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Abstract

The arctic circle theorem of Jockusch, Propp, and Shor asserts that
uniformly random domino tilings of an Aztec diamond of high order
are frozen with asymptotically high probability outside the “arctic cir-
cle” inscribed within the diamond. A similar arctic circle phenomenon
has been observed in the limiting behavior of random square Young
tableaux. In this paper, we show that random domino tilings of the
Aztec diamond are asymptotically related to random square Young
tableaux in a more refined sense that looks also at the behavior in-
side the arctic circle. This is done by giving a new derivation of the
limiting shape of the height function of a random domino tiling of the
Aztec diamond that uses the large-deviation techniques developed for
the square Young tableaux problem in a previous paper by Pittel and
the author. The solution of the variational problem that arises for
domino tilings is almost identical to the solution for the case of square
Young tableaux by Pittel and the author. The analytic techniques
used to solve the variational problem provide a systematic, guess-free
approach for solving problems of this type which have appeared in a
number of related combinatorial probability models.
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matrix, Aztec diamond, arctic circle, large deviations, variational problem,
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1 Introduction

1.1 Domino tilings and the arctic circle theorem

A domino in R2 is a Z2-translate of either of the two sets [0, 1] × [0, 2] or
[0, 2] × [0, 1]. If S ⊂ R2 is a region comprised of a union of Z2-translates of
[0, 1]2, a domino tiling of S is a representation of S as a union of dominoes
with pairwise disjoint interiors. Domino tilings, or equivalently the dimer
model on a square lattice, are an extensively studied and well-understood
lattice model in statistical physics and combinatorics. Their rigorous analysis
dates back to Kasteleyn [21] and Temperley-Fisher [31], who independently
derived the formula

m∏
j=1

n∏
k=1

∣∣∣∣2 cos

(
πj

m+ 1

)
+ 2
√
−1 cos

(
πk

n+ 1

)∣∣∣∣1/2
for the number of domino tilings of an n × m rectangular region. About
thirty years later, a different family of regions was found to have a much
simpler formula for the number of its domino tilings: if we define the Aztec
diamond of order n to be the set

ADn =
n−1⋃
i=−n

min(n+i,n−i−1)⋃
j=max(−n−i−1,−n+i)

[i, i+ 1]× [j, j + 1]

(see Figure 1), then Elkies, Kuperberg, Larsen and Propp [7] proved that
ADn has exactly

2(n+1
2 )

domino tilings. This can be proved by induction in several ways, but is
perhaps best understood via a connection to alternating sign matrices.

One of the best-known results on domino tilings is the arctic circle the-
orem due to Jockusch, Propp and Shor [17], which describes the asymptotic
behavior of uniformly random domino tilings of the Aztec diamond. Roughly,
the theorem states that the so-called polar regions, which are the four con-
tiguous regions adjacent to the four corners of the Aztec diamond in which
the tiling behaves in a predictable brickwork pattern, cover a region that is
approximately equal to the area that lies outside the circle inscribed in the
diamond. See Figure 2, where the outline of the so-called “arctic” circle can
be clearly discerned. The precise statement is the following.
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(a) (b)

Figure 1: The Aztec diamond of order 3 and one of its 64 tilings by dominoes.

Theorem 1 (The arctic circle theorem [17]). Fix ε > 0. For each n, consider
a uniformly random domino tiling of ADn scaled by a factor 1/n in each axis
to fit into the limiting diamond

AD∞ := {|x|+ |y| ≤ 1},

and let P ◦n ⊂ n−1ADn be the image of the polar regions of the random tiling
under this scaling transformation. Then as n→∞ the event that{

(x, y) ∈ AD∞ : x2 + y2 >
1

2
+ ε

}
∩ (n−1 ADn)

⊂ P ◦n ⊂
{

(x, y) ∈ AD∞ : x2 + y2 >
1

2
− ε
}

holds with probability that tends to 1.

In later work, Cohn, Elkies and Propp [2] derived more detailed asymp-
totic information about the behavior of random domino tilings of the Aztec
diamond, that gives a quantitative description of the behavior of the tiling
inside the arctic circle. They proved two main results (which are roughly
equivalent, if some technicalities are ignored), concerning the placement
probabilities (the probabilities to observe a given type of domino in a given
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Figure 2: The arctic circle theorem: in a random domino tiling of AD50, the
circle-like shape is clearly visible. Here, dominoes are colored according to
their type and parity.

position in the diamond) and the height function of the tiling (which,
roughly speaking, encodes a weighted counting of the number of dominoes
of different types encountered while travelling from a fixed place to a given
position in the diamond—see Section 6 for the precise definition).

A main goal of this paper is to give a new proof of the Cohn-Elkies-
Propp limit shape theorem for the height function of a uniformly random
domino tiling of the Aztec diamond—see Theorem 12 in Section 6. Our
proof is based on a large deviations analysis, and so gives some information
that the proof in [2] (which is based on generating functions) does not: a
large deviation principle for the height function. Perhaps more importantly,
it highlights a surprising connection between the domino tilings model and
another, seemingly unrelated, combinatorial probability model, namely that
of random square Young tableaux .

5



1 2 3 7 15

4 5 8 12 19

6 11 13 18 20

9 14 17 22 24

10 16 21 23 25

1 2 3 7

4 5

6

1 2 3 7

4 5 8 12

6 11 13

9

10

t = 7 t = 13

Figure 3: A square Young tableau of order 5 (shown in the “French” coordi-
nate system), and the wall whose construction the tableau encodes at various
stages of its construction.

1.2 Random square Young tableaux

Recall that a square (standard) Young tableau of order n is an array (ti,j)
n
i,j=1

of integers whose entries consist of the integers 1, 2, . . . , n2, each one appear-
ing exactly once, and such that each row and column are arranged in increas-
ing order. One can think of a square Young tableau as encoding a sequence
of instructions for constructing an n×n wall of square bricks leaning against
the x− and y− axes by laying bricks sequentially, where the rule is that each
brick can be placed only in a position which is supported from below and
from the left by existing bricks or by the axes. In this interpretation, the
number ti,j represents the time at which a brick was added in position (i, j);
see Figure 3. The number of square Young tableaux of order n is known (via
the hook-length formula of Frame-Thrall-Robinson) to be

(n2)!∏n
i,j=1(i+ j − 1)

.

In [27], Boris Pittel and the author solved the problem of finding the
limiting growth profile , or limit shape , of a randomly chosen square
Young tableau of high order. In other words, the question is to find the
growth profile of the square wall “constructed in the most random way”.
This can be expressed either in terms of the limit in probability L(x, y) of
the scaled tableau entries n−2ti,j, where (x, y) ∈ [0, 1]2 and i = i(n) and
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Figure 4: The limiting growth profile of a random square Young tableau and
the profile of a randomly sampled tableau of order 100. The curves shown
correspond to (scaled) times t = i/10, i = 1, 2, . . . , 9.

j = j(n) are some sequences such that i/n→ x and j/n→ y as n→∞; or
alternatively in terms of the limiting shape of the family of scaled “sublevel
sets” {n−1(i, j) : ti,j ≤ α·n2} for each α ∈ (0, 1) (which in the “wall-building”
metaphor represents the shape of the wall at various times, and thus can be
thought of as encoding the growth profile of the wall). Figure 4 shows the
limiting growth profile found by Pittel and Romik and the corresponding
profile of a randomly sampled square Young tableau of order 100.

For the precise definition of the limiting growth profile, see [27]. Here, we
mention only the following fact which will be needed in the next subsection:
If L : [0, 1]× [0, 1]→ [0, 1] is the limit shape function mentioned above, then
its values along the boundary of the square are given by

L(0, t) = L(t, 0) =
1−
√

1− t2
2

, (0 ≤ t ≤ 1), (1)

L(1, t) = L(t, 1) =
1 +

√
t(2− t)
2

, (0 ≤ t ≤ 1). (2)

Also note that according to the limit shape theorem, the convergence of
n−2ti,j to L(i/n, j/n) as n → ∞ is uniform in i and j (this follows easily
from monotonicity considerations).
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1.3 An arctic circle theorem for square Young tableaux

While it is not immediately apparent from the description of this limit
shape result, it follows as a simple corollary of it that random square Young
tableaux also exhibit an “arctic circle”-type phenomenon. That is, there is
an equivalent way of visualizing the random tableau in which a spatial phase
transition can be seen occurring along a circular boundary, where outside
the circle the behavior is asymptotically deterministic (the “frozen” phase)
and inside the circle the behavior is essentially random (the “disordered” or
“temperate” phase). This fact, overlooked at the time of publication of the
paper [27], was observed shortly afterwards by Benedek Valkó [32]. In fact,
deducing the arctic circle result is easy and requires only the facts (1), (2)
mentioned above, which contain only a small part of the information of the
limit shape.

