The Surprising Mathematics of Longest Increasing Subsequences
Cambridge University Press, 2015

Errata]

1. Page 14: the random variables S_{n} defined here (and mentioned on lines $1,2,11$ and 14) cause a conflict with the identical notation S_{n} used to denote the symmetric group of order n. They should be relabeled by a different letter, e.g., Z_{n}.
2. Page 72, Exercise 1.6: the fourth line of the exercise text is badly formatted due to an errant LaTeX command. The initial part of the exercise should read:
(Lifschitz-Pittel [75]) Let X_{n} denote the total number of increasing subsequences (of any length) in the uniformly random permutation σ_{n}. For convenience, we include the empty subsequence of length 0 , so that X_{n} can be written as $X_{n}=$ $1+\sum_{k=1}^{n} X_{n, k}$ where the random variables $X_{n, k}$ are defined in the proof of Lemma 1.4 (p. 9).
3. Page 76, Exercise 1.15: change " $Q(n)=\sum_{k=1}^{n} q(n)$ " to " $Q(n)=\sum_{k=1}^{n} q(k)$ ".
4. Page 76, Exercise 1.15(a): change "Prove that $q(n, k) \leq \frac{1}{k!}\binom{n+k-1}{k-1}$ " to "Prove that $q(n, k) \leq \frac{1}{k!}\binom{n-1}{k-1}$ ". (Note: the bound $q(n, k) \leq \frac{1}{k!}\binom{n-1}{k-1}$ also implies that $q(n, k) \leq \frac{1}{k!}\binom{n+k-1}{k-1}$, so the uncorrected version of the exercise is still technically correct.)
5. Page 90: in equation (2.13), change the numerator of the fraction on the right-hand side from " $\prod_{1 \leq i, j \leq d}\left(p_{i}-p_{j}\right)\left(q_{i}-q_{j}\right)$ " to " $\prod_{1 \leq i<j \leq d}\left(p_{i}-\right.$ $\left.p_{j}\right)\left(q_{i}-q_{j}\right)^{\prime \prime}$.
6. Page 118: in the equation immediately above Lemma 2.24, a factor of $e^{-\frac{2}{3} x^{3 / 2}}$ is missing.
7. Page 118: in Lemma 2.24, display (2.75) should read:

$$
\begin{equation*}
|\mathbf{A}(x, y)| \leq C \exp \left(-\frac{1}{2}\left(x^{3 / 2}+y^{3 / 2}\right)\right) \tag{2.75}
\end{equation*}
$$

Date last updated: January 15, 2021
8. Page 119: in the proof of Lemma 2.25, display (2.76) should read:

$$
\begin{align*}
\left|{ }_{i, j=1}^{n} \operatorname{det}\left(\mathbf{A}\left(x_{i}, x_{j}\right)\right)\right| & =\exp \left(-\sum_{j=1}^{n} x_{j}^{3 / 2}\right)\left|{ }_{i, j=1}^{n}\left(e^{\left(x_{i}^{3 / 2}+x_{j}^{3 / 2}\right) / 2} \mathbf{A}\left(x_{i}, x_{j}\right)\right)\right| \\
& \leq n^{n / 2} C^{n} \exp \left(-\sum_{j=1}^{n} x_{j}^{3 / 2}\right), \tag{2.76}
\end{align*}
$$

9. Page 122: the display in which E_{1} is bounded should read:

$$
E_{1} \leq C \exp \left(-\frac{1}{2}(x+T)^{3 / 2}-\frac{1}{2}(y+T)^{3 / 2}\right)
$$

10. Page 126: display (2.89) should read:

$$
\begin{align*}
\left|a_{n}(T, \infty)\right| & \leq \int_{T}^{\infty} \ldots \int_{T}^{\infty} C^{n} e^{-\sum_{j=1}^{n} x_{i}^{3 / 2}} \stackrel{n}{\operatorname{det}}\left(e^{\frac{1}{2} x_{i}^{3 / 2}+\frac{1}{2} x_{j}^{3 / 2}} \mathbf{A}\left(x_{i}, x_{j}\right)\right) d x_{1} \ldots d x_{n} \\
& \leq\left(C \int_{T}^{\infty} e^{-x^{3 / 2}} d x\right)^{n} n^{n / 2} \leq C^{n} e^{-n T} n^{n / 2} \tag{2.89}
\end{align*}
$$

