
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 60, 21 l-226 (1977) 

On the Relations between Two Types of 

Convergence for Convex Functions 

GABRIELLA SALINETTI* AND ROGER J.-B. WETS+ 

Universitri di Roma, Roma, Italy; University of Kentucky, Lexington, Kentucky and 
Stanford University, Stanford, California 

Submitted by G. L. Lions 

Theory and applications have shown that there are two important types of 
convergence for convex functions: pointwise convergence and convergence in a 
topology induced by the convergence of their epigraphs. We show that these 
two types of convergence are equivalent on the class of convex functions which 
are equi-lower semicontinuous. This turns out to be maximal classes of convex 
functions for which this equivalence can be obtained. We also indicate a number 
of implications of these results to the convergence of convex sets and the corre- 
sponding support functions and to the convergence of the i&ma of sequences 
of convex minimization problems. 

1. INTRODUCTION 

The study of the convergence of convex sets and convex functions has usually 
been undertaken to the foundations for approximation results in statistics [ 1, 21, 
in convex optimization [3-51, in the theory of variational inequalities [6, 71, and 
for control problems [8, 91. The key question always boils down to: Given a 
sequence of minimization problems {P,} whose constraints and objective converge 
in some sense, usually pointwise, to the constraints and objective of a minimiza- 
tion problem P, does it follow that the sequence of optimal values of P, converge 
to the optimal value of P? (There are a number of related questions such as 
convergence of the optimality sets to the optimality set of P, convergence of 
the associated price systems,...). To each minimization problem P, we can asso- 
ciate an extended real-valued function fV with Y,,(X) = + co if x fails to satisfy 
the constraints of P, and otherwise f”(x) is the value of the objective of P, 
evaluated at x. In this framework, we have that 

infP, = i;ff”(.X) = -f”*(O), (1.1) 
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where f * is the con&gate off. The convergence of the infimum values of the P, 
to the infimum of P is then equivalent to the (pointwise) convergence of the 
conjugate functions f,,* to f* at 0. Of more general interest is the (pointwise) 
convergence of fv* to f *; each point x* corresponding to a perturbed version 
of the original problem, since 

f”*(x*) = -itf[f”(x) - (x, x*)]. (1.2) 

The study of these and related convergence questions leads to the definition 
of a topology 7 on the class of lower semicontinuous convex functions. Con- 
vergence of fv to f in this topology is equivalent to the convergence of epi f,, , 
the epigraphs off,, , to epi f. This topology 7 was introduced by Mosco [7, 
Sect. 1.71; various extensions and refinements were obtained by Joly [lo, 111 
and in [12], Robert works with a variant of this topology. It plays an important 
role in the study of convergence of convex sets and also convex functions 
because it turns out that conjugation is bicontinuous with respect to this topo- 
logy; in particular, we have that 

f”Lf if and only if fy* f f * 

for T* defined in a way similar to T. This property, first established by Wakup 
and Wets [ 131 (in the framework of closed convex cones) and later, independently 
by Mosco [14] and Joly [I I], plays a key role in the study of the convergence 
of convex sets and functions. In particular, it allows us to relate the convergence 
of convex sets to the pointwise convergence of their support functions. In the 
compact case (for compact convex sets) the relations between these two types 
of convergences have been investigated by Wj;sman [ 151 and Van Cutsem [ 161. 

The main objective of this note is to delineate the relations between pointwise 
convergence and T-convergence for sequences of convex functions. In particular, 
we identify the largest class of functions for which these two types of conver- 
gences coincide. We also show the implications of these results to the conver- 
gence of convex sets and their support functions and to the convergence of the 
infima of sequences of convex programs. 

The terminology and notation is the standard one of convex analysis. For f 
a convex function, we write epi f for the epigraph off, i.e., 

+f = {h x) I rl >f(x)>; 

dom f is the eflective domain off, i.e., 

domf = {x If(x) < +a}; 

the indicator function of a set D 

+hD(x) = 0 if XED, 

=+a if x$D; 
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the support function of D is +n*, the conjugate of the indicator function of D. 
We deviate from the standard terminology only in the use of the term closed; 
here a closed convex function is automatically lower semicontinuous and proper, 
i.e., f > -00 and f + + co. Accordingly, closed convex sets are always nonempty, 
their indicator functions being closed, in this sense, only if they are closed and 
nonempty. 