To see how the arctic circle appears, we consider a different encoding of
the information contained in the tableau via a system of particles on the
integer lattice Z. In this encoding we have n particles numbered 1, 2, . . . , n,
where initially, each particle with index k is in position k. The particles are
constrained to remain in the interval [1, 2n]. At discrete time steps, particles
jump one step to the right, provided that the space to their right is empty
(and provided that they do not leave the interval [1, 2n]). At each time step,
exactly one particle jumps.

It is easy to see that after exactly n2 steps, the system will terminate
when it reaches the state in which each particle k is in position n + k, and
no further jumps can take place. We call the instructions for evolving the
system of particles from start to finish a jump sequence . We can now add a
probabilistic element to this combinatorial model by considering the uniform
probability measure on the set of all jump sequences of order n, and name the
resulting probability model the jump process of order n. But in fact, this
is nothing more than a thinly disguised version of the random square Young
tableaux model, since jump sequences are in a simple bijection with square
Young tableaux: given a square tableau, think of the sequence of numbers
in row k of the tableau as representing the sequence of times during which
particle n+ 1− k jumps to the right. This is illustrated in Fig. 5. We leave
to the reader the easy verification that this gives the desired bijection.

With these definitions, it is now natural to consider the asymptotic be-
havior of this system of particles as n → ∞. Figure 6 shows the result for
a simulated system with n = 40. Here we see a circle-like shape appearing
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Figure 5: The bijection between square Young tableaux and jump sequences:
Each row in the tableau encodes the sequence of times at which a given
particle jumps. As an example, the highlighted trajectory on the right-hand
side corresponds to the highlighted row on the left-hand side.

again. To formulate precisely what is happening, given a jump process of
order n, for each 1 ≤ k ≤ 2n, let τ−n (k) and τ+n (k) denote respectively the
first and last times at which a particle k jumped from or to position k. Define
the frozen time-period in position k to be the union of the two intervals

[0, τ−n (k)] ∪ [τ+n (k), n2].
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Figure 6: A jump process with 40 particles.

Theorem 2 (The arctic circle theorem for random square Young tableaux).
Fix any ε > 0. Denote

ϕ±(x) =
1

2
±
√
x(1− x).

As n→∞, the event{
max

1≤k≤2n

∣∣n−2τ−n (k)− ϕ− (k/2n)
∣∣ < ε

}
∩
{

max
1≤k≤2n

∣∣n−2τ+n (k)− ϕ+ (k/2n)
∣∣ < ε

}
holds with probability that tends to 1. In other words, if the space-time di-
agram of the trajectories in a random jump process is mapped to the unit
square [0, 1]× [0, 1] by scaling the time axis by a factor 1/n2 and scaling the
position axis by a factor of 1/2n, then for large n the frozen time-periods
will occupy approximately the part of the space-time diagram that lies in the
complement of the disc{

(x, y) ∈ R2 : (x− 1/2)2 + (y − 1/2)2 ≤ 1/2

}
inscribed in the square.
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Proof. First, note the following simple observations that express the times
τ−n (k) and τ+n (k) in terms of the Young tableau (ti,j)

n
i,j=1:

(i) For 1 ≤ k ≤ n we have τ−n (k) = tn+1−k,1.

(ii) For n+ 1 ≤ k ≤ 2n we have τ−n (k) = t1,k−n.

(iii) For 1 ≤ k ≤ n we have τ+n (k) = tn,k.

(iv) For n+ 1 ≤ k ≤ 2n we have τ+n (k) = t2n+1−k,n.

For example, the first statement is based on the fact that when 1 ≤ k ≤ n,
the time τ−n (k) is simply the first time at which the particle starting at
position k (which corresponds to row n + 1− k in the tableau) jumps. The
three remaining cases are equally simple and may be easily verified by the
reader.

Combining these observations with (1) and (2) and the limit shape the-
orem, we now see that after scaling the times τ−n (k) and τ+n (k) by a factor
of n−2, we get quantities that converge in the limit, uniformly in k, to val-
ues determined by the appropriate substitution of boundary values in the
limit shape function L(x, y). For example, to deal with case (i) above, when
1 ≤ k ≤ n, using (1) we have that

n−2τ−n (k) = n−2tn+1−k,1 ≈ L

(
0, 1− k − 1

n

)

=
1−

√
1−

(
1− k−1

n

)2
2

=
1−

√
k−1
n

(
1− k−1

n

)
2

= ϕ−

(
k − 1

2n

)
≈ ϕ−(k/2n),

uniformly in 1 ≤ k ≤ n. Similarly, the other three cases each imply that
n−2τ±n (k) is uniformly close to ϕ±(k/2n) in the appropriate range of values
of k; we omit the details. Combining these four cases gives exactly that the
event in Theorem 2 holds with asymptotically high probability as n→∞.

1.4 Similarity of the models and the analytic technique

Apart from giving a new proof of the limit shape theorem of Cohn, Elkies
and Propp, another main goal of this paper is to show that the two mod-
els described in the preceding sections (random domino tilings of the Aztec
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diamond and random square Young tableaux) exhibit similar behavior on
a more detailed level than that of the mere appearance of the arctic circle,
and that in fact they are almost equivalent in an asymptotic sense. Our new
proof of the limit shape theorem for the height function will use the same
techniques developed in [27] for the case of random square Young tableaux:
we first derive a large deviations principle, not for domino tilings but for a
related model of random alternating sign matrices , then solve the re-
sulting problem in the calculus of variations using an analysis that parallels,
to a remarkable (and, in our opinion, rather surprising) level of similarity,
the analysis of the variational problem in [27]. The resulting formulas for the
solution of the variational problem are almost identical to the formulas for
the limiting growth profile of random square Young tableaux. Up to some
trivial scaling factors related to the choice of coordinate system, the formulas
for the two limit shapes can be written in such a way that the only difference
between them is a single minus sign.

Another important aspect of our results lies not in the results themselves
but in the techniques used. We use the methods first presented in [27] to
solve another variational problem belonging to a class of problems previously
thought to be difficult to analyze, due to a lack of a systematic framework
that enables one to derive the solution in a relatively mechanical way (as
opposed to having to guess it using some deep analytic insight) and then
rigorously verify its claimed extremal properties. This justifies to some extent
the claim from [27] that the analytic techniques of that paper provide a
systematic approach for dealing with such problems, which seem to appear
frequently in the analysis of combinatorial probability models (see [4, 24, 27,
33, 34]), and are also strongly related to classical variational problems arising
in electrostatics and in random matrix theory.

The rest of the paper is organized as follows. In Section 2 we recall some
facts about alternating sign matrices, and study the problem of finding the
limiting height matrix of an alternating sign matrix chosen randomly ac-
cording to domino measure , which is a natural (non-uniform) probability
measure on the set of alternating sign matrices of order n. In Section 3 we
derive a large deviation principle for this model. This problem is solved in
Section 4. In Section 5 we prove a limiting shape theorem for the height ma-
trix of an alternating sign matrix chosen according to domino measure. In
Section 6 we deduce from the previous results the Cohn-Elkies-Propp limiting
shape theorem for the height function of uniformly random domino tilings of
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1 −1 0 1 0 0
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0 0 0 0 1 0
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
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0 1 2 3 4 4 5
0 1 2 3 4 5 6


(a) (b)

Figure 7: (a) An ASM of order 6; (b) its height matrix.

the Aztec diamond. Section 7 has some final remarks, including a discussion
on the potential applicability of our methods to attack the well-known open
problem of the limit shape of uniformly random alternating sign matrices.

2 Alternating sign matrices

An alternating sign matrix (often abbreviated as ASM) of order n is
an n× n matrix with entries in {0,−1, 1} such that in every row and every
column, the sum of the entries is 1 and the non-zero numbers appear with al-
ternating signs. See Fig. 7(a) for an example. Alternating sign matrices were
first defined and studied in the early 1980’s by David Robbins and Howard
Rumsey in connection with their study [30] of Charles Dodgson’s conden-
sation method for computing determinants and of the λ-determinant , a
natural generalization of the determinant that arises from the condensation
algorithm. Later, Robbins, Rumsey and William Mills published several in-
triguing theorems and conjectures about them [25], tying them to the study
of plane partitions and leading to many later interesting developments, some
of which are described, e.g., in [1, 29].

