
US008355324B2

(12) Ulllted States Patent (10) Patent N0.: US 8,355,324 B2
Baryshnikov et al. (45) Date of Patent: Jan. 15, 2013

(54) METHOD AND APPARATUS FOR FILTERING 2005/0198519 A1 * 9/2005 Tamura et al. 713/188
2006/0272018 A1* 11/2006 Fouant 726/23

DATA PACKETS 2009/0144820 Al* 6/2009 Kurapatiet al. 726/22

(75) Inventors: Yuliy Baryshnikov, New York, NY FOREIGN PATENT DOCUMENTS
(Us); Eric Henry Grosse, Berkeley JP 2004-140524 A 5/2004
Heights, NJ (US); Dan Romik, NeW
York, NY (US); Francis X. Zane, NeW OTHER PUBLICATIONS
Providence, N] (U S) http://enwikipedia.org/Wiki/Denial-of-serviceiattack, downloaded

on Mar. 1, 2007 (9 pages).
Assignee: Alcatel Lucent’ Paris et 31., “Multops: A Data-Structure for Attack

Detection,” Proceedings of the 10”‘ UseniX Security Symposium
. . - - - UseniX Assoc Berkley CA USA Aug. 15 2001 XP002221251. * . , , , , ,

() Nonce' SubJeCt to any dlsclalmer’ the term Ofthls Japanese Of?ce Action dated Aug. 9, 2011 issued in corresponding
patent is extended or adjusted under 35 Japanese Application No‘ 2009551749
U-S-C- 15403) by 775 days- Chinese Of?ce Action dated Jun. 5, 2012 issued in correspoding

Chinese Application No. 2008800068416 and English translation
(21) Appl. No.: 11/712,716 thereof.

(22) Filed: Mar. 1, 2007 * cited by examiner

(65) Prior Publication Data Primary Examiner * Famk HamZa
Assistant Examiner * Cassandra Decker

Us Zoos/0212597 A1 Sep' 4’ 2008 (74) Attorney, Agent, or Firm * Harness, Dickey & Pierce,

(51) Int. Cl. P'L'C'

H04J1/16 (2006.01) (57) ABSTRACT
G06F 9/00 (2006.01) _ _ _ _

G06F 11/00 (2006 01) Dlsclosed 1s a method and apparatus for ?ltenng rece1ved
G06F12/14 (200601) data packets. A hierarchical tree is maintained. The tree

_' _ _ includes nodes organized in a plurality of levels. Each level

g‘sl‘dcli C"l'""'_'i'i'""t_370é230’ 1226/13’ 726/22’ 7iI6/23 above a root node of the tree has one or more of the nodes,
1e 0 assl ca 1on earc one With each of the one or more of the nodes corresponding to a

particular value of a segment of an Internet Protocol (IP)
address. The segment is the same for each node of a particular
level of the tree. Each node at a particular level of the tree
stores a number representative of the number of received
packets having the same value for the segment of the IP

See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

JAI_1dreWS et al' address associated With the particular level. Some of the
7’203’963 Bl 4/2007 vii/g1 et a1 received data packets are ?lteredoutbasedonthe hierarchical
7,234,168 B2 * 6/2007 Gupta et al. 726/25 tree'
7,331,060 B1 * 2/2008 Ricciulli 726/22

2002/0046291 A1 * 4/2002 O’Callaghan et al. 709/238 21 Claims, 4 Drawing Sheets

lNCREMENT NUMBER
OF RECHVED PAGKEIS

NUMBER OF CHILD
NODES FOR ‘ME CURREN'I LEVEL
NODE GREATER THAN A CHILD

NODE THRESHOLD

US. Patent Jan. 15, 2013 Sheet 1 of4 US 8,355,324 B2

a $51200
.PmmE

me

P __ $.25 :00

IF mmgmzoo
95.:

m P mmgmzoo

azoomw

US. Patent

AN OVERFLOW STATE '?