Finally, to avoid fruitless repetitions, we always say that a sequence (of points, 
of sets, of functions) converges for all indices in the index set when, actually, 
we only need or can only assert that convergence occurs for all indices excluding 
a finite number. 

2. CONVERGENCE OF CONVEX SETS AND T-CONVERGENCE OF 

CONVEX FUNCTIONS 

Let N be the positive integers. By M we always denote an infinite subset of N. 
Let E be a reflexive Banach space and {K, , v E N} a sequence of subsets of E. 
Following Mosco [7, Sect. 1.11 we say that the sequence of sets (KV} converges to a 
set K in E if 

where 

w-lim sup K, C KC s-lim inf & , (2.1) 

and 

w-lim sup K, = {X = w-lim X, j s, E KU , p E M and M C N} (2.2) 

s-lim inf K, = {X = s-lim X, 1 s, E K,, , v E N}. (2.3) 

Here x = w-lim xU means that x is the limit point of the sequence {xU} with 
respect to the weak topology on E and x = s-lim x, means that x is the limit 
point of the sequence {xv} with respect to the norm (or strong) topology on E. 
Since for any sequence of sets {K,), we always have that 

w-lim sup K, r) s-lim inf K, , 

then (KV , v E N} converges to K if and only if 

(2.4) 

w-lim sup K, = K = s-lim inf K, , (2.5) 

and we write simply K, + K. Note that if the strong and weak topologies on 
E coincide, as would be the case if E = R”, then the above notion of convergence 
for sets is the classical one as defined by Kuratowski [17, p. 831. 

T-Convergence of a sequence {fV , v E N} of closed (proper and lower semi- 
continuous) convex functions on E to a closed convex function f, is defined in 
terms of convergence of the epigraphs of the fV to the epigraph off. We say that 
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the sequence if,,} T-converges to f, which we write fv -+-‘f, if the sets {epif” , 
v E N} converge to epi f, i.e., 

f” Lf if and only if epi fV --f epi f. (2.6) 

r*-Convergence is defined in a similar way, but now for closed convex functions 
defined on E*, the conjugate space of E. In particular, we have that 

f”*If* if and only if epif,*-+epif*. 

Mosco obtained the following important characterization of T-convergence: 

LEMMA 1 [7, Lemma I. lo]. Suppose that f and {fV , v E N} are closed conwex 
functions defined on E. Then fV jr f if and only if 

(i) every x E E is the s-limit of a sequence (xy , v E N} such that 

lim sup” fV(xy) d f (4 ; and 

(ii) given any sepemze (x, , p EM) with x = w-lim x,, we haae that 
lim inf, f,(x,) 3 f(x). 

Proof. It is straigthforward to verify that (i) is equivalent to 

s-lim inf epi fV 3 epi f (2.7) 

and that (ii) is equivalent to 

w-lim sup epi fV C epi f, (259 

which, in view of (2.1) and the definition of r-convergence, yields the desired 
result. A detailed proof can be found in [7]. 

3. POINTWISE CONVERGENCE AND T-CONVERGENCE 

Pointwise convergence is defined in the usual way. The sequence of functions 
{fV , v E N} is said to converge pointwise to the function f, written as fV --f f, 
if for all x E E, f(x) = lim f,,(x) or equivalently if 

lim sup f”(x) < f(x) < lim inff”(x). (3.1) 

Equivalence of pointwise convergence and T-convergence for closed convex 
functions has been proved in some special instances. Using bicontinuity of 
conjugation, one can easily deduce from Van Cutsem’s results [16, 1.101, 
reproduced in [4], that when E is finite-dimensional and the sets K, and K are 
convex compact, we have that 

VG” - *K* if and only if 
r* 

*& -+ #I*. 
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It is also easy to see that if the {KY} is a decreasing sequence of closed convex 
sets; then 

4 K” +*K if and only if #KV L gK. 

Finally, in [12], Robert shows that in R” pointwise convergence implies T-con- 
vergence for a restricted class of closed convex functions having inf domj and 
int dom j * nonempty. (For closed convex functions defined on R” and satisfying 
these additional conditions, convergence in Robert’s topology is equivalent to 
T-convergence.) 

Simple examples show that equivalence of pointwise convergence and r-con- 
vergence cannot be expected unless one restricts oneself to a certain subclass 
of closed convex functions. The theorems below show that a maximal subclass 
can actually be identified. 