Denote by An the set of ASM’s of order n. For a matrix M ∈ An, denote
by N+(M) the number of its entries equal to 1. An important formula proved
by Mills, Robbins and Rumsey states that∑

M∈An

2N+(M) = 2(n+1
2 ). (3)

This is sometimes referred to as the “2-enumeration” of ASM’s. The reader
may note that the right-hand side is equal to the number of domino tilings of
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ADn mentioned at the beginning of the introduction; indeed, a combinatorial
explanation for (3) in terms of domino tilings was found by Elkies, Kuperberg,
Larsen and Propp [7]. In Section 6 we will say more about this connection
and how to make use of it, but for now, we rewrite (3) more probabilistically
as

2−(n+1
2 )

∑
M∈An

2N+(M) = 1,

and consider this as the basis for defining a probability measure on An,
which we call domino measure (thus named since it is closely related to
the uniform measure on domino tilings of ADn; see Section 6), given by the
expression

PnDom(M) = 2N+(M)−(n+1
2 ), (M ∈ An).

Our first goal will be to study the asymptotic behavior of large random
ASM’s chosen according to domino measure, and specifically the limit shape
of their height matrix . The height matrix of an ASM M = (mi,j)

n
i,j=1 ∈ An

is defined to be the new matrix H(M) = (hi,j)
n
i,j=0 of order (n+ 1)× (n+ 1)

whose entries are given by

hi,j =
∑
p≤i

∑
q≤j

mp,q.

The matrix H(M) is also sometimes referred to as the corner sum matrix
of M . It satisfies the following conditions:

h0,k = hk,0 = 0 for all 0 ≤ k ≤ n, (H1)

hn,k = hk,n = k for all 0 ≤ k ≤ n, (H2)

0 ≤ hi+1,j − hi,j, hj,i+1 − hj,i ≤ 1 for all 0 ≤ i < n, 0 ≤ j ≤ n. (H3)

See Fig. 7(b) for an example. (In fact, it is not too difficult to see that
the correspondence M → H(M) defines a bijection between the set of
ASM’s of order n and the set of matrices satisfying conditions (H1)–(H3)—
see [30, Lemma 1]—but we will not need this fact here). In particular, the
“Lipschitz”-type condition (H3) means that the height matrix can be thought
of as a discrete version of a two-dimensional surface, and is therefore a natural
candidate for which to try and prove a limit shape result.

The basis for our analysis of PnDom-random ASM’s is a formula which will
give the probability distribution (under the measure PnDom) of the k-th row

14



of the height matrix, for each 1 ≤ k ≤ n. To describe this, first, as usual,
denote the Vandermonde function by

∆(u1, . . . , um) =
∏

1≤i<j≤m

(uj − ui).

Second, for an ASM M ∈ An and some 1 ≤ k ≤ n, let Xk(1) < Xk(2) <
. . . < Xk(k) be the unique ascents of the k-th row of the height matrix
H(M), namely those column indices such that

hk,Xk(i) − hk,Xk(i)−1 = 1, (i = 1, 2, . . . , k).

Note that the conditions (H1)–(H3) guarantee that the ascents exist, that
there are exactly k of them, and that the original k-th row of H(M) can be
recovered from them.

Theorem 3. If integers 1 ≤ x1 < x2 < . . . < xk ≤ n are given, and if
y1 < y2 < . . . < yn−k are the numbers in {1, 2, . . . , n} \ {x1, . . . , xk} arranged
in increasing order, then, in the notation above, we have

PnDom

[
M ∈ An : (Xk(1), . . . , Xk(k)) = (x1, . . . , xk)

]
=

2(k+1
2 )2(n−k+1

2 )

2(n+1
2 )

· ∆(x1, . . . , xk)∆(y1, . . . , yn−k)

∆(1, 2, . . . , k)∆(1, 2, . . . , n− k)
. (4)

To prove Theorem 3, we use another well-known combinatorial bijection
relating ASM’s to monotone triangles. A monotone triangle of order n is
a triangular array (ti,j)1≤i≤n,1≤j≤i of integers satisfying the inequalities

ti,j < ti,j+1, ti,j ≤ ti−1,j ≤ ti,j+1 (2 ≤ i ≤ n, 1 ≤ j ≤ i− 1).

A complete monotone triangle of order n is a monotone triangle whose
bottom row consists of the numbers (1, 2, . . . , n). It is well-known that al-
ternating sign matrices of order n are in bijection with complete monotone
triangles of order n. In our terminology, the bijection assigns to an ASM
M = (mi,j)

n
i,j=1 the monotone triangle

T = (ti,j)1≤i≤n,1≤j≤i = ϕASM→CMT(M)

whose k-th row (tk,j)1≤j≤k consists for each 1 ≤ k ≤ n of the ascents of
the k-th row of the height matrix H(M), arranged in increasing order. See
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Figure 8: (a) The complete monotone triangle corresponding to the ASM in
Figure 7; (b) its dual, shown “standing on its head”.

Figure 8(a) for an example. More explicitly, it is easy to check that this
means that an index j will be present in the k-th row of T if and only if

k∑
i=1

mi,j = 1

holds.
Another notion that will prove useful is that of the dual of a complete

monotone triangle. If T is a complete monotone triangle of order n, and M
is the ASM in An such that T = ϕASM→CMT(M), then the dual T ∗ of T is
the complete monotone triangle of order n that corresponds via the same
bijection to the matrix W , defined as the vertical reflection of M , i.e., the
matrix such that wi,j = mn+1−i,j for all i, j (clearly it, too, is an ASM). See
Figure 8(b), where the dual triangle is drawn reflected vertically.

The following simple observation describes more explicitly the connection
between a monotone triangle and its dual.

Lemma 4. If T = (ti,j)1≤i≤n,1≤j≤i is a complete monotone triangle of order
n, then for each 1 ≤ k ≤ n − 1, the (n − k)-th row of the dual triangle T ∗

consists of the numbers in the complement

{1, 2, . . . , n} \ {tk,1, tk,2, . . . , tk,k}

of the k-th row of T , arranged in increasing order.

Proof. Let M = (mi,j)i,j ∈ An be such that T = ϕASM→CMT(M). As
mentioned above, 1 ≤ j ≤ n appears in the k-th row of T if and only if
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∑k
i=1mi,j = 1. Similarly, from the definition of T ∗ we see that j appears

in the (n − k)-th row of T ∗ if and only if
∑n

i=k+1mi,j = 1. But from the
definition of an alternating sign matrix, one and only one of these conditions
must hold.

As the last step in the preparation for proving Theorem 3, we note that
if M ∈ An and T = ϕASM→CMT(M), then it is easy to see that N+(M), the
number of +1 entries in M , can be expressed in terms of T as the num-
ber of entries ti,j in T that do not appear in the preceding row (including,
vacuously, the singleton element in the top row). We denote this quantity
also by N+(T ); note that it is defined more generally also for non-complete
monotone triangles. We furthermore recall the following formula proved by
Mills, Robbins and Rumsey in [25, Th. 2] (see also [7, Eq. (7), Section 4],
and see [12] for a recent alternative proof and some generalizations):

Lemma 5. If k ≥ 1 and x1 < x2 < . . . < xk are integers, then the sum of
2N+(T ) over all monotone triangles T of order k with bottom row (x1, . . . , xk)
is equal to

2(k+1
2 )

∏
1≤i<j≤k

xj − xi
j − i

.

Proof of Theorem 3. Denote by Tn(x1, . . . , xk) the set of complete monotone
triangles of order n whose k-th row is equal to (x1, . . . , xk). From the remarks
above, it follows that the left-hand side of (4) is equal to

2−(n+1
2 )

∑
T∈Tn(x1,...,xk)

2N+(T ).

In addition, for a monotone triangle T ∈ Tn(x1, . . . , xk), define Ttop and
Tbottom as the two monotone triangles, of orders k and n − k, respectively,
where Ttop is comprised of the top k rows of T , and Tbottom is comprised of
the top n − k rows of the dual triangle T ∗. From Lemma 4, it follows that
the correspondence

T → (Ttop, Tbottom)

defines a bijection between Tn(x1, . . . , xk) and the cartesian product A× B,
where A is the set of monotone triangles with bottom row (x1, . . . , xk) and
B is the set of monotone triangles with bottom row (y1, . . . , yn−k) (in the
notation of Theorem 3). This corresponence furthermore has the property
that

N+(T ) = N+(Ttop) +N+(Tbottom)
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(sinceN+(Ttop) counts the number of +1 entries in the first k rows of the ASM
corresponding to T , whereas N+(Tbottom) counts the number +1’s in the last
n − k rows), or equivalently that 2N+(T ) = 2N+(Ttop)2N+(Tbottom). Combining
these last observations, we get that the left-hand side of (4) is equal to

2−(n+1
2 )

∑
Ttop∈A

2N+(Ttop)
∑

Tbottom∈B

2N+(Tbottom),

which by Lemma 5 is equal exactly to the right-hand side of (4).