Jan. 15, 2013 Sheet 2 of4 US 8,355,324 B2

INIIIALIZE TREE ~l~205

" 21 0

AV RECEIVE PACKET ‘I

DEIERMINE A CURRENT LEVEL NODE
FOR THE PACKET “"215

,5 220
CURRENT I£VEL NODE IN INCREMENT NUMBER

‘ OF RECEIVED PACKETS

I
225

CREATE A CHILD NODE FOR THE PACKET J‘ 230

INCREMENT A NUMBER OF CHILD
NODES FOR THE CURRENT LEVEL NODE

v‘ 235

IS THE 240
NUMBER OF CHILD

NODES FOR THE CURRENT LEVEL
NODE GREATER THAN A CHILD

NODE THRESHOLD

FILTER CURRENT LEVEL NODE PACKETS 250

FIG. 2

US. Patent Jan. 15, 2013 Sheet 3 of4 US 8,355,324 B2

m. 65%

non Q3
5, Q 8N

mom

mmn own mt... own mom Q5 Q5 ‘Q8 ‘Q8 ‘EN

8n m3

m2

Q8 9% a 5 Q8
8»

8n 9 Q2

4/ 8n

US. Patent Jan. 15, 2013 Sheet 4 of4 US 8,355,324 B2

lNTERFACE £r_0__6

1/0 gag PROCESSOR 19g, STORAGE i1_2

MEMORY m

402

FIG. 4

US 8,355,324 B2
1

METHOD AND APPARATUS FOR FILTERING
DATA PACKETS

BACKGROUND OF THE INVENTION

The present invention relates generally to network security,
and more particularly to Denial of Service (DDoS) attacks.

During a DDoS attack, a number of compromised comput
ers often send unwanted and heavy tra?ic (i.e., data packets)
to a recipient computer system (e.g., a web server, network
links, a router, etc.). This unwanted tra?ic typically exhausts
the recipient computer’ s resources and prevents the recipient
computer from serving its legitimate clients.

To defend against a DDoS attack, the recipient computer
typically must distinguish between undesired tra?ic and
legitimate tra?ic. Once the undesired traf?c is identi?ed, the
recipient computer can ?lter (e. g., block) the undesired tra?ic
so that it does not overload the resources of the recipient
computer.

Since the unwanted traf?c is often being transmitted by
many compromised computers, it is often dif?cult for the
recipient computer to identify (and ?lter) undesired tra?ic
from legitimate tra?ic. The recipient computer typically has
to determine whether each received packet is part of the
undesired traf?c or is legitimate tra?ic. This analysis usually
requires the computer to examine the source Internet Protocol
(IP) address of each received packet.

Every packet has a source Internet Protocol (IP) address.
An IP address typically has the form a.b.c.d, where a, b, c, and
d are integers in the range of 0-255.
One ?ltering technique used to counter a DDoS attack is to

determine which tra?ic to ?lter before the recipient computer
is incorporated into the network (i.e., static ?ltering). For
example, if a compromised computer is known to take part in
DDoS attacks, the recipient computer may be con?gured to
?lter (e.g., block) all packets received from that compromised
computer.

Static ?ltering typically requires the recipient computer to
examine the complete IP address of each packet and compare
the IP address to IP addresses on a list of IP addresses sus
pected of taking part in DDoS attacks.

BRIEF SUMMARY OF THE INVENTION

There remains a need for a technique to more ef?ciently
and effectively ?lter packets to combat a distributed denial of
service attack.

In accordance with an embodiment of the present inven
tion, a recipient computer examines one or more portions or
segments of a received packet’s IP address to dynamically
?lter the received packet and reduce the likelihood of success
of a DDoS attack.

In accordance with an embodiment of the present inven
tion, a hierarchical tree having a plurality of nodes organiZed
in a plurality of levels is maintained. Each level above a root
node of the tree has one or more of the nodes, with each of the
one or more of the nodes corresponding to a particular value
of a segment of an Internet Protocol (IP) address. The seg
ment is the same for each node of a particular level of the tree.
Each node at a particular level of the tree stores a number
representative of the number of received packets having the
same value for the segment of the IP address associated with
the particular level. Some of the received data packets are
?ltered out based on the hierarchical tree.

In one embodiment, received data packets having a par
ticular value for one segment of a source IP address are

20

25

30

35

40

45

50

55

60

65

2
?ltered out when a node corresponding to the particular value
of the one segment has a number of child nodes greater than
a child node threshold value.
A child node of the node corresponding to the particular

value of the one segment is generated in response to the
number stored in the particular node being greater than an
over?ow threshold (e.g., associated with the node, the tree,
etc.).