A sequence of closed convex functions { jV , v E N} is said to be equi-lower 
semicontinuous at x (relative to the weak topology) if for every E > 0, there exists 
Jl/ a w-neighborhood of x such that for all v E N, 

f”(X) - 6 <f”(Y)3 (3.2) 

whenever y E 9. A sequence of functions {j; j,, , Y E N} is equi-lower semi- 
continuous if the following three conditions are satisfied: 

(a) { jV , v E N} is equi-lower semicontinuous at every point in dom f; 

(p) for all x E dom j, there exists vz such that for all v > vz , x E dom jV; 

(y) { jV , Y E N} goes uniformly to +cc on every w-compact subset of 
E\cl dom j, the complement of the closure of dom j. 

This last condition essentially requires, in a local sense, a uniform divergence 
of jV to + oz on E\cl domj. The two following lemmas yield some of the imme- 
diate consequences of pointwise and T-convergence, respectively. In particular, 
they show that condition (/3) is automatically satisfied if jV -j and that condition 
(y) is automatically satisfied if jV +T j. Later, we show that together pointwise 
and s-convergence imply condition (a). 

LEMMA 2. Suppose that j and { jV , v E N} are closed convex junctions such that 
jv+ j. Then 

(i) s-lim inf epi jV 3 epi j. 

(ii) Condition (8) for the equi-lower semicontinuity of the sequence { j;J, , 
Y E N} is satis$ed. Moreover, zf I? is finite-dimensional, then 

(iii) Condition (y) for the equi-lower semicontinuity of the sequence {f; jy , 
v E N} is satisfied, when E is Jinite dimensional. 

Proof. Statements (i) and (ii) follow directly from the definitions and Lemma 
l(i). Statement (iii) is a direct consequence of the definition of pointwise con- 
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vergence and the fact that in finite dimension simplical neighborhoods of a point 
have a finite number of extreme points. 

LEMMA 3. Suppose that f and {fv , Y E N} are closed convex functions such 
that f,, --‘f. Then 

(i) lim inf f”(x) 3 f(x); 

(ii) condition (y) for the equi-lower semicontinuity of the sequence {fi f,, , 
Y E N} is satisfied. 

Proof. By condition (ii) of Lemma 1 for every MC N, {x, , p E M} and 
x = w-lim x, , we have that lim inffU(xU) > f (x). Thus, in particular for the 
sequence {x, = x, v E N} we have that lim inff”(x) 3 f(x). This proves part (i) 
of the lemma. 

To prove (ii) we proceed by contradiction. Now suppose that C is a w-compact 
set in E\cl dom f and {fv} does not go uniformly to + co on C. Then there exists 
a sequence {xU , p E M} in C such that for some a E R, fU(xU) < a for all p E M. 
The sequence {x,} has at least one w-cluster point in C, say x. Since (x, a) E epi f, 
and a subsequence of {(xU , a), p E M} w-converges to (x, a) it follows that 
(x, a) E w-lim sup epi fv . Hence (x, a) E epi f, since w-lim sup epi fv = epi f 
by T-convergence; cf. (2.5). This is in contradiction to x $ cl dom f. 

The two following lemmas yield some of the implications of pointwise 
convergence when combined with equi-lower semicontinuity. 

LEMMA 4. Suppose that {fv , v E N} and f are closed convex functions such that 
the collection {f,,} is equi-lower semicontinuous at x E dom f and fv -+ f. Then, for 
any sequence {x, , p E M C N} with x = w-lim x, , we have that 

lim inf fu(xu) > f (x). 

Proof. By equi-lower semicontinuity of {f,,} at x, for all E > 0 there exists 
a w-neighborhood 4? of x such that (3.2) is satisfied for all y E +Y. Thus in parti- 
cular there exists pLo such that 

f,(x) - E Gfu(xu) 

for all p E M, p 3 p0 . Taking lim i n on both sides of the inequality and using f 
pointwise convergence, we get that 

f(x) - E < lim inffU(xU), (3.3) 

from which the lemma follows directly since (3.3) holds for all 6 > 0. 