We remark that an equivalent version of Theorem 3, phrased in the lan-
guage of domino tilings and certain so-called zig-zag paths defined in terms
of them, is proved by Johansson in [18] (see Proposition 5.14 in that paper
and eq. (5.16) following it). See also the subsequent papers [19, 20] where
Johansson proves many interesting results about random domino tilings of
the Aztec diamond by combining a variant of (4) with ideas from the theory
of orthogonal polynomials and the theory of determinantal point processes.

3 A large deviation principle

We now turn from combinatorics to analysis, with the goal in mind being
to use Theorem 3 as the starting point for a large deviation analysis of the
behavior of PnDom-random ASM’s. First, we define the space of functions on
which our analysis takes place. Fix 0 < y < 1. We wish to understand the
behavior of the k-th row of the height matrix of a PnDom-random ASM of
order n for values of k satisfying k ≈ y · n, when n is large.

Define the space of y-admissible functions to be the set

Fy =

{
f : [0, 1]→ [0, 1] : f is monotone nondecreasing, 1-Lipschitz,

and satisfies f(0) = 0, f(1) = y

}
.

Define the space of admissible functions as the union of all the y-admissible
function spaces:

F =
⋃

y∈[0,1]

Fy.
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u = (0, 0, 1, 2, 2, 2, 3) ←→

fu
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Figure 9: A (6, 3)-admissible sequence u and the corresponding function fu.

We also define a discrete analogue of the admissible functions. Given
integers 0 ≤ k ≤ n, a sequence u = (u0, u1, . . . , un) of integers is called an
(n, k)-admissible sequence if it satisfies

u0 = 0, un = k, and ui+1 − ui ∈ {0, 1} for all 0 ≤ i ≤ n− 1,

Note that (n, k)-admissible sequences are exactly those that can appear as
the k-th row of a height matrix H(M) of an ASM M ∈ An. We embed the
(n, k)-admissible sequences in the space Fy for y = k/n, in the following way:
For each (n, k)-admissible sequence u, define a function fu : [0, 1]→ [0, 1] as
the unique function having the values

fu(j/n) = uj/n, 0 ≤ j ≤ n,

and on each interval [j/n, (j + 1)/n] for 0 ≤ j ≤ n − 1 being defined as
the linear interpolation of the values on the endpoints of the interval; see
Figure 9. Clearly, fu is a (k/n)-admissible function. In fact, it is easy to see
that the admissible functions are precisely the limits of such functions in the
uniform norm topology.

With these definitions, we can now formulate the large deviation principle.

19



Theorem 6 (Large deviation principle for PnDom-random ASM’s). Let 0 ≤
k ≤ n, and let u = (u0, u1, . . . , un) be an (n, k)-admissible sequence. Let
H(M)k denote the k-th row of a height matrix H(M). Then

PnDom

[
M ∈ An : H(M)k = u

]
= exp

(
− (1 + o(1))n2(I(fu) + θ(k/n))

)
, (5)

where we define

θ(y) =
1

2
y2 log y +

1

2
(1− y)2 log(1− y) +

2 log 2− 3

2
y(1− y) +

3

2
,

I(f) = −
∫ 1

0

∫ 1

0

log |s− t|f ′(s)(f ′(t)− 1) ds dt, (f ∈ F).

The o(1) error term in (5) is uniform over all 0 ≤ k ≤ n and all (n, k)-
admissible sequences u, as n→∞.

Proof. Let 1 ≤ x1 < x2 < . . . < xk ≤ n be the positions of the k ascents in
the sequence (u0, u1, . . . , un) (in the same sense defined before, namely that
uxi − uxi−1

= 1), and let 1 ≤ y1 < . . . < yn−k ≤ n be the numbers in the
complement {1, . . . , n} \ {x1, . . . , xk} arranged in increasing order.

By (4), we have

n−2 log PnDom

[
M ∈ An : H(M)k = u

]

= n−2
((

k + 1

2

)
+

(
n− k + 1

2

)
−
(
n+ 1

2

))
log 2

−n−2
∑

1≤i<j≤k

log(j − i)− n−2
∑

1≤i<j≤n−k

log(j − i)

+n−2
∑

1≤i<j≤k

log(xj − xi) + n−2
∑

1≤i<j≤n−k

log(yj − yi). (6)
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We estimate each of the summands. First, we have

n−2
((

k + 1

2

)
+

(
n− k + 1

2

)
−
(
n+ 1

2

))
log 2

=
log 2

2

(
k

n

)2

+
log 2

2

(
1− k

n

)2

− log 2

2
+ o(1)

= − log 2 · k
n

(
1− k

n

)
+ o(1). (7)

Secondly, the sum n−2
∑

1≤i<j≤k log(j − i) can be rewritten as

n−2
∑

1≤i<j≤k

log(j − i) = n−2
k−1∑
d=1

(k − d) log d

= n−2
k−1∑
d=1

(k − d) log k +

(
k

n

)2 k−1∑
d=1

(
1− d

k

)
log

d

k
· 1

k

=
k(k − 1)

2n2
log k +

(
k

n

)2 ∫ 1

0

(1− t) log t dt+ o(1)

=
1

2

(
k

n

)2

log k − 3

4

(
k

n

)2

+ o(1), (8)

where the error term o(1) is uniform in k as n → ∞ (the estimate for this
sum is essentially the leading-order asymptotic expansion for the so-called
Barnes G-function , related also to the hyperfactorial ; for more detailed
asymptotics of these special functions, see [9, Sec. 2.15, p. 135]). Similarly,
replacing k by n− k we get that

n−2
∑

1≤i<j≤n−k

log(j − i) =
1

2

(
1− k

n

)2

log(n− k)− 3

4

(
1− k

n

)2

+ o(1). (9)

Finally, we estimate the terms in (6) that depend directly on the sequence u.
The idea is to replace each term n−2 log(xj−xi) with an integral of the form∫∫

log(t − s)f ′u(t)f ′u(s) ds dt over a certain region. Observe that for X > 1
we have the (easily verifiable) identity∫ 1

0

∫ X+1

X

log(v − u) dv du

= logX +

(
1

2
(X2 + 1) log

(
X2 − 1

X2

)
+X log

(
X + 1

X − 1

)
− 3

2

)
.
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When X is large, this behaves like logX+O
(

1
X

)
. The integral is also defined

and finite when X = 1. So we can write

n−2
∑

1≤i<j≤k

log(xj − xi)

= n−2
∑

1≤i<j≤k

∫ xi

xi−1

∫ xj

xj−1
log(v − u) dv du+O

( ∑
1≤i<j≤k

n−2

xj − xi

)

=
∑

1≤i<j≤k

∫ xi

xi−1

∫ xj

xj−1
log(v − u)

dv du

n2
+O

(
log n

n

)
.

=
∑

1≤i<j≤k

∫ xi

xi−1

∫ xj

xj−1
log

(
v − u
n

)
dv du

n2
+ log n · k(k − 1)

2n2

+O

(
log n

n

)
.

Now observe that f ′u(x) is equal to 1 if (xi − 1)/n < x < xi/n for some i, or
to 0 otherwise; so this last expression can be rewritten as∫∫

Rn

log(t− s)f ′u(s)f ′u(t) ds dt+
1

2

(
k

n

)2

log n+O

(
log n

n

)
, (10)

where the integral is over the region

Rn =
⋃

1≤i<j≤n

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
.

The region of integration in (10) can be replaced with the slightly larger
region

R = {(s, t) ∈ [0, 1]× [0, 1] : s < t},

at the cost of an additional error which can be bounded in absolute value by∫ 1

0

dy

∫ y

y−1/n
| log(y − x)| dx =

∣∣∣∣∣
∫ 1/n

0

log tdt

∣∣∣∣∣ = O

(
log n

n

)
.

To summarize, after this change in the region of integration and, in addition,
after symmetrizing the region of integration for convenience, we have shown
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that

n−2
∑

1≤i<j≤k

log(xj − xi)

=
1

2

∫ 1

0

∫ 1

0

log |t− s|f ′u(s)f ′u(t) ds dt+
1

2

(
k

n

)2

log n+O

(
log n

n

)
. (11)

Symmetrically, following exactly the same reasoning for the last sum in (6)
we get the similar estimate

n−2
∑

1≤i<j≤n−k

log(yj − yi)

=
1

2

∫ 1

0

∫ 1

0

log |t− s|(1− f ′u(s))(1− f ′u(t)) ds dt+
1

2

(
1− k

n

)2

log n

+O

(
log n

n

)
. (12)

It remains to plug the estimates (7), (8), (9), (11) and (12) into (6), and
simplify. Denoting y = k/n, and using the integral evaluation

1

2

∫ 1

0

∫ 1

0

log |t− s|ds dt = −3

4
,

this gives that the left-hand side of (6) is equal to

− 3

4
+

3

4
y2 +

3

4
(1− y)2 − log 2 · y(1− y)− 1

2
y2 log y − 1

2
(1− y)2 log(1− y)

+

∫ 1

0

∫ 1

0

log |t− s|f ′u(s)f ′u(t)ds dt−
∫ 1

0

∫ 1

0

log |t− s|f ′u(s)ds dt+ o(1)

= −θ(y)− I(fu) + o(1), (13)

as claimed.