In one speci?c embodiment, the maintaining of the hierar
chical tree includes performing several steps after receiving a
packet having a ?rst value for a ?rst segment of an IP address
and a second value for a second segment of an IP address. The
steps include determining a current level node at a current
level for the packet. The current level node stores a number
representative of a number of the received packets having the
?rst value for the ?rst segment of the IP address. The steps
include incrementing the stored number (i.e., an over?ow
counter associated with the current level node) if the stored
number (the over?ow counter) is less than an over?ow thresh
old value (e.g., for the current level node). A child node of the
current level node at a next level of the tree is then determined
if the stored number is greater than the over?ow threshold for
the current level node. The child node represents a number of
the received packets having the ?rst value for the ?rst segment
of the IP address and the second value for the second segment
of the IP address. The steps include incrementing a number of
child nodes of the current level node after performing the step
of creating the child node. In some embodiments, the above
steps can be repeated until the number of child nodes of the
current level node is greater than the child node threshold
value.

In one speci?c embodiment of the method, the steps
include ?ltering the received packet (e.g., that was blocked)
when the number of child nodes of the current level node is
greater than the child node threshold value. Further, each
node may have a leakage parameter which the method may
use to decrement the over?ow counter associated with a node
(e.g., at a predetermined rate). Further, the steps may include
independently adjusting the child node threshold value and
over?ow threshold value, for example using statistics on nor
mal usage of the system during times without an attack.

These and other advantages of the invention will be appar
ent to those of ordinary skill in the art by reference to the
following detailed description and the accompanying draw
mgs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary block diagram of a ?rst com
puter being subjected to a distributed denial of service attack
over a network;

FIG. 2 is a ?owchart showing the steps performed by a
computer to ?lter packets in accordance with an embodiment;

FIG. 3 is a block diagram of a tree data structure in accor
dance with an embodiment, e.g., the embodiment of FIG. 2;
and

FIG. 4 is a high level block diagram of a computer in
accordance with an embodiment.

DETAILED DESCRIPTION

FIG. 1 is an exemplary block diagram of a ?rst computer
104 (e. g., a web server, a router, etc.) that is being subjected to
a distributed denial of service (DDoS) attack over network
106. During a DDoS attack, a number of compromised com
puters, such as a second computer 108, a third computer 112,
and a fourth computer 116, send unwanted tra?ic (i.e., data

US 8,355,324 B2
3

packets) 120 to the ?rst computer 104. This unwanted tra?ic
120 typically is at such a high rate that it exhausts the ?rst
computer’s resources and prevents the ?rst computer 104
from serving its legitimate clients. For that reason, a DDoS
attack may crash the ?rst computer 104.

To defend against a DDoS attack, the ?rst computer 104
typically must distinguish between undesired tra?ic 120 and
legitimate tra?ic, such as legitimate traf?c 124 from a ?fth
computer 128. Once the ?rst computer 104 identi?es the
undesired tra?ic 120, the ?rst computer can ?lter (e. g., block)
the undesired traf?c 120 so that the traf?c does not overload
the resources of the ?rst computer 104.

Since the unwanted tra?ic 120 is being transmitted by
many computers in DDoS attacks, it may be di?icult to iden
tify (and ?lter) undesired tra?ic 120 from legitimate tra?ic
124. The ?rst computer 104 typically has to determine
whether each received packet is part of the undesired tra?ic
120 or is legitimate tra?ic 124. Such an analysis can require
the ?rst computer 104 to perform static ?ltering and examine
the complete Internet Protocol (IP) address of each received
packet.

FIG. 2 is a ?owchart showing the steps performed by a ?rst
computer (also referred to herein as a computer) to dynami
cally ?lter packets in accordance with an embodiment of the
present invention. The ?owchart of FIG. 2 will ?rst be
described at a high level, with further details given when an
example is described below.

The computer ?rst initialiZes a hierarchical tree data struc
ture (referred to herein as a tree) in step 205. The tree has a
plurality of nodes organiZed in a plurality of levels. Each level
is associated with a segment of an IP address (e. g., one byte of
the IP address) and each node at a particular level stores a
number representative of the number of received packets
having a same value for the segment of the IP address asso
ciated with the particular level. In one embodiment, the tree is
initialiZed only with a root node and subnodes of the root node
are added to the tree as packets are received.

