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CONTINUITY OF SOME CONVEX-CONE-
VALUED MAPPINGS

DAVID W. WALKUP AND ROGER J.-B. WETS

1. Introduction. We consider the class @(®) of all closed convex
cones in a reflexive Banach space ® as a topological space and in-
vestigate the resulting topological properties of certain mappings into
C(®). In §2 we show that, with the proper choice of Hausdorff metrics
for €(®) and e(®*), the operation of taking the polar cone is an
isometry between these spaces. In §3 we consider the operation of
forming the positive hull of a finite set of points as a mapping into
C(R™) and obtain some sufficient conditions for the continuity of this
mapping. The results of §3 have application in the theory of sto-
chastic programming [6].

2. Properties of the polar map. Let @ denote a reflexive Banach
space with norm [ H and unit ball B and let &* be the conjugate space
of ® with norm l y*|| =supees [ (x, y*)[. Let €(®) denote the class of
all closed convex cones in ® (with vertex at the origin). We define a
metric distance d between P, Q&C(®) as follows:

5(P,Q) = sup infljp—gll, d(P, Q) = max {8(P, Q), s, P)}
PEPNB ¢€Q

Thus d is essentially the Hausdorff metric on B. Distances §* and d*
are defined similarly on €(®*) in terms of the conjugate norm.
To each subset D of & is associated its polar, pol D C®*, defined by

pol D = {y* € ®*| (x, y*) < 0 for all x € D}.

It is well known that the restriction of pol to @(®) is a one-to-one
map from €(®) onto €(B*) and that pol(pol C) =C for each CEC(®).

THuEOREM 1. The polar map is an isometry from C(®) onto C(®B*).
Proor. Clearly the theorem will follow if we show that
1) &*(pol Q, pol P) = 6(P, Q) forall P, Qin C(®).

In fact, since the case P =Q is trivial, (1) will follow from the identity
pol(pol C) =C if we show that

2 *(pol Q, pol P) = 5(P, Q)
whenever P, Q are members of @(®) such that §(P, Q) =A>0. We
Received by the editors June 20, 1966.
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begin by proving that (2) holds when P is a ray, Q is a closed halt-
space, and PNQ={0}. Let p be the element of P with norm 1. Then

8P, Q) = 8(p, @) = inf [lp — ol = (, ") =4 >0,

where ¢* is the element of pol Q with norm 1. From the definition of
0* and the conjugate norm, it follows

5*(pol Q, pol P) = 8*(g*, pol P) = inf [¢* — p*|
p*epolP

= inf sup | (s, ¢*) — (& %)

p*cpolP z€EB
Since the supremum is taken over a set containing p, we obtain

5*(pol Q, pol P) = | (p, ¢*) — (p, p*)| = A.

This establishes (2) for the special case. In general, if 6(P, Q) =A>0,
then for any ¢, 0<e<A, there exists & PMB such that §(, Q) =4’
=A—e Let N(p) = {x]x=kz, Hﬁ—z” <A, )\20}. Then by a well-
known separation theorem there exists a half-space Q containing Q
and missing the interior of N($). Thus §($, Q) =A’ and hence, by the
special case considered above, §*(pol O, pol $)=A’. Since pEP,
0DQ it follows pol FDpol P, pol 0Epol Q and thus

&*(pol Q, pol P) = &*(pol Q, pol p) Z A" Z A — ¢,

from which (2) and hence the theorem follows.

The above theorem bears an interesting relationship with a result
of V. Klee on convex bodies in a normed linear space |4, p. 253]. Let
H be a reflexive Banach space, and let ®X(H) be the class of closed
bounded convex bodies in H with the origin in their interior. The
space H can be imbedded in a reflexive Banach space ® in such a way
that H is a closed hyperplane at distance 1 from the origin 0 of ®
and the origin of H is a point p of & which is also the closest point of
H to 0. Let P* be the set of points of B* whose products with p is
—1, and let 4* be the point of &* whose products with points of H
are all equal to — 1. It is easily checked that P*—#* is (isometric to)
H*, the conjugate of H. In addition, if K is a member of X(H), then
(P*NMpol K) —k* is the polar body K°= {t*CH*|sup ((s—p), t*)=1,
SEH}, which is a member of X (H*). Moreover, the map {, which
associates with each point s of H the ray {\s|\Z0}, and its inverse
¢~! can be seen to be Lipschitzian homeomorphisms of bounded por-
tions of H and their images in @(®). (It suffices to consider 2-dimen-
sional subspaces of ® spanned by two arbitrary points of H and estab-
lish a Lipschitz constant depending only on the norms of these
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points.) If X(H) and X(H*) are given the Hausdorff metrics derived
from H and H*, then by Theorem 1 the polar map ° is a locally
Lipschitzian homeomorphism of X(H) onto X(H*). This is essen-
tially the content of Klee's result.