4 The variational problem and its solution

Fix 0 < y < 1. Motivated by Theorem 6, we now turn our attention to the
problem of minimizing the integral functional I(f) over the appropriate class
of y-admissible functions. In the next section we will show how this implies
a limit shape result for PnDom-random ASM’s.

The precise variational problem that we will solve is the following:
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Variational Problem 1. For a given 0 < y < 1, find the function f ∗y that
minimizes I(f) over all functions f ∈ Fy.

Variational Problem 1 is a variant of a class of variational problems that
have appeared in several random combinatorial models; see, e.g., [4, 24, 27,
33, 34]. Such problems bear a strong resemblance to classical physical prob-
lems of finding the distribution of electrostatic charges subject to various con-
straints in a one-dimensional space, as well as to problems of finding limiting
eigenvalue distributions in random matrix theory. However, the variational
problems arising from combinatorial models usually have non-physical con-
straints that make the analysis trickier. In particular, in several of the works
cited above, the presence of such constraints required the authors to first
(rather ingeniously) guess the solution. Once the solution was conjectured,
it was possible to verify that it is indeed the correct one using fairly standard
techniques. Cohn, Larsen and Propp, who derived the limit shape of a ran-
dom boxed plane partition, ask (see Open Question 6.3 in [4]) whether there
exists a method of solution for their problem that does not require guessing
the solution.

In [27], it was argued however that when dealing with such problems,
it is not necessary to guess the solution, since a well-known formula in the
theory of singular integral equations for inverting a Hilbert transform on
a finite interval actually enables mechanically deriving the solution rather
than guessing it, once certain intuitively plausible assumptions on the form
of the solution are made. Here, we demonstrate again the use of this more
systematic approach by using it to solve our variational problem. As an
added bonus, the solution rather elegantly turns out to be nearly identical to
the solution of the variational problem for the square Young tableaux case
(although we see no a priori reasons why this should turn out to be the
case), and we are able to make use of certain nontrivial computations that
appeared in [27], which further simplifies the analysis.

Our goal in the rest of this section will be to prove the following theorem.
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Theorem 7. Define

Z(x, y) =
2

π

(x− 1/2) arctan


√

1
4
− (x− 1/2)2 − (y − 1/2)2

1/2− y


+

1

2
arctan

 2(x− 1/2)(1/2− y)√
1
4
− (x− 1/2)2 − (y − 1/2)2

 (14)

−(1/2− y) arctan

 x− 1/2√
1
4
− (x− 1/2)2 − (y − 1/2)2

 .
For 0 < y < 1/2, the solution f ∗y to Variational Problem 1 is given by

f ∗y (x) =


0 0 ≤ x ≤ 1−2

√
y(1−y)
2

,

y
2

+ 1
2
Z(x, y)

1−2
√
y(1−y)
2

< x <
1+2
√
y(1−y)
2

,

y
1+2
√
y(1−y)
2

≤ x ≤ 1.

(15)

For y = 1/2, the solution is given by

f ∗1/2(x) =
x

2
.

For y > 1/2 the solution is expressed in terms of the solution for 1− y by

f ∗y = x− f ∗1−y.

Moreover, for all 0 < y < 1 we have

I(f ∗y ) = −θ(y).

As a first step, for convenience we reformulate the variational problem
slightly to bring it to a more symmetric form, by replacing each f ∈ Fy by
the function

g(x) = 2f(x)− x. (16)

It is easy to check how the class of y-admissible functions and the functional
I(·) transform under this mapping. The result is the following equivalent
form of our variational problem.
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Variational Problem 2. For 0 < y < 1, define the space of functions

Gy =
{
g : [0, 1]→ [−1, 1] : g(0) = 0, g(1) = 2y − 1, and g is 1-Lipschitz

}
and the integral functional

J(g) = −
∫ 1

0

∫ 1

0

g′(s)g′(t) log |s− t| ds dt.

Find the function g∗y ∈ Gy that minimizes the functional J over all functions
g ∈ Gy.

The reader may verify that if f ∈ Fy and g ∈ Gy are related by (16), then
the integral functionals I and J are related by

I(f) =
1

4
J(g)− 3

8
.

This implies that the following theorem is an equivalent version of Theorem 7.

Theorem 7 ′. For 0 < y < 1/2, the solution g∗y to Variational Problem 2 is
given by

g∗y(x) =


−x 0 ≤ x ≤ 1−2

√
y(1−y)
2

,

y − x+ Z(x, y)
1−2
√
y(1−y)
2

< x <
1+2
√
y(1−y)
2

,

2y − x 1+2
√
y(1−y)
2

≤ x ≤ 1,

where Z(x, y) is defined in (14). For y = 1/2, the solution is given by
g∗1/2(x) ≡ 0. For y > 1/2 the solution is expressed in terms of the solution
for 1− y by g∗y = −g∗1−y. Moreover, for all 0 < y < 1 we have

J(g∗y) = −4θ(y) +
3

2
.

We now concentrate our efforts on proving Theorem 7 ′. First, in the fol-
lowing lemma we recall some basic facts about the space Gy and the functional
J . We omit the proofs, since they are relatively simple and essentially the
same claims, with minor differences in the coordinate system, were proved in
[27]. (See also [4] where similar facts are proved.)
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Lemma 8. (i) The space Gy is compact in the uniform norm.
(ii) The functional J on G = ∪0<y<1Gy is a quadratic functional which can
be written as

J(g) = 〈g, g〉,
where 〈·, ·〉 is defined by

〈g, h〉 = −
∫ 1

0

∫ 1

0

g′(s)h′(t) log |s− t| ds dt.

The bilinear form 〈·, ·〉 is defined for any two Lipschitz functions g, h, is
continuous on G with the uniform norm, and is positive semidefinite in the
sense that 〈g, g〉 ≥ 0 for any Lipschitz function g. The restriction of 〈·, ·〉 to
Gy is positive-definite.
(iii) J is strictly convex on Gy. Therefore, a minimizer g∗y exists and is
unique.

The lemma already solves the problem in the case y = 1/2, where clearly
g∗1/2 ≡ 0 is the minimizer for J among all Lipschitz functions, and in partic-
ular on G1/2. It is also easy to see that a function g is the minimizer for J
on Gy if and only if −g is the minimizer on G1−y. So we may assume for the
rest of the discussion that y < 1/2.

With these preparations, we can start the analysis. We need to minimize
J(g) under the constraints g ∈ Gy, which we rewrite as

(i) g(0) = 0,

(ii) g is differentiable almost everywhere and g′ satisfies

−1 ≤ g′ ≤ 1, (17)

(iii)
∫ 1

0
g′(x) dx = 2y − 1.

To address the third constraint, we consider J as being defined on the larger
space G and form the Lagrangian

L(g, λ) = J(g)− λ
∫ 1

0

g′(x) dx,

where λ is a Lagrange multiplier. Minimizing J under this constraint leads,
via the usual recipe for constrained optimization, to the equation

W (s) := −2

∫ 1

0

g′(t) log |s− t| dt− λ = 0. (18)
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The reason for this is that, informally, W (s) as defined above can be thought
of as “the partial derivative of L with respect to g′(s)” (where we think of
L as a function of the uncountably many variables

(
g′(s)

)
s∈[0,1], which is a

standard point of view in the variational calculus).
The relation (18) should hold whenever g′(s) is defined and is in (−1, 1).

However, because of the constraint (17), the condition will be different when
g′ = −1 or g′ = 1. The correct condition (the so-called “complementary
slackness” condition) is given by the following lemma.

Lemma 9. If g ∈ Gy and for some real number λ the function W (s) defined
in (18) satisfies

W (s) is


= 0 if g′(s) ∈ (−1, 1),

≥ 0 if g′(s) = −1,

≤ 0 if g′(s) = 1,

(19)

then g = g∗y is the minimizer for J in Gy.

Proof. We copy the proof almost verbatim from [27, Lemma 7]. If h ∈ Gy,
then in particular h is 1-Lipschitz, so

(h′(s)− g′(s))W (s) ≥ 0

for all s for which this is defined. So∫ 1

0

h′(s)W (s) ds ≥
∫ 1

0

g′(s)W (s) ds,

or in other words

2〈g, h〉 − λ(2y − 1) ≥ 2〈g, g〉 − λ(2y − 1),

which shows that 〈g, h〉 ≥ 〈g, g〉. Therefore we get, using Lemma 8(ii), that

〈h, h〉 = 〈g, g〉+ 2〈g, h− g〉+ 〈h− g, h− g〉 ≥ 〈g, g〉,

as claimed.