The computer then receives a packet in step 210. The
packet has a ?rst value for a ?rst segment of its IP address and
a second value for a second segment of its IP address. A
current level node for the packet is then determined in step
215. The current level node is at a current level and represents
a number of received packets having the ?rst value for the ?rst
segment of the IP address. The current level node is a node
that is at a level corresponding to the ?rst segment of the IP
address.

To ?nd the current level node, a segment of the complete IP
address of the packet is analyZed in light of the nodes in the
tree. When the node that matches the segment at the current
level is found, a next segment of the IP address is analyZed
and a node that matches the next segment is located at the next
level of the tree. These steps are repeated. The current level
node is therefore the deepest matching node in the tree. This
process is often referred to as the longest pre?x match (It may
also be referred to as longest ?rst segment match.). As a result,
the ?rst segment (and therefore the current level node) are not
static in nature but rather may change for each packet. The
?rst segment corresponds to the segment of the packet’s IP
address that matches a node (i.e., the current level node).

It is then determined whether the current level node is in an
over?ow state in step 220. This determination can be made by
comparing the number of received packets having the ?rst
value for the ?rst segment of the IP address with an over?ow
threshold. In one embodiment, the over?ow threshold is spe
ci?c for each node (e. g., a speci?c over?ow threshold for the
current level node). Alternatively, there is one over?ow
threshold for all of the nodes at a level or alternatively in the

20

25

30

35

40

45

50

55

60

65

4
entire tree. If the number of received packets having the ?rst
value for the ?rst segment of the IP address is less than or the
same as the over?ow threshold (e.g., for the current level
node), the current level node is not in an over?ow state and the
stored number representative of the number of received pack
ets having the ?rst value for the ?rst segment of the IP address
is incremented in step 225. The process then returns to step
210 and repeats.

If the stored number (representing the number of received
packets having the ?rst value for the ?rst segment of the IP
address) is greater than the over?ow threshold, the current
level node is in an over?ow state and a child node of the
current level node is created in step 230 for the packet. The
child node is at a level numerically above (e.g., second level
to third level) the current level (but can be viewed graphically
as a level below the current level in the tree) and represents a
number of received packets having the ?rst value for the ?rst
segment of the IP address and a second value for the second
segment of the IP address, e.g., a disjoint second segment of
the IP address.
A counter corresponding to a number of child nodes of the

current level node is then created or incremented in step 235.
The computer then determines in step 240 whether the
counter of the number of child nodes of the current level node
is greater than a child node threshold. If not, the process
returns to step 210 and repeats.

If the number of child nodes of the current level node is
greater than the child node threshold, packets that are asso
ciated with the current level node are ?ltered out in step 250.
Thus, the computer ?lters out received data packets having
the ?rst value for the ?rst segment of the IP address. The
process then returns to step 210.
As described above, each segment of an IP address is an

integer between 0 and 255. Thus, in one embodiment, there
are four levels, and the maximum number of child nodes for
each level is 256. However, alternative embodiments exist,
including but not restricted to those with 32 levels and two
child nodes per level, 16 levels and 256 child nodes per level,
and 128 levels and 2 child nodes per level, covering both
Internet Protocol version 4 and version 6 address conven
tions.

FIG. 3 shows an example of a tree 300 in accordance with
an embodiment of the present invention. The computer needs
to determine whether or not any of the packets it receives are
part of a DDoS attack. If the computer determines that some
or all of the packets are part of a DDoS attack, the computer
?lters the packets. The computer uses the tree 300 to make
this determination.

Suppose the computer is receiving many packets from each
of the following IP addresses:

100.50.207.124,
100.51.207.91,
100.51.208.6,
100.51.209.121,
100.51.210.14,
100.51.211.251,
100.52.05.44,
100.53.68.148,
200.125.65.188, and
200.188.251.12.
The tree 300 has a root node 305 which represents a uni

versal or root level 310. The root level 310 is the highest level
of the tree 300. Below the root level 310 is an a-level 315
corresponding to the a-segment of an IP address of the form
a.b.c.d (as described above). For example, the IP address of
100.52.05.44 shown above is of the form a.b.c.d., where
100:a, 52:b, 05:c, and 44:d. In one embodiment, the com

US 8,355,324 B2
5

puter creates tWo a-level nodesia ?rst a-level node 320 and
a second a-level node 325. The ?rst a-level node 320 repre
sents a number of received packets having an a-level address
of 100 (e.g., packets having an IP address of 100.50.207.124
or 100.52.05.44). The second a-level node 325 represents a
number of received packets having an a-level address of 200
(e.g., packets having an IP address of 200.125.65.188 or
200.188.251.12).