Let ¥ be a mapping from a topological space X into @(®). Then ¢
may be interpreted as a set-valued mapping into ®, in connection
with which we employ the concepts of closed and lower semicon-
tinuous mappings as defined by Berge in [1, Chapter VI]. It is easily
seen that ¥ is closed or lower semicontinuous with respect to either
the strong or weak topology of ® if and only if the same holds for 3,
where ¥(x) =y(x)NB.

ProrosITION 1. Let ¢ be a set-valued mapping of the topological space
X into ®.

(1) If y is lower semicontinuous, then pol ¢ is weakly closed.

(ii) If ¢ is weakly closed and ¥(x) is a convex come for each x & X,
then pol ¢ s lower semicontinuous.

Proor. Part (i) follows in a straightforward fashion from the ele-
mentary definitions of lower semicontinuity, the map pol, and weakly
closed maps. For part (ii) assume pol ¢ is not lower semicontinuous.
Then there exists £, a spherical neighborhood N, about £*&
pol ¢ (x), and for each neighborhood M about £ a point x=x(M)EM
such that pol Y (x(M))NN.= . For each M the two convex sets NV,
and pol ¥(x(M)) may be separated by a hyperplane, that is, there
exists (M) such that

v =1,
©) O, #) 2 ¢
(y(M), z*) = 0 for all * € pol ¢(x(M)),
ie.
4) (M) € Y(x(M)).

Since each y(M) belongs to the weakly compact ball B, there exists
§E B such that 4 is a weak limit point of y(M,) for every system of
neighborhoods M, of x converging on £. But then (3) implies (y, 2*)
=e i.e. 9Y(£), which contradicts (4) and the assumption ¢ is
weakly closed.

When ® is of finite dimension the following conditions are equiv-
alent:

(a) ¥ is continuous with respect to the topology of C(®).

(b) For all x€X, see [3, p. 295]
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lim 6(¥(£), ¥(x)) = 0, lim 6(¥(x), ¥(£)) = 0.
F2md 2 Tz
(c) ¢35 is upper semicontinuous (or closed) and lower semicontinu-
ous.
(d) ¢ is closed and lower semicontinuous.
These remarks yield a direct proof of Proposition 1 for finite-
dimensional spaces.

3. Properties of the map pos. In this section we concentrate on the
continuity properties of the operator pos, which we interpret as asso-
ciating with each m X# real matrix 4 the closed convex polyhedral
cone spanned positively by the points in R™ determined by the col-
umns of 4. We identify the m X7 matrices with the points of Rm»,
We shall also write lin 4 and con 4 respectively, for the subspace of
R™ spanned linearly by the columns of 4 and the convex hull of the
columns of 4.

In order to show that the restriction of pos to a subset Z of R™" is
continuous in the sense of continuity of the associated set-valued map
into the unit ball B” in R or the associated map into the space @ of
closed convex cones in R™, it suffices to show that the restriction of
pos to Z is closed with respect to the relative topology of Z, since:

ProprosITION 2. Considered as mappings from R™ into R™, pos and
lin are lower semicontinuous, polpos and pollin are closed, and con is
CONLINUOUS.

Proor. The continuity of con is intuitively obvious and easily
proven. To prove pos is lower semicontinuous we must show that if
the sequence A4; converges to A and $ is any point of pos A, then
there exists points p;&pos 4; such that lim p,=p. But if pEpos 4,
then p= Ay for some YERE and the sequence of points p;=4;y has
the required properties. The rest of the proposition follows from
Proposition 1 and the remark that lin 4 =pos[4, —4].