Having established a sufficient condition (comprised of the three separate
conditions in (19)) for a function to be a minimizer, we first try to satisfy the
condition (18), and save the other conditions for later. Based on intuition
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that comes from the problem’s connection to the combinatorial model, we
make the assumption that the minimizer g is piecewise smooth and satisfies

g′(s) ∈ (−1, 1) if s ∈
[

1− β
2

,
1 + β

2

]
, (20)

g′(s) = −1 if s /∈
[

1− β
2

,
1 + β

2

]
, (21)

where
β = 2

√
y(1− y).

Note that g′(s) = −1 translates (via (16)) to f ′(s) = 0 in the original space
Fy of y-admissible functions, which corresponds to having no ascents (or
very few ascents) in the vicinity of the scaled position (s, y) in the height
matrix of the ASM. Our knowledge of the endpoints of the interval in which
g′(s) > −1 is related to our foreknowledge of the arctic circle theorem, and
one might raise the criticism that this constitutes a “guess”. However, the
analysis in [27] shows that it would be possible to complete the solution even
without knowing this function in advance; here, we guess its value (which
actually can be easily guessed based on empirical evidence) so as to simplify
the analysis slightly.

Substituting this new knowledge about g into (18) gives the equation

−
∫ 1+β

2

1−β
2

g′(t) log |s− t| dt = 1
2
λ− s log s− (1− s) log(1− s)

+

(
s− 1− β

2

)
log

(
s− 1− β

2

)
+

(
1 + β

2
− s
)

log

(
1 + β

2
− s
)
− β, s ∈

(
1− β

2
,
1 + β

2

)
.

Differentiating with respect to s then gives

−
∫ 1+β

2

1−β
2

g′(t)

s− t
dt = − log s+ log(1− s)

+ log

(
s− 1− β

2

)
− log

(
1 + β

2
− s
)
. (22)

So, just like in the analysis in [27], we have reached the problem of inverting
a Hilbert transform on a finite interval (the so-called airfoil equation).
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Moreover, the function whose inverse Hilbert transform we want to compute
is very similar to the one that appeared in [27]—in fact, up to scaling factors
only the signs of some of the terms are permuted, and in [27] there is an
extra term equal to the Lagrange multiplier λ.

Now recall that in fact the general form of the solution of equations of
this type is known. The following theorem appears in [8, Sec. 3.2, p. 74]
(see also [28, Sec. 9.5.2]):

Theorem 10. The general solution of the airfoil equation

1

π

∫ 1

−1

h(u)

u− v
du = p(v), |v| < 1

with the integral understood in the principal value sense, and h satisfying a
Hölder condition, is given by

h(v) =
1

π

1√
1− v2

∫ 1

−1

√
1− u2p(u)

v − u
du+

c√
1− v2

for some c.

Now set
h(v) = g′((1 + βv)/2). (23)

This function should satisfy∫ 1

−1

h(u)

u− v
du = log

(
1− βu

2

)
− log

(
1 + βu

2

)
+ log(1 + u)− log(1− u),

so, applying Theorem 10, we get the equation

h(v) =
1

π2

1√
1− v2

∫ 1

−1

√
1− u2
v − u

[
log

(
1 + u

1− u

)
+ log

(
1− βu
1 + βu

)]
du

+
c√

1− v2
.

Where c is an arbitrary constant. This can be written as

h(v) =
1

π2
√

1− v2
(I(v, 1/β) + I(−v, 1/β)) +

c√
1− v2

, (24)
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where I is defined by

I(ξ, γ) =

∫ 1

−1

√
1− η2
ξ − η

log

(
1 + η

γ + η

)
dη

and is evaluated in [27, Lemma 8] as

I(ξ, γ) = π
[
1− γ +

√
γ2 − 1− ξarccosh(γ)

−2
√

1− ξ2 arctan

√
(γ − 1)(1− ξ)
(γ + 1)(1 + ξ)

]
Therefore we get that

h(v) =
1

π
√

1− v2

(
c+

β − 1 +
√

1− β2

β

)

− 2

π

(
arctan

√
(β−1 − 1)(1− v)

(β−1 + 1)(1 + v)
+ arctan

√
(β−1 − 1)(1 + v)

(β−1 + 1)(1− v)

)
.

Since c is an arbitrary constant, we see that the only sensible choice that
will allow h to be a bounded function on the interval (−1, 1) is that of
c = −(β − 1 +

√
1− β2)/β. So we have

h(v) = − 2

π

(
arctan

√
(β−1 − 1)(1− v)

(β−1 + 1)(1 + v)
+ arctan

√
(β−1 − 1)(1 + v)

(β−1 + 1)(1− v)

)
.

At this point, it is worth pointing out that in (24), if we had the difference
of the two I integrals instead of their sum, we would get at the end (up to
some trivial scaling factors that are due to the use of different coordinate
systems) exactly the function from the paper [27] that solves the variational
problem for random square Young tableaux! (Compare with eq. (36) in [27]
and subsequent formulas). Thus, while the variational problems arising from
these two combinatorial models are not exactly isomorphic (which would be
perhaps less surprising), they are in some sense nearly equivalent. It would
be interesting to understand if this phenomenon has a conceptual explanation
of some sort, but we do not see one at present.

Simplifying the expression for h using the sum-of-arctangents identity

arctanX + arctanY = arctan
X + Y

1−XY
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gives

h(v) = − 2

π
arctan

√
1− β2

β2 − β2v2
.

Going back to the original function g related to h via (23), we get that

g′(s) = h((2s− 1)/β) = − 2

π
arctan

√
1
4
− y(1− y)

s(1− s) + y(1− y)− 1
4

= − 2

π
arctan

 1/2− y√
1
4
− (y − 1/2)2 − (s− 1/2)2


=

2

π
arctan


√

1
4
− (y − 1/2)2 − (s− 1/2)2

1/2− y

− 1

for s ∈
(
1−β
2
, 1+β

2

)
. From this, we can now get g by integration. First, from

(21) we obtain that

g(s) = −s if 0 ≤ s ≤ 1− β
2

.

Next, in the interval
(
1−β
2
, 1+β

2

)
we can integrate g′ using the identity∫ t

0

arctan
√
a− u2 du = t arctan

√
a− t2

+
√

1 + a arctan

(
t√

1 + a
√
a− t2

)
− arctan

(
t√

a− t2

)
, (t2 < a),
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and obtain without much difficulty that

g(s) = g

(
1− β

2

)
+

∫ s

1−β
2

g′(x) dx =

= y − s+
2

π

(s− 1/2) arctan


√

1
4
− (s− 1/2)2 − (y − 1/2)2

1/2− y


+

1

2
arctan

 2(s− 1/2)(1/2− y)√
1
4
− (s− 1/2)2 − (y − 1/2)2


−(1/2− y) arctan

 s− 1/2√
1
4
− (s− 1/2)2 − (y − 1/2)2


for s ∈

(
1−β
2
, 1+β

2

)
.

Finally, from this last equation it is easy to check that

g

(
1 + β

2

)
= lim

s↑ 1+β
2

g(s) = 2y − 1 + β

2
,

so, for s > 1+β
2

, again because of (21) we get that g(s) = 2y−s. In particular,
g satisfies the conditions g(0) = 0, g(1) = 2y − 1, and it is also 1-Lipschitz,
so g ∈ Gy.

To summarize, we have recovered as a candidate minimizer exactly the
function from Theorem 7 ′. We also verified that it is in Gy. Furthermore, by
the derivation and the use of Theorem 10, we know that it satisfies (22), or in
other words thatW ′(s) ≡ 0 on

(
1−β
2
, 1+β

2

)
. We wanted to show thatW (s) ≡ 0

on this interval. But looking at the definition of W (s) in (18), we see that we
are still free to choose the Lagrange multiplier λ, which starting from eq. (22)

has disappeared from the analysis! So, taking λ = −2
∫ 1

0
g′(t) log |t− 1/2| dt

ensures that (18) holds on
(
1−β
2
, 1+β

2

)
, which is one of the sufficient conditions

in Lemma 9.
All that remains to finish the proof that g = g∗y is the minimizer is to

verify the second and third conditions in (19), which we have not considered
until now. The third condition is irrelevant, since g′ is never equal to 1,
so we need to prove that W (s), which we will now re-denote by W (s, y) to
emphasize its dependence on y, is nonnegative when s /∈

[
1−β
2
, 1+β

2

]
. Since
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g′ is an even function, it follows that W (·, y) is also even, so it is enough to
check this when s > 1+β

2
.