In one embodiment, each node in the tree 300 shoWn in
FIG. 3 is represented by a circle With a number inside the
circle. This number represents an over?oW counter. The over
?oW counter represents the number of received data packets
having the same value for the segment of the IP address
associated With the particular level. Each node or level can
also have a corresponding over?oW threshold. When the num
ber of received data packets having the same value for the
segment of the IP address associated With the particular level
is greater than the over?oW threshold, then the computer has
to create a child node of the current level node.

For example, the number 5 is located Within each of the tWo
a-level nodes 320 and 325. This means that at least 5 packets
have been received for each a-level address 100 and 200.
More than 5 packets may have been received for either or both
of the a-level addresses 100 or 200 because of the over?oW
threshold. For example, suppose the over?oW threshold for
the a-level nodes of tree 300 is equal to 4. Because both
a-level nodes 320, 325 have 5’s inside the node, the a-level
nodes 320, 325 are in their over?oW state and their over?oW
counter is no longer incremented. Instead, received packets
that have an a-level address of 100 or 200 are analyZed With
respect to a next level, such as a b-level 330. This next level
(e. g., b-level 330) may be created When a packet is received or
may have been created previously (e.g., With the creation of
the tree). Thus, When the computer receives another packet
having an a-level address of 100 (or 200), the computer ?rst
determines that the a-level node 320 (or 325) is in an over?oW
state. The computer then analyZes this packet With respect to
the b-level 330.

Under the ?rst a-level node 320, there are four b-level
nodes 335, 340, 345, 350. The ?rst b-level node 335 corre
sponds to packets having a b-level address of 50 (i.e., 100.50)
and has an over?oW counter of 1 . The secondb-level node 340
corresponds to packets having a b-level address of 51 (i.e.,
100.51) and has an over?oW counter of 4. The third b-level
node 345 corresponds to packets having a b-level address of
52 (i.e., 100.52) and has an over?oW counter of 1. The fourth
b-level node 350 corresponds to packets having a b-level
address of 53 (i.e., 100.53) and has an over?oW counter of 1.

Similarly, under the second a-level node 325, there is a ?fth
b-level node 355. The ?fth b-level node 355 corresponds to
b-level address 125 (i.e., 200.125) and has an over?oW
counter of 1.

Suppose that the b-level (i.e., each node at the b-level) has
an over?oW threshold of 3. Therefore, the b-level nodes (e. g.,
nodes 335, 345, 350, and 355) that have an over?oW counter
of 1 are not currently in an over?oW state. As a result, the next
level in the tree (a c-level 360) does not need to be analyZed
for these nodes 335, 345, 350, 355.

The second b-level node 340, hoWever, has an over?oW
counter that is greater than the over?oW threshold of 3. As a
result, the second b-level node 340 is in an over?oW state and
the computer no longer increments the second b-level node’ s
counter. Instead, the c-level is used for received packets When
the second b-level node is in an over?oW state.
As stated above, suppose the computer receives the folloW

ing ?ve packets under the a-level address of 100 and the
b-level address of 51:

20

25

30

35

40

45

50

55

60

65

100.51.207.91,
100.51.208.6,
100.51.209.121,
100.51.210.14, and
100.51.211.251.
The b-level node 340 is in an over?oW state and so packets

are then analyZed at the c-level. Five c-level nodes are then
created: a ?rst c-level node 365 that corresponds to packets
having a c-level address of 207, a second c-level node 370 that
corresponds to packets having a c-level address of 208, a third
c-level node 375 that corresponds to packets having a c-level
address of 209, a fourth c-level node 380 that corresponds to
packets having a c-level address of 210, and a ?fth c-level
node 385 that corresponds to packets having a c-level address
of 211. Each has an over?oW counter of 1 and, assuming the
over?oW threshold for the c-level is 2, no c-level node is in an
over?oW state. Therefore, a d-level node does not have to be
created for any of the received packets.