LEMMA 5. Suppose that {fv , v E N} and f are closed convex functions, fv + f 
and the sequence {fi fv , v E N} is equi-lower semicontinuous. Then (x, a) E w-lim sup 
epi fv implies that x E dom f. 
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Proof. First we show that if (x, a) E w-lim sup epi fy , then x E cl dom f. 
It suffices to prove that if x $ cl dom f, there is no a E R such that (x, a) E 
zu-lim sup epi fv . Take x $ cl dom f and a any real number. Then there exists a 
w-compact convex neighborhood M of x such that Jtr is contained in E\cl dom f. 
By equi-lower semicontinuity of ( fi f,, , v E N}, more precisely by (y), the uniform 
convergence of {f,,} to + CO on JV, there exists a w-compact convex neighborhood 
of (Y, a), say A%‘, such that the closed convex sets epi f,, and A’ are strictly disjoint 
for all v larger than some c. Hence, there exists a sequence of hyperplanes 

If6 > u 3 fiJ separating strictly A! from epi fV , i.e., for all v > V, we have that 

and 

(3.4) 

(3.5) 

where H,+ and H,- denote the opposing half-spaces determined by H, . This 
implies that 

Uvas epifv C UYas H,.+ (3.6) 

and also that 

w-cl(&, epifd C D = w-cU&,Hv+). (3.7) 

Now D n w-int A = o and (3, u) $ w+cl(lJ+, epi fv) since (x, a) $ D. Con- 
sequently, (5, a) $ w-lim sup epi fv , since 

w-lim sup epi fv = n "e*w-c$J"ePif"). 
/ 

(3.8) 

The above when combined with (2.4) and Lemma 2(ii) implies that 

dom f C {x / (x, u) E w-lim sup epif,} C cl domf. (3.9) 

Now, suppose that (57 a) E w-lim sup epi f,, and F$ dom f. In view of the 
the above, this implies f E cl dom f and f(x) = + co. It is also easy to see that 

C = ((4 a) = (1 - 4 (2,s) + X(y, b) I A E [0, I], (y, b) E epi f 1 

is contained in m-lim sup epi fv , by (2.4) and Lemma 2(ii). Let JV again denote a 
convex w-neighborhood of X. JV n dom f is nonempty because 3~ E dom f and 
domf is nonempty ‘by properness of f. On the other hand, f closed and 
f(z) = + co implies that f(y) tend to + co as y w-converges to X. Take 

(Xl > ui) E C such that xi E JV n dom f and f (xi) > a, . The existence of such a 
point is guaranteed by the construction. The pointwise convergence of the J, 
to f implies that for some 6 E N and an E > 0 (sufficiently small) 

a1 + 2E <f&l) for all v > ?. (3.10) 
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Since x1 E domf, the collection {f,,} is equi-lower semicontinuous at .vr , i.e., 
there exists a w-neighborhood Jlr of x1 such that 

h(Xl) - E G h(Y) for all y E JV. (3.11) 

Combining (3.10) and (3.11) we have that 

a1 + E <f"W - E ~.fu(Y) forycM and v>i;. (3.12) 

The point (x1 , r a ) being in C C w-lim sup epif, implies the existence of a 
sequence {(x, , a,), TV E M 1 (xU , a,) E epi f,} w-converging to (x1 , ur). Every 
such sequence must have all x, E &” for p larger than some ,G. Thus the elements 
of the tail of the sequence must satisfy (3.12), i.e., 

a1 + E <f,(%) - c? Gf,(%J G 4 forp >F. (3.13) 

Taking limits in (3.13), we get a contradiction, since (3.13) would imply that 
a, + E ,( a, . Thus (x1 , a,) $ eo-lim sup epi fv . This, in turn, invalidates the 
working assumption, that (2, a) E w-lim sup and ff $ dom f. 

Note that the first part of the proof of the lemma and statement (iii) of 
Lemma 2 also yield the following: 

COROLLARY. Suppose that { fv , v E N} and f are closed convex functions defined 
on Rn and fv -+ f. Then (x, a) E lim sup epi f,, implies that x E cl dom f. 

THEOREM 1. Suppose that { fv , v E N} and f are closed convex functions. Then 
f,, -+ f and fv +T f imply that {f; fv , v E N} is an equi-lower semicontinuous col- 
lection. 