Once again, our argument follows closely in the footsteps of the analogous
part of the proof in [27]. Fix 1/2 < s ≤ 1, and let ŷ = 1−

√
1−s2
2

, so that
β(ŷ) = s. We know from (18) that W (s, ŷ) = 0. To finish the proof, it is
enough to show that

∂W (s, y)

∂y
≤ 0 for 0 ≤ y ≤ ŷ.

Denote G(x, y) = g∗y(x). Then

∂W (s, y)

∂y
= −2

∫ 1

0

∂2G(t, y)

∂t∂y
log |s− t| dt+ 2

∫ 1

0

∂2G(t, y)

∂t∂y
log |t− 1/2| dt.

A computation shows that if t ∈
(

1−β(y)
2

, 1+β(y)
2

)
then

∂2G(t, y)

∂t∂y
=

∂

∂y
g∗y
′(x) =

2

π
· 1√

1
4
− (x− 1/2)2 − (y − 1/2)2

,

and otherwise ∂2G(t, y)/∂t∂y is clearly 0, so that

∂W (s, y)

∂y
=

4

π

∫ (1+β)/2

(1−β)/2

log |t− 1/2| − log(s− t)√
1
4
− (t− 1/2)2 − (y − 1/2)2

dt.

Now use the two standard integral evaluations∫ 1

−1

log |x|√
1− x2

dx = −π log(2),∫ 1

−1

log(a− x)√
1− x2

dx = π log

(
a+
√
a2 − 1

2

)
, (a > 1),

(see [16, eq. 4.241-7, p. 533], and [16, eq. 4.292-3, p. 553]) to conclude that

∂W (s, y)

∂y
= −4 log

(
s− 1/2 +

√
(s− 1/2)2 − (β/2)2

β/2

)
.
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Since we assumed that y ≤ ŷ, or in other words that s ≥ 1+β(y)
2

, it follows
that

∂W (s, y)

∂y
≤ −4 log

(
s− 1/2

β/2

)
≤ 0,

as claimed.
We have proved Theorem 7 ′ (hence also Theorem 7), except the claim

about the value of the integral functional J at the minimizer g∗y. This value
could be computed in a relatively straightforward way, as was done for the
analogous claim in [27]. We omit this computation, since, as was pointed
out in [27], this can also be proved indirectly by using the large deviation
principle to conclude that the infimum of the large deviations rate functional
I(f) + θ(y) over the space Fy must be equal to 0. Therefore the proof of
Theorem 7 ′ is complete.

5 The limit shape of PnDom-random ASM’s

We now apply the results from the previous sections to prove a limit shape re-
sult for the height matrix of random ASM’s chosen according to the measure
PnDom.

Theorem 11. Let F (x, y) = f ∗y (x), where for each 0 ≤ y ≤ 1, f ∗y is the
function defined in (15). For each n let Mn be a PnDom-random ASM of order
n, and let Hn = H(Mn) = (hni,j)

n
i,j=0 be its associated height matrix. Then as

n→∞ we have the convergence in probability

max
0≤i,j≤n

∣∣∣∣hni,jn − F (i/n, j/n)

∣∣∣∣ P−−−→
n→∞

0.

Proof. Fix ε > 0. We want to show that

Anε =

{
max

0≤i,j≤n

∣∣∣∣hni,jn − F (i/n, j/n)

∣∣∣∣ > ε

}
satisfies PnDom(Anε )→ 0 as n→∞. We start by showing a weaker statement,
namely that if y ∈ (0, 1) is given, then PnDom(Bn

ε,y)→ 0 as n→∞, where

Bn
ε,y =

{
max
0≤j≤n

∣∣∣∣hnbnyc,jn
− F (y, j/n)

∣∣∣∣ > ε/2

}
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(and bxc denotes as usual the integer part of a real number x). To prove
this, note that

Bn
ε,y ⊆

⋃
u

{
M ∈ An : H(M)bnyc = u

}
,

where the union is over all (n, k)-admissible sequences u (with k = bnyc)
such that

||fu − f ∗y ||∞ = max
0≤x≤1

|fu(x)− f ∗y (x)| > ε/2

(here, || · ||∞ denotes the supremum norm on continuous functions on [0, 1]).
The number of such sequences is bounded by the total number of (n, k)-
admissible sequences, which is equal to

(
n
k

)
≤ 2n (since an (n, k)-admissible

sequence is determined by the positions of its k ascents), and for each such
u, by Theorem 6 we have

PnDom

(
M ∈ An : H(M)bnyc = u

)
≤ C exp

(
− (1 + o(1))c(ε, y)n2

)
,

where C is a universal constant, and

c(ε, y) = inf
{
I(f) + θ(y) : f ∈ Fy, ||f − f ∗y ||∞ ≥ ε/2

}
. (25)

If the infimum in the definition of c(ε, y) were taken over all f ∈ Fy, it
would be equal to 0 by Theorem 7. Note however that the set of g ∈ Gy
that correspond via (16) to some f ∈ Fy participating in the infimum in
(25) is a closed subset (in the uniform norm topology) of Gy that does not
contain the minimizer g∗y . Therefore by Theorem 7 ′ and Lemma 8 we get that
in fact c(ε, y) > 0. Combining these last observations, we see that indeed
PnDom(Bn

ε,y)→ 0 as n→∞.
Next, we claim that the event Anε is contained in the union of a finite

number (that depends on ε but not on n) of events Bn
ε,yj

, so if PnDom(Bn
ε,y)→ 0

for all y then also PnDom(Anε ) → 0. This follows because of the Lipschitz
property of the height matrix and of the limit shape function F , which means
that proximity to the limit at a sufficiently dense set of values of y implies
proximity to the limit everywhere. The details are simple, so we leave to
the reader to check that taking yj = bjε/8c for j = 1, 2, . . . , b8/εc is in fact
sufficient to guarantee that

Anε ⊂
b8/εc⋃
j=1

Bn
ε,yj
,

as required.
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

0 1 2 3 4 5 6
1 2 3 2 3 4 5
2 3 2 3 4 3 4
3 2 3 4 3 2 3
4 3 2 3 2 3 2
5 4 3 2 1 2 1
6 5 4 3 2 1 0


Figure 10: The symmetrized height matrix of the ASM from Figure 7.

In the next section we will use a connection between uniformly random
domino tilings of the Aztec diamond and PnDom-random ASM’s to prove a
limit shape theorem for the height function of the random domino tiling. It
will be helpful to consider for this purpose a variant of the height matrix of an
ASM M , which we call the symmetrized height matrix (it is sometimes
referred to as the skewed summation of M). If M ∈ An, we define this
as the matrix HSym(M) = (h∗i,j)

n
i,j=0 with entries given by

h∗i,j = i+ j − 2H(M)i,j, (M ∈ An, 0 ≤ i, j ≤ n),

where H(M)i,j is the (i, j)-th entry of the (ordinary) height matrix of M .
See Figure 10 for an example. The following theorem is an equivalent version
of Theorem 11 formulated for these matrices.

Theorem 11 ′. Let G(x, y) = x + y − 2F (x, y), where F is defined in The-
orem 11. For each n let Mn be a PnDom-random ASM of order n, and let
H∗n = HSym(Mn) = (h∗i,j

n)ni,j=0 be its associated symmetrized height matrix.
Then as n→∞ we have the convergence in probability

max
0≤i,j≤n

∣∣∣∣h∗i,jnn −G(i/n, j/n)

∣∣∣∣ P−−−→
n→∞

0.

We remark that it would have been possible to work with symmetrized
height matrices right from the beginning. In that case the large deviation
analysis would have lead directly to Variational Problem 2 without going first
through Variational Problem 1. (Note that the limiting symmetrized height
function G(x, y) can also be written as G(x, y) = y − g∗y(x), where g∗y is the
solution to Variational Problem 2.)
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6 Back to domino tilings

We now recall some basic facts from [7] about domino tilings of the Aztec
diamond ADn, their height functions, and their connection to alternating sign
matrices and their height matrices. This will enable us to use our previous
results to reprove the Cohn-Elkies-Propp limit shape result for the height
function of a uniformly random domino tiling of ADn as n→∞.

Let G = G(ADn) be the directed graph whose vertex set is

V (ADn) =
{

(i, j) ∈ Z2 : |i|+ |j| ≤ n+ 1
}
,

and where the adjacency relations are

(i1, j1)→ (i2, j2) ⇐⇒
j1 = j2 and i1 − i2 = (−1)n+i1+j1 ,

or
i1 = i2 and j1 − j2 = (−1)n+i1+j1+1.

We call G(ADn) the Aztec diamond graph . Note that its adjacency
structure is the standard nearest-neighbor graph structure induced from
Z2, where in addition edges are directed according to a checkerboard par-
ity rule, namely, that if a checkerboard coloring is imposed on the squares
[n, n + 1] × [m,m + 1] in the lattice dual to Z2, then the nearest-neighbor
edges u→ v are all directed such that a traveller crossing the directed edge
will see a black square on her left; see Figure 11(a).