We may now state the principal result of this section. We use the
usual notations of dim C for the dimension of a cone C and £C for
the lineality space of C, i.e. the maximal linear subspace contained
in C.

THEOREM 2. Suppose Z is a subset of R™, k is an integer, and for
every matrix A EZ

(a) dim £ pos 4 =&,

(b) there exists a nmghborhood N about A such that if any column
Ai of A lies in £ pos A, then the corresponding column A* of any matrix
A in NNZ lies in £ pos A.
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Then the restriction of pos to Z is continuous.

Two corollaries to this theorem, representing extreme cases of the
hypotheses, are stated below. The result of Corollary 1 will be used
in the proof of the theorem. Corollary 2 will follow trivially from the
theorem.

COROLLARY 1. Suppose pos A is a pointed cone, i.e. dim £ pos 4 =0,
and none of the columns of A is the zero vector. Then pos is continuous
in a neighborhood of A.

COROLLARY 2. Suppose Z is a subset of R™, k is an integer, and for
every mairix AEZ the cone pos A is a subspace of R™ of dimension k.
Then the restriction of pos to Z is continuous.

ProoF oF COROLLARY 1. Suppose pos 4 is pointed and none of the
columns of 4 is identically zero. Then there exists a hyperplane H in
R» missing the origin and intersecting pos 4 in a polytope P(4).
On a sufficiently small neighborhood N of R about 4, P(4)
=HMpos A is the convex hull of uniformly bounded points p;(4)
each of which is the intersection with H of the ray in R™ generated by
a column A4 ¢ of 4. Clearly the points p;(4) are continuous functions of
A on N and, by the continuity of con, so is P(4). But since P(4) is
a closed function, so is pos 4. From Proposition 2 it follows pos is
continuous on .

Proor oF THEOREM 2. For the proof we restrict our attention to
matrices 4 in a sufficiently small neighborhood N of the relative
topology for Z containing an arbitrary point 4 of Z. It will suffice to
show that pos is a closed map of N into the column space of 4. With-
out loss of generality we may assume the rows and columns of 4 are
so arranged that 4 may be partitioned in the form

L 7] = l:Lu Ly, Tl:l

Lu Ln Tol
where £ pos 4 =pos L=Ilin L, each column of T lies outside £ pos 4,
and Ly is a maximal nonsingular square submatrix of L. It is clear
from hypothesis (a) that Ly is a kX k matrix. If V is sufficiently small,
then Ly, B, and B~! are nonsingular (throughout N), where B is the

m X m matrix
5[ 0]
Ly I

Now consider
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I Ly T
D=B"4= [ ; i:l
0 L22 T2

and note that D is a continuous function of 4. Since B! is nonsingu-
lar, the combinatorial structures of the cones pos D and pos 4 are
identical. This fact, together with (a), (b), and the assumption that
NV is sufficiently small, yields the following sequence of results: The
columns of B~!L lie in £ pos D,

S0 =t "]
os D = lin ,
P 0

the matrix L, is identically zero, no column of B~!T lies in £ pos D,

and, therefore,
p=in[o [+ o] ]
os D = 0s ,
p in | |+pos|

1]
0s
p Ty

is a pointed cone and none of the columns of

[r:]

are zero. It follows readily from Corollary 1 and the fact

[r.]
0s
p !

is orthogonal to the fixed flat
I
lin I: :I
0

that the map D—pos D is closed. Thus the map 4—pos D is closed
since D is a continuous function of 4. Finally, the map 4—pos 4
=B {pos D} is closed since it is the composition of the closed map
A—pos D and the continuous map 4—B with the continuous map,
(4, B)—BA. This completes the proof.

Curiously, although Theorem 2 is obviously related to the theory
of positive linear dependence [2, 5], the concepts of combinatorial
type and frame (minimal independent spanning set) fundamental in

where
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that theory do not appear in the hypotheses of Theorem 2. There are
simple counterexamples in three dimensions which show that fixed
combinatorial type of pos 4 on Z or the existence of a continuous
frame for pos 4 on Z are not sufficient to make pos 4 continuous on Z.
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