Proof. We proceed by contradiction. Suppose that there exists x E dom f 
such that {f,,} is not equi-lower semicontinuous at x. Then by definition of equi- 
lower semicontinuity and Lemma 2(ii) there exists E > 0 such that in every 
w-neighborhood @YE of x, there exists y= and a corresponding index va such that 

f",W - E > f”,(YJ (3.14) 

Take (em , (y. E A} a nested sequence of neighborhoods of x such that n+P = (x}. 
Then, from pointwise convergence, it follows that 

f(x) - c = limainff”,(x) - E >, limainffy,(yll), 

contradicting criterion (ii) in Lemma 1 for T-convergence. This proves con- 
dition (a) for equi-lower semicontinuity. The remainder now follows directly 
from statements (ii) in Lemmas 2 and 3. 

THEOREM 2. Suppose that {fv , v E N} and f are closed convex functions such 
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that fV -f. Then f,, --‘f if and only if the collection {f; fV} is equi-lower semi- 
continuous. 

Proof. In view of Lemma 2(ii) if suffices to show that 

epi f 3 &im sup epi f,, . (3.15) 

Take (x, a) E w-lim sup epi fV , i.e., there exists a sequence {(xU , a,), p E M} 
such that (x, a) = w-lim(x, , a,,) with 

f,(xJ G aI, for all p E M. 

Moreover, by equi-lower semicontinuity and Lemma 5, x E dom f. Then again 
by equi-lower semicontinuity and Lemma 4, we have that 

f(x) < lim inff,(xJ < lim inf a, = a, 

which implies that (x, a) E epi f and thus proves (3.15). The remainder now 
follows from Theorem 1. 

Some special cases of particular interest are given in the corollaries below. 
We give a separate proof of Corollary 2A. 

COROLLARY 2A. Suppose that {fV , v E N} and f are closed convex functions 
and f,, 4 f. Suppose, moreover, that w-int dom f # B and that to each 
x E w-int dom f there corresponds a w-neighborhood @ of x and vz E N such that 
% C w-int dom fV for all v > V, and fV -+ f uniformly on J2. Finally, oppose that 
the functions fV go uniformly to +a~ on every w-compact subset of E\cl dom f, 
ThenfV--L7f. 

Proof. Take x E w-int dom f and take a’, the postulate w-neighborhood of x, 
to be w-compact with +Y C w-int dom f. The function f is continuous on % and 
for v > Y+ and so are the functions f,, . Now the f,, converge uniformly on @. 
Take any sequence {x, , t.~ E M} with x = w-lim x, . Without loss of generality, 
we may assume that x, E @ for all y E M. Given any E > 0, continuity off at x 
and uniform convergence of {f,,} yield the existence of pe E M such that for all 

all P 2 pELt , 

I f(x) - fU(%)l G If(x) - f (x2 + If (%l) - f,(x,)l -=C 6. 

In particular, we have that lim inffU(xU) 3 f(x) for every subsequence 
{x, , p E M} w-converging to x. Hence for x E w-int dom f, and (x, a) E 
w-lim sup epi fV we also have that (x, a) E epi f. This follows from Lemma 2(i) 
and the above; since (x, a) = w-lim(x, , a,), a, >f,(xJ implies, in this case, 
that a 3 f(x). 

The first part of the proof of Lemma 5, which only relies on the uniform 
“divergence” of {fV} to + co on w-compact subsets of E\cl dom f, shows that if 
(x, Q) E z+lim sup f, , then x E cl\domf. In view of this and of the above, if 
u?-lim sup epi fV and epif differ in any way, there must be a point (x, a) E 
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w-lim sup epi fV , x on the boundary of dom f such that (x, a) 4 epi f. It is easy 
to see that con((x, a), epi f}, the convex hull of (x, a), and epi f, must then be 
contained in w-lim sup epi fV . Since (x, a) 6 epi f and epi f is closed it follows 
that there exists a w-open neighborhood .N of (x, a) such that .N is disjoint of 
epi f. Clearly JV intersects the w-interior of con{(x, a), epi f}. This implies the 
existence of a point (x1 , a,) E w-lim sup epi f,, with x1 E w-int domf and 
a1 < f(xl). This is in contradiction to the fact, established above, that 
y E w-int dom f, (y, b) E w-lim sup epi fV implies that f(y) < b. Hence, 

w-lim sup epi fy C epi f. 

This with Lemma 2(i) yields r-convergence of (fV) to f. 

COROLLARY 2B. Suppose that (f,, , v E N} and f are closed convex functions, 
w-int dom f # 0, dom fV 3 dom f, and fV -+ f unsformly. Suppose also that the 
functions f,, go uniformly to +CO on every w-compact subset of E\cl dom f. Then 

f” --‘f. 

