) = p(x̄).

3. Numerical experiments. To illustrate Theorem 2.5, we present basis
function plots to confirm the continuity of maximum-entropy basis functions. First,
one-dimensional basis function plots are considered, and then two-dimensional basis
function plots are presented.

To demonstrate a simple closed-form computation, consider one-dimensional ap-
proximation in D = [0, 1] with three nodes located at x1 = 0, x2 = 1/2, and x3 = 1.
On using (7), the solution for pi(x) is obtained by solving a quadratic equation:

p1(x) =
1

Z
, p2(x) =

η

Z
, p3(x) =

η2

Z
, η ≡ η(x) =

2x− 1 +
√

12x(1 − x) + 1

4(1 − x)
,

where Z = 1 + η + η2. These basis functions are presented in Figure 2(a). For four
equispaced nodes in [0, 1], a cubic equation must be solved. In general, a numerical
method is required to compute these basis functions; in our computations, we use
a one-dimensional MATLAB implementation, whereas in two dimensions, a gradient
descent algorithm [26, p. 2165] is adopted. Figure 2 depicts basis function plots on
a uniform grid consisting of three nodes and five nodes (nodal locations are shown
in Figure 1(a)). The plots are presented for a Gaussian prior distribution, mi(x) =
exp(−β(|xi − x|2), with varying β. The value β = 0 corresponds to a uniform prior,
and for large β (theoretically when β → ∞), the entropy basis functions tend to the
finite element Delaunay interpolant [1]. From Figures 2(a) and 2(d), we observe that
nodal interpolation is realized on the boundary but not at the interior nodes. However,
as β is increased, the support of the basis functions shrinks and the basis functions
become closer to being an interpolant at the interior nodes. For β = 100, the entropy
basis functions are proximal to piecewise linear finite element basis functions (Figures
2(c) and 2(f)). The plots in Figure 2 evince the continuity of the basis functions,
which provides numerical evidence in support of the theoretical proof in Theorem 2.5.
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Fig. 2. Entropy basis functions with a Gaussian prior. (a)–(c) show n = 3 and β = 0, 10, 100;
and (d)–(f) show n = 5 and β = 0, 10, 100. The nodal locations along the x-axis are depicted by
filled circles.

In Figure 3(a), a contour plot of p1(x) for node 1 in a regular pentagon (see
Figure 1(b) for the nodal locations) is shown, whereas in Figure 3(b), the three-
dimensional plot is illustrated. The variation of the maximum entropy within the
pentagon is depicted in Figure 3(c), with the maximum value of ln 5 being attained at
the centroid of the pentagon. The basis function p1(x) satisfies the cardinal property,
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Fig. 3. Entropy basis function p1(x) and variation of maximum entropy within a regular
pentagon. (a) Contour plot; (b) three-dimensional plot; and (c) Hmax.

pi(x
j) = δij , which is also met by all n nodal basis functions in a convex polygon

[26]. Next, we consider the grid shown in Figure 1(d), where D = [0, 1]2. The basis
functions for nodes 1 and 8 are plotted using a uniform prior, a Gaussian prior with
β = 20, and a compactly supported C2 quartic radial basis function as a prior. The
quartic prior is given by mi(r) = 1 − 6r2 + 8r3 − 3r4 if r = |xi − x| ≤ 1, and zero
otherwise. The contour plots are illustrated in Figure 4, and once again we observe
that the basis functions are continuous in D. Furthermore, the interior basis functions
(for example, p8(x)) vanish on bdryD, which enables the direct imposition of Dirichlet
boundary conditions in Galerkin methods [1]. The one- and two-dimensional basis
function plots provide numerical proof in support of Theorem 2.5, thereby establishing
the continuity of pi(x) for x ∈ D.
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Fig. 4. Two-dimensional entropy basis functions within a unit square. (a) and (b) show p1(x)
with a uniform prior and a Gaussian prior (β = 20); (c) and (d) show p8(x) with a uniform prior
and a Gaussian prior (β = 20); and (e) shows p8(x) with a compactly supported C2 radial basis
function.
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