11. Page 128: In Lemma 2.31, change "Let $P_{1} \geq P_{2} \geq P_{3} \geq \ldots$ " to "Let $P_{0} \geq P_{1} \geq P_{2} \geq \ldots$.
12. Page 129: the line following display (2.97) should be changed from "By Lemma 2.32, for fixed t the sequence $P_{1}(t), P_{2}(t), \ldots$ is nonincreasing." to "By Lemma 2.32 (and its trivial extension to cover the case $n=0$), for fixed t the sequence $P_{0}(t), P_{1}(t), P_{2}(t), \ldots$ is nonincreasing."
13. Page 129: in the line following display (2.98), change "But by Theorem 2.47" to "But by Theorem 2.29".
14. Page 134: the first display in the proof of Lemma 2.34 should read:

$$
\left|F_{2}(t)-1\right| \leq \sum_{n=1}^{\infty} \frac{C^{n} n^{n / 2}}{n!}\left(\int_{t}^{\infty} e^{-x^{3 / 2}} d x\right)^{n} \leq \sum_{n=1}^{\infty} \frac{C^{n} e^{n}}{n^{n / 2}} e^{-n t}=O\left(e^{-t}\right)
$$

The display following it should read:

$$
\begin{aligned}
|\mathbf{H}(x, y, t)-\mathbf{A}(x, y)| & \leq \sum_{n=1}^{\infty} \frac{(n+1)^{(n+1) / 2} C^{n+1}}{n!} e^{-x^{3 / 2}-y^{3 / 2}}\left(\int_{t}^{\infty} e^{-u^{3 / 2}} d u\right)^{n} \\
& \leq e^{-x-y} \sum_{n=1}^{\infty} \frac{(n+1)^{(n+1) / 2} C^{n+1}}{n!} e^{-n t}
\end{aligned}
$$

15. Page 155, Exercise 2.22: An accessible derivation of Nicholson's approximation is given in Section 4.4 of the lecture notes "Integrable probabilities: around the Longest Increasing Subsequence problem" by Jérémie Bouttier, available at https://www.normalesup.org/~bouttier/coursM2Lyon/notes_coursM2Lyon.pdf.
16. Page 251, line $10-$: change " $u(x, 0)=u(x)$ " to " $u(x, 0)=u(x)$ ".
17. Page 292, line 4-: change $p_{0}=\langle 1,1\rangle_{w}^{1 / 2}$ to $p_{0}=\langle 1,1\rangle_{w}^{-1 / 2}$
18. Page 295: in line 11-,

$$
p_{n}(x)=\left(A_{n} x+B_{n}\right) p_{n-1}(x)-D_{n} p_{n-2},
$$

to

$$
p_{n}(x)=\left(A_{n} x+B_{n}\right) p_{n-1}(x)-D_{n} p_{n-2}(x),
$$

and in the sentence on the following line that starts "The value of D_{n} can be found by assuming inductively that (5.23) holds and writing", delete the words "assuming inductively that (5.23) holds and".
A few lines further down, the last line of the proof of Lemma 5.14 should be changed to: "which gives that $D_{n}=A_{n} \frac{\kappa_{n-2}}{\kappa_{n-1}}=\frac{\kappa_{n} \kappa_{n-2}}{\kappa_{n-1}^{2}}=C_{n}$ for $n \geq 2$, as claimed. For $n=1$ it is not necessary to show that $D_{1}=C_{1}$, since p_{-1} was defined as the zero polynomial. "
19. Page 296, line 4: change the equation

$$
\left(\mathbf{K}_{n} f\right)(x)=\int_{\mathbb{R}} \mathbf{K}_{n}(x, y) f(y) d y
$$

to

$$
\left(\mathbf{K}_{n} f\right)(x)=\int_{\mathbb{R}} \mathbf{K}_{n}(x, y) f(y) w(y) d y
$$

20. Page 296, equation (5.24): change " $\left(\sum_{i=1}^{m} u_{i} u_{j} p_{k}\left(x_{i}\right)\right)^{2}$ " to " $\left(\sum_{i=1}^{m} u_{i} p_{k}\left(x_{i}\right)\right)^{2}$ ".
21. Page 302, equation (5.31): in this equation, change $L_{n}(x)$ to $L_{n}^{\alpha}(x)$ and $L_{m}(x)$ to $L_{m}^{\alpha}(x)$.