Corollary 2B is just a restatement of Corollary 2A in the case when “con- 
vergence” to dom f occurs by a sequence of sets {domf”} containing dom f. 
The next corollary is a significant strenghtening of a result of Robert [12, 
Theorem 4.71. It is a consequence of Corollary 2A, Lemma 2(iii), and that in 
finite dimension the existence of a neighborhood Q, as postulated in Corollary 
2A, follows directly from [22, Theorem 10.61, Lemma 2(ii) and the existence of a 
simplicial neighborhood (with a finite number of extreme points) for every 
point x in int domf. 

COROLLARY 2C. Suppose that (fV , v E N} and f are closed convex functions 
de$ned on Rn, fV -+ f and int dom f # 0. Then fV -‘f. 

COROLLARY 2D. Suppose that f and {fV , v E N} are closed convex functions 
defined on Rn such that fV +f and 

aff dom f,, C aff dom f, 

where aff C is the a@ne hull of C. Then f,, +T f. 

Proof. Lemma 2(ii) shows that aff dom f,, 3 aff dom f when fV + f. We can 
thus apply Corollary 2C, replacing Rn by the affine space aff dom f. 

COROLLARY 2E. Suppose thut {fV , v E N} and f are closed convex functions 
dom fV = dom f and fV -+ f. Then f,, ++ f. 

Proof. This follows directly from Corollary 2A, if we view the underlying 
space as being the smallest closed affine subspace containing aff dom f and recast 
the proof so that everything is relative to this affine subspace of E. 

We now turn to the converse of Theorem 2. (Remember that by Lemma 3(ii), 
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condition (y) of equi-lower semicontinuity is repetitious when the sequence 
{fV} is T-converging to j.) 

THEOREM 3. Suppose that f and {fV , Y E N} are closed convex functions such 
that fV +-‘f. Then fV + f if and only if the collection {f; fV , v E N} is equi-lower 
semicontinuous. 

Proof. Suppose that fr --‘f and {f; fJ is equi-lower semicontinuous. In 
view of (3.1) and Lemma 3(i), it suffices to show that lim sup f”(x) < f(x). First 
suppose that x $ dom f; then the preceding inequality is trivially satisfied. Now 
take x E domf; then by equi-lower semicontinuity (B), x E dom f,, for Y suffi- 
ciently large. Also, by equi-lower semicontinuity (a) at every x E dom f, we have 
that for all E > 0 

f”(x) - E <f”(Y) 

for all v E N, provided that y E %!, for @ a zu-neighborhood of x. T-Convergence 
of the fr to f implies that there exists a sequence {xV , v E N) such that x = s-lim x, 
and such that lim sup fr(x,) <f(x); cf. Lemma l(i). Convergence of x, to x 
implies that for Y sufficiently large, x, E % and then f”(x) - E < fV(xV). Hence 

lim sup f”(x) - E < lim sup f”(s) < f(x). 

The above holding for all E > 0 shows that for x E dom f 

lim sup fr(x) <f(x). 

The necessity of equi-lower semicontinuity follows directly from Theorem 1. 

COROLLARY 3A. Suppose that {f,, , v E N) and f are closed convex functions 
such that dom fV 3 dom f for all v E N and fV dT f. Then f,, + f sf and only sf the 
collection if,,} is equi-lower semicontinuous at every point of dom f. 

COROLLARY 3B [12, Proposition 4.101. Suppose that f and {fr , v E N} are 
closed convex functions dejined on Rn with fv +T f. Then fv + f on int dom f. 

Proof. It suffices to observe that if x E int dom f C R” and fv --‘f then 
x E int dom fv for v sufficiently large and that consequently the sequence (fv) 
convergence uniformly on a closed simplicial neighborhood of x; see [22, Theo- 
rem 10.81. 