In one embodiment, each time the computer generates a
next level node, a child node counter that is associated With
the current node (i.e., the parent node) is incremented. For
example, each time a c-level node 365-385 is generated, a
child node counter that is associated With the b-level node 340
is incremented (because all of the c-level nodes 365-385 are
child nodes of the second b-level node 340).

Each level may have a threshold number of child nodes
(i.e., a child node threshold) that can be present before pack
ets associated With a particular parent node are ?ltered (e. g.,
blocked). For example, suppose the c-level child node thresh
old is four. Thus, When the computer determines that the
second b-level node 340 has ?ve child nodes associated With
it, the computer can determine to ?lter all packets meeting the
IP address requirements of the second b-level node 340 (i.e.,
all packets having an a-level IP address of 100 and a b-level IP
address of51).

In one embodiment, a leakage parameter for each node (or
each level or tree 300) is maintained. The leakage parameter
is associated With the leaky bucket model and controls the
decrementing of the over?oW counter associated With a node.
The leakage parameter corresponds to the normal How of
traf?c. The leakage parameter may be a rate (e.g., decrement
over?oW counter for a particular node every ?ve seconds). As
a result of this decrementing (controlled by the leakage
parameter), during one time period the node may be in an
over?oW state but, during another later time period, the node
may not be in the over?oW state due to the regular decrement
ing of the over?oW counter according to the leaky bucket
model. The leakage parameter, as Well as the over?oW thresh
old and/or child node threshold, may be a constant or may be
dynamically adjusted (e.g., via a system administrator or user
of the computer). In another embodiment, the over?oW
threshold is adjusted With time to alloW for a natural evacua
tion of packets from a node (i.e., the over?oW counter is
decremented at, e.g., a given time).
One skilled in the art Will recogniZe that circular clock

arithmetic may be implemented to realiZe the leakage param
eter at a loW computing cost. For example, one maintains for
each node tWo counters taking values in [0 . . . T—1], Where T
is the threshold of the node, With convention that the T—1
incremented by 1 yields 0 (circular arithmetics). One counter
(CA) corresponds to the actual number of the packets arrived,
and the other (CN) to the normal trajectory. The counter (CA)
is incremented according to the actual arrivals; the counter
(CN) according to the normal “leakage” rate. There are tWo
possible collision modes (events that the counters value coin
cide): one is that (CA) attempts to overtake (CN)iin this

US 8,355,324 B2
7

case the threshold over?ow is declared; the other is that (CN)
attempts to overtake (CA), Which corresponds to decrement
of the over?ow count to Zero.

Further, nodes can be deleted from the tree once their
over?oW counter decrements to Zero (or some predetermined
number) due to the implementation of leakage as described
above. As a result, the tree can trim itself so that, during times
With little traf?c, the tree may become smaller or even return
to an empty tree With just the root node. Moreover, When there
is a denial of service attack, once the attack from some subnet
eases off, the subtree associated With that subset Will eventu
ally disappear, thereby freeing up resources to deal With other
subnets being attacked.

In various embodiments, the ?ltering out of packets, Which
is performed, may be based on a hierarchical tree of various
forms. For example, although the above-described example
?ltered based on the number of packets Within a subset of IP
addresses, other embodiments may use a tree structure to

?lter ?oWs (e.g., TCP sessions).
The above description describes methods for implement

ing embodiments of the invention. The steps of these methods
may be performed by an appropriately programmed digital
computer or digital processor, con?gurations of such com
puters are Well knoWn in the art. An appropriate computer
may be implemented, for example, using Well knoWn com
puter processors, memory units, storage devices, computer
softWare, and other components. A high level block diagram
of such a computer is shoWn in FIG. 4. Computer 402 con
tains a processor 404 Which controls the overall operation of
computer 402 by executing computer program instructions
Which de?ne such operation. The computer program instruc
tions may be stored in a storage device 412 (e.g., magnetic
disk) and loaded into memory 410 When execution of the
computer program instructions is desired. In particular, the
program(s) stored on a data storage media, e. g., a memory or
optical or magnetic disk, may include computer-executable
instructions for performing the steps of any of the above
described methods. Computer 402 may also include one or
more interfaces 406 for communicating With other devices
(e.g., locally or via a netWork). Computer 402 may also
include input/ output 408 Which represents devices Which
alloW for user interaction With the computer 402 (e.g., dis
play, keyboard, mouse, speakers, buttons, etc.). One skilled in
the art Will recogniZe that an implementation of an actual
computer Will contain other components as Well, and that
FIG. 4 is a high level representation of some of the compo
nents of such a computer for illustrative purposes. For
example, computer 402 may represent the computer
described above. In addition, one skilled in the art Will rec
ogniZe that the processing steps described herein may also be
implemented using dedicated hardWare, the circuitry of
Which is con?gured speci?cally for implementing such pro
cessing steps. Alternatively, the processing steps may be
implemented using various combinations of hardWare and
softWare. Also, the processing steps may take place in a
computer or may be part of a larger machine.

The foregoing Detailed Description is to be understood as
being in every respect illustrative and exemplary, but not
restrictive, and the scope of the invention disclosed herein is
not to be determined from the Detailed Description, but rather
from the claims as interpreted according to the full breadth
permitted by the patent laWs. It is to be understood that the
embodiments shoWn and described herein are only illustra
tive of the principles of the present invention and that various
modi?cations may be implemented by those skilled in the art
Without departing from the scope and spirit of the invention.

20

25

30

35

40

45

50

55

60

65

8
Those skilled in the art could implement various other feature
combinations Without departing from the scope and spirit of
the invention.

The invention claimed is:
1. A method, executed by a processor, for ?ltering out data

packets received at a netWork address comprising:
storing, for each one of a set of values for a ?xed segment

of a source internet protocol (IP) address, a correspond
ing ?rst number, each corresponding ?rst number being
indicative of a quantity of data packets received With the
corresponding one of the set of values for the ?xed
segment of the source IP address thereof;

receiving a neW data packet;
generating a child node associated With a particular one of

the set of values for the ?xed segment of the source IP
address of the received neW data packet if the ?rst num
ber corresponding to the particular one of the set of
values for the ?xed segment of the source IP address of
the received neW data packet is greater than a ?rst thresh
old; and

discarding the received neW data packet in response to (l)
the ?rst number corresponding to the particular one of
the set of values for the ?xed segment of the source IP
address of the received neW data packet being greater
than the ?rst threshold and (2) a number of child nodes
associated With the particular one of the set of values for
the ?xed segment of the source IP address of the received
neW data packet being greater than a second threshold.

2. The method of claim 1, further comprising:
incrementing the ?rst number corresponding to the particu

lar one of the set of values for the ?xed segment of the
source IP address in response to the receipt of the neW
data packet and the ?rst number corresponding to the
particular one of the set of values being less than or equal
to the ?rst threshold.

3. The method of claim 2, Wherein:
the incrementing is not performed While the ?rst number

corresponding to the particular one of the set of values
for the ?xed segment of the source IP address is greater
than the ?rst threshold.

4. The method of claim 1, further comprising:
storing a corresponding second number for each child

node, each child node corresponding to one of values of
a second set for a second ?xed segment of the source IP
address, each of the corresponding second numbers
being indicative of a quantity of received data packets
for Which the second ?xed segment of the source IP
address thereof has the corresponding one of the values
of the second set.

5. The method of claim 4, Wherein the storing the corre
sponding second number for each child node is performed in
response to a speci?c one of the ?rst numbers being greater
than the ?rst threshold.

6. The method of claim 1, further comprising:
decrementing each corresponding ?rst number according

to a ?xed rate.

7. The method of claim 1, Wherein the discarding the
received neW data packet includes deleting the received neW
data packet.