4. POINTWISE CONVERGENCE OF CLOSED CONVES FUNCTIONS 
AND THEIR CONJUGATES 

T-Convergence of a sequence of closed convex functions {fv , v E N} to a closed 
convex function f is equivalent to 7*-convergence of {f*, v E N}. This result 
proved in [14] and [l I] can also be viewed as a consequence of a result of [ 131 
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for closed convex cones. To see this simply observe that for f closed and convex 
we have that 

pol cl pos{(-1, r], x) 1 (Y, X) E epif} = cl pos{(q*, -1, x*) ( (q*, x*) E epif*}, 

where pol associates to a closed convex cone C its polar cone, pol C = 
{x* E E* 1 (x, x*) < 0}, and where pos denotes the positive hull, pos S is the 
intersection of all convex cones containing S. Combining (4.1) with the fact 
that pol is an isometry [13, Theorem l] and observing that a collection of closed 
convex sets {K, , v E N} converges to K if and only if (cl pos({ - l} x K,), v E N} 
converges to cl pos({-I} x K), shows directly that 

f”Lf if and only if f,,* 2 f *, (4.2) 

provided, naturally, that {f,, , v E N} and f are closed convex functions. 
It is now easy to combine Theorems 2 and 3 and their corollaries with (4.2) 

to obtain various relations between pointwise convergence of a class of closed 
convex functions and pointwise convergence of their conjugate functions. In 
particular, we get the following: 

THEOREM 4. Suppose that f and {fr , Y E N} are closed convex functions 
suchthat{f;f,,v~N)and{f*;f,*, v E N} are equi-lower semicontinuous sequences. 
Thenf,+fifandonlyiff,*-+f*. 

As an example, we give below one of the many implications of this theorem. 

COROLLARY 4A. Suppose that f and {fr , v E N} are closed convex functions 
defined on Rn such that {fV} and if,,*} are equi-lower semicontinuous at every point of 
dom f and dom f *, respectively. Then fV + fV and dom f,,* r) dom f * implies 
fV + f *. Dually fr* -+ f * and dom fr 1 dom f implies f,, + f. 

There does not seem to be a simple condition which can be imposed on the 
collection {fr} which is equivalent to equi-lower semicontinuity of the collec$on 
{f *if”*, v EN}. There are, however, some special cases, as we see in Section 5, 
where this property is immediate. In other instances we might be satisfied with 
equi-lower semicontinuity at a given point as examplified in the following 
theorem. 

THEOREM 5. Suppose that (f,, , v E N} and f are inf-compact convex functions 
defined on R” such that {f, fr} is an equi-lower semicontinuous collection. Then 
fV +-f implies that 

Min fV - Min f. (4.3) 
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Proof. Inf-compactness of the fV and off implies that the fy* and f * are 
continuous at 0; cf. [18] or [19]. The result now follows from Theorem 2, (4.2), 
Corollary 3B, and the fact that inff”(x) = -f,,*(O). 

Note that in the previous theorem, it would be sufficient to assume that f 
is inf-compact, since pointwise convergence fV -+ f implies that the fV are inf- 
compact from some Y on. Taking a somewhat different viewpoint, we extract 
from (4.2) and the proof of Theorem 3 the following important result for 
approximation theory. 

THEOREM 6. Suppose that {f,, , v E N} and f are closed convex functions such 
that (f, fV) is an equi-lower semicontinuous sequence and fy + f. Suppose, moreover, 
that inf f is jinite. Then there exists (xv*, v E N} converging to 0 such that 

lim{inf[f, - (., x,*j]} = inff. (4.4) 

Proof. Equi-lower semicontinuity of the {f,,} and pointwise convergence of 
(f,,} to f implies that fy* -+T* f *; cf. Theorem 2 and (4.2). Xow Lemma l(i) 
implies that there exists a sequence (xy*) that s-converges to 0 such that 
lim sup fy*(xy*) < f *(0) = -inff. Al so by Lemma I(ii) we are assured that 
lim inff,*(x,*) 3 f*(O). The theorem now follows from the simple observation 
that fU*(.r,*) = -inf[fV - <., x,*j]. 

5. CONVERGENCE OF CONVEX SETS AND THEIR SUPPORT FUNCTIONS 

We can now apply Theorem 4, or variants thereof, to the theory of conver- 
gence of convex sets. It is easy to see that convergence of convex sets {lir, , z’ E N} 
to a (closed) convex set K is equivalent to the T-convergence of the indicator 
functions {I/~, , v E N) to the function I/~. Moreover, by (4.2) we have that 

#K, L #K if and only if $5 ‘: #K*. (5.1) 

However, to obtain pointwise convergence of the indicator functions GK, to #K 
we must demand (cf. condition (13> of equi-lower semicontinuity) that for all 
x E K there exists Ye such that x E K, for all v E N, Y 3 Ye . This is akin to 
requiring that {K, , v E N} be a decreasing sequence. The pointwise convergence 
of the support functions is characterized in the following theorem. For C a 
convex subset of E, we denote by O+C the recession cone of C, i.e., O+C is the 
maximal convex cone such that 

c3c+o+c. (5.2) 

THEOREhl 7. Suppose that {KV , v E N) and K are closed convex subsets of E 
such that for all v E N and {#Jo*; #$,) is an equi-lower semicontinuous collection 
with closed eflective domain. Then K,, + K implies that 4sL, -+ +ti”. 



224 SALINETTI AND WETS 

Proof. In view of (5.1) and Corollary 3A, it suffices to show that for all 
v E N, dom @, 1 dom +K *. But this follows directly from the facts that 
dom $2, = pol O+K, and dom z+%~* = pol OfK, and also that 

O+K 3 OfK, implies pol O+K P pol O+K, . (5.3) 

COROLLARY 7A [16, 1.10; 14, Theorem 3.11. Suppose that {K, , Y E N} is a 

collection of compact convex sets converging to a compact convex set K. Then 

G, + hc** 

Proof. In this case O+K, = O+K = (0) and thus dom I@, = dom #K* = E* 
from which follows trivially the equi-lower semicontinuity of {+K*). 

COROLLARY 7B. Suppose that {K, = C, + O+K, , v E N} is a sequence of 
closed convex sets converging to a closed convex set K = C + O+K, with C, 
converging to C such that C and {C, , Y E N} are compact and O+K 3 O+K, . 

Then G, - h*- 

Proof. Observe that #K, = #C,+O+K Y implies that 

Pointwise convergence now follows from Corollary 7A, #z+K, = &,l,,+Ky and (5.3). 
Let us also note that if convergence of closed convex sets is defined in terms 

convergence of the Hausdorff distance, convergence in this sense can only occur 
if the sets {K, , v E N} and K satisfy the hypotheses of Corollary 7B. This corollary 
thus implies that convergence, in the sense of Hausdorff distance, always implies 
pointwise convergence of the support functions. This, combined with Theorem 7 
can be used to extend the results of [16, Chap. I, Sect. 1] to the noncompact case. 
We can also use this observation to generalize a result of Hijrmander [20] and 
Ghoula-Houri [21] on the relation between the Hausdorff distance of two 
compact convex sets and the distance, in a certain norm, of the corresponding 
support functions, cf. [23]. 

Of particular interest is a version of Theorem 6 applied to the special case 
{K, = C, + O+K, , v E N, C, compact} and the functions fv have the special form 

f”(X) = <x9 Y”> + h” (5.4) 

for K, closed convex sets. Then 

f”*(x*) = +&* - YJ (5.5) 

Clearly, if the yy are converging to some y, and f = (e, y) + 1,4~ , {f; f,} is an 
equi-lower semicontinuous sequence and 

dom fv* = yV + dom I/:, = yy + pol(O+K,). (5.6) 
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COROLLARY 7C. Suppose that {K, = C, + O+K, , v E N) and K = C + O+K 
are closed convex sets in E with {C, , v E N} and C compact, and O+K, C O+K. Let 
{Y” 3 v E N} be any collection in E* such that y = w-lim y, with 

yv E (~01 O+K) + Y. (5.7) 

Suppose, moreover, that the linear functional (., y> is bounded below on K. Then 
K, + h’ implies that 

(inf( *, yy) on KV) -+ (inf( ., y} on K). (5.8) 

Proof. From (5.7), OfK, C O+K, and (5.3) it follows that for all VE N, 
domf,*Idomf* forf,=(.,y,)+‘4YKY andf=(.,y‘>+#,since 

f”* =: &“C - 4)Y) = &y - UY) + h+b”(. - Y.). 

Consequently, to show (5.Q it suffices to establish that 

9i$(-YJ - #c*(-Y). 

This in turn follows from the fact that since dom I$, = dom &* = E*, we 
have uniform (pointwise) convergence of $F, to (Gc* on every w-compact subset 
of E”. 

COROLLARY 7D [ 16, I. 131. Suppose that (K, , v E N) is a collection of compact 
convex sets in E converging to a compact set K and (y,, , v E N) is a collection qf 
points in E* such that y = w-lim y, . Then 

(inf(., y,,) on KY) -+ (inf(., y) on K). (5.9) 
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