8. An apparatus for ?ltering out data packets received at a
netWork address comprising:

a node con?gured to store for each one of a set of values for
a ?xed segment of a source internet protocol (IP)
address, a corresponding ?rst number, each correspond
ing ?rst number being indicative of a quantity of data
packets received With the corresponding one of the set of

US 8,355,324 B2
9

values for the ?xed segment of the source IP address
thereof and to receive a neW data packet,

the node con?gured to generate a child node associated
With a particular one of the set of values for the ?xed
segment of the source IP address of the received neW
data packet if the ?rst number corresponding to the
particular one of the set of values for the ?xed segment of
the source IP address of the received neW data packet is
greater than a ?rst threshold; and

the node con?gured to discard the received neW data packet
in response to (l) the ?rst number corresponding to the
particular one of the set of values for the ?xed segment of
the source IP address of the neW data packet being
greater than the ?rst threshold and (2) a number of child
nodes associated With the particular one of the set of
values for the ?xed segment of the source IP address of
the received neW data packet being greater than a second
threshold.

9. The apparatus of claim 8, Wherein the node is con?gured
to increment the ?rst number corresponding to the particular
one of the set of values for the ?xed segment of the source IP
address in response to the receipt of the neW data packet and
the ?rst number corresponding to the particular one of the set
of values being less than or equal to the ?rst threshold.

10. The apparatus of claim 9, Wherein the node is con?g
ured to,

not perform the incrementing While the ?rst number cor
responding to the particular one of the set of values for
the ?xed segment of the source IP address is greater than
the ?rst threshold.

11. The apparatus of claim 8, Wherein the node is con?g
ured to store a corresponding second number for each child
node, each child node corresponding to one of values of a
second set for a second ?xed segment of the source IP
address, each of the corresponding second numbers being
indicative of a quantity of received data packets for Which the
second ?xed segment of the source IP address thereof has the
corresponding one of the values of the second set.

12. The apparatus of claim 11, Wherein the node is con?g
ured to store the corresponding second number for each child
node in response to a speci?c one of the ?rst numbers being
greater than the ?rst threshold.

13. The apparatus of claim 8, Wherein the node is con?g
ured to:

decrement each corresponding ?rst number according to a
?xed rate.

14. The apparatus of claim 8, Wherein the node is con?g
ured to discard the received neW data packet by deleting the
received data packet.

15. A non-transitory computer readable medium including
instructions causing a processor to:

store for each one of a set of values for a ?xed segment of
a source IP address, a corresponding ?rst number, each
corresponding ?rst number being indicative of a quan

20

25

30

40

10
tity of data packets received With the corresponding one
of the set of values for the ?xed segment of the source IP
address thereof;

receive a neW data packet;
generate a childnode associated With a particular one of the

set of values for the ?xed segment of the source IP
address of the received neW data packet if the ?rst num
ber corresponding to the particular one of the set of
values for the ?xed segment of the source IP address of
the received neW data packet is greater than a ?rst thresh
old; and

discard the received neW data packet in response to (l) the
?rst number corresponding to the particular one of the
values for the ?xed segment of the source IP address of
the received neW data packet being greater than the ?rst
threshold and (2) a number of child nodes associated
With the particular one of the set of values for the ?xed
segment of the source IP address of the received neW
data packet being greater than a second threshold.

1 6. The non-transitory computer readable medium of claim
15, Wherein the instructions further control the processor to:

store a corresponding second number for each child node,
each child node corresponding to one of values of a
second set for a second ?xed segment of the source IP
address, each of the corresponding second numbers
being indicative of a quantity of received data packets
for Which the second ?xed segment of the source IP
address thereof has the corresponding one of the values
of the second set.

17. The non-transitory computer readable medium of claim
16, Wherein the storing the corresponding second number for
each child node performed in response to a speci?c one of the
?rst numbers being greater than the ?rst threshold.

18. The computer readable medium of claim 15, Wherein
the instructions further control the processor to:

decrement each corresponding ?rst number according to a
?xed rate.

19. The computer readable medium of claim 15, Wherein
the discarding the received neW data packet includes deleting
the received neW data packet.

20. The computer readable medium of claim 15, Wherein
the instructions further control the processor to:

increment the ?rst number corresponding to the particular
one of the set of values for the ?xed segment of the
source IP address in response to the receipt of the neW
data packet and the ?rst number corresponding to the
particular one of the set of values being less than or equal
to the ?rst threshold.

21. The computer readable medium of claim 20, Wherein
the instructions further control the processor to:

not perform the incrementing While the ?rst number cor
responding to the particular one of the set of values for
the ?xed segment of the source IP address is greater than
the ?rst threshold.

* * * * *