Define a height function to be any function η on V (ADn) such that for
any edge u→ v in G(ADn) we have

η(u)− η(v) = 1 or − 3,

and such that η(u)− η(v) = 1 whenever u→ v is one of the boundary edges.
A height function η on V (ADn) is called normalized if η(−n, 0) = 0.

It is known that any domino tiling T of ADn determines a unique normal-
ized height function ηT by the requirement that for any directed edge u→ v
we have

ηT (u)− ηT (v) =

{
−3 the segment (u,v) crosses a domino tile in T ,

1 otherwise.

Conversely, any normalized height function η is of the form ηT for some
domino tiling. See Figure 11(b).
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(a) (b)

Figure 11: (a) The Aztec diamond graph of order 3; (b) The normalized
height function corresponding to the tiling from Figure 1.

Another important fact concerns the beautiful connection, discovered by
Elkies, Kuperberg, Larsen and Propp [7], between height functions of domino
tilings of ADn and height matrices of ASM’s: each normalized height func-
tion η on V (ADn) is essentially comprised of the superposition of two (sym-
metrized) height matrices HSym(A), HSym(B) where A is an ASM of order n
and B is an ASM of order n+ 1. More precisely, HSym(A) and HSym(B) can
be recovered from η by

HSym(A)i,j =
η(−n+ 1 + i+ j,−i+ j)− 1

2
, (26)

HSym(B)i,j =
η(−n+ i+ j,−i+ j)

2
, (27)

(note the slight difference from the formulas in [7] due to a difference in the
center of the coordinate system used). This correspondence defines a one-to-
one mapping from the set of domino tilings of ADn to the set of pairs (A,B)
where A ∈ An and B ∈ An+1. The pairs (A,B) which are obtained via this
mapping are exactly the so-called compatible pairs defined by Robbins and
Rumsey [30]: A and B are called compatible if the (non-symmetrized) height
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matrices H(A), H(B) satisfy the conditions

H(B)i,j ≤ H(A)i,j,

H(B)i+1,j+1 − 1 ≤ H(A)i,j,

H(A)i,j ≤ H(B)i+1,j,

H(A)i,j ≤ H(B)i,j+1.

It was also shown in [30] that for a given ASM A ∈ An, the number of
B ∈ An+1 that are compatible with A is equal to 2N+(A). Combined with the
formula for the number of domino tilings of ADn, this implies that if T is a
uniformly random domino tiling of ADn, and (A,B) is the associated pair
of compatible ASM’s, then the random ASM A is distributed according to
the domino measure PnDom (of course, this provides the explanation for our
choice of name for this measure).

We now combine Theorem 11 ′ with the above discussion to easily obtain
the following result, originally proved in [2].

Theorem 12. For each n ≥ 1, let Tn be a uniformly random domino tiling
of ADn, and let ηn = ηTn be its associated height function. Then as n → ∞
we have the convergence in probability

max
(i,j)∈V (ADn)

∣∣∣∣ 1nηn(i, j)−R(i/n, j/n)

∣∣∣∣ P−−−→
n→∞

0,

where

R(u, v) = 2G

(
u− v + 1

2
,
u+ v + 1

2

)
, (|u|+ |v| ≤ 1),

and G is defined in Theorem 11 ′.

Proof. For pairs (i, j) ∈ V (ADn) for which i+ j + n is odd, the proximity of
n−1ηn(i, j) to R(i/n, j/n) follows from (26). For other pairs (i, j), apply the
previous observation to any pair (i′, j′) adjacent to (i, j) and use the facts
that |ηn(i, j)− η(i′, j′)| ≤ 3 and that R is a continuous function.

7 Concluding remarks

7.1 Relation to the arctic circle theorem

Theorem 12 implies a weak form of the arctic circle theorem (Theorem 1):
First, since inside the arctic circle the limit shape function R(u, v) is not a
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linear function, it follows that the frozen region cannot extend in the limit
into the arctic circle, which is “half” of the theorem. In the other direction,
we get only a weaker statement that outside the arctic circle we can have
in the limit at most o(n2) “non-frozen” dominoes, since that is what the
linearity of the limiting height function in that region implies.

It is interesting to contrast this with the square Young tableaux problem.
There, too, the large deviation approach gave only a bound in one direction
on the behavior of the square Young tableau along the boundary of the
square. However, Pittel and Romik managed to prove the other direction
using an additional combinatorial argument (inspired by a method of Vershik
and Kerov [34]). It would be interesting to see whether one can emulate this
approach in the present case to get a new proof of the arctic circle theorem.
A similar question applies to the problem of random boxed plane partitions
studied by Cohn, Larsen and Propp [4], where again the limit shape theorem
for the height function does not imply an arctic circle result in its strong
form.

7.2 Other arctic circles and more general arctic curves

In this paper we have shown that two so-called arctic circle phenomena,
namely those appearing in the contexts of random domino tilings of the
Aztec diamond and of random square Young tableaux, are closely related,
in the sense that the limit shape results underlying them can be given a
more or less unified treatment using the techniques of large deviation theory
and the calculus of variations, and that the derivations in both cases result in
nearly identical computations and formulas. Note that these are not the only
combinatorial models in which arctic circles appear. Other examples known
to the author include the shape of a uniformly random boxed plane partition
derived by Cohn, Larsen and Propp [4] and the arctic circle theorem for
random groves, due to Petersen and Speyer [26]. One might therefore wish to
extend the insights of the present paper to these other models. The treatment
of boxed plane partitions in [4] is already based on a large deviations analysis,
and in fact the variational problem studied there seems to be quite closely
related to the variational problems studied here and in [27]. Therefore, it
should be relatively straightforward to use the techniques presented here
to give a new derivation of the solution to the variational problem from
[4] (which in particular would provide a fully satisfactory answer to Open
Question 6.3 from that paper).
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The analysis of random groves, on the other hand, is based on generating
function techniques, and it is not clear how to apply the ideas presented here
to that setting.

It is also worth mentioning that there is a large literature on the subject
of limit shapes of various classes of random combinatorial objects, and tiling
models in particular, where one encounters in many cases a spatial phase
transition between a “frozen” and a ”temperate” region. The equations gov-
erning such limit shapes can in general lead to a much more diverse family
of non-circular “arctic curves” describing the shape of the interface between
the frozen and temperate regions. For details, see for example the papers [3],
[22], [23].

7.3 Uniformly random ASM’s

One reason why the methods and ideas presented in this paper may be con-
sidered worthy of attention is somewhat speculative in nature. It pertains to
the potential future applicability of these methods and ideas to a well-known
open problem on alternating sign matrices: that is, the problem of finding
the limiting shape of a uniformly random ASM of high order. Here, “limit
shape” is usually taken to refer to the shape of the region in which the non-
zero entries cluster (the “temperate region”), although one could also ask (as
we have done here in the case of PnDom-random ASM’s) about the limiting
shape of the height matrix, which also contains useful information about the
behavior of the ASM inside the temperate region.

Important progress on this question was made recently by Colomo and
Pronko [6], who conjectured the explicit formula

x2 + y2 + |xy| = |x|+ |y|

for the limit shape of the boundary of the temperate region in a uniformly
random ASM (Fig. 12), and provided a heuristic derivation of this conjec-
tured formula based on certain natural, but still conjectural, analytic as-
sumptions.

In view of this state of affairs, it is worth noting that the ideas presented
in this paper seem to be rather suitable for attacking this challenging open
problem. There is only one main “missing piece” (albeit possibly a very
substantial one) in our understanding. The idea is to replace Theorem 3,
which is the combinatorial observation which lies at the heart of the large
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Figure 12: The Colomo-Pronko conjectured limit shape for uniformly random
alternating sign matrices.

deviations analysis, with an analogous statement that holds for the uniform
measure on the set An of ASM’s of order n. This statement is given in the
following theorem, whose proof follows similar lines to the proof of Theorem 3
and is omitted.

Theorem 13. Let PUnif denote the uniform measure on the set of ASM’s of
order n. For a positive integer k and integers x1 < x2 < . . . < xk, denote by
αk(x1, . . . , xk) the number of monotone triangles of order k with bottom row
(x1, . . . , xk). Then, in the notation of Theorem 3, we have

PUnif

[
M ∈ An : (Xk(1), . . . , Xk(k)) = (x1, . . . , xk)

]
=

1

|An|
αk(x1, . . . , xk)αn−k(y1, . . . , yn−k)

Unfortunately, while a formula for |An| is known (see [1]), the function
αk seems much more difficult to understand (and in particular, to derive
asymptotics for) than the Vandermonde function ∆, and this is the piece
that is missing when one tries to duplicate our analysis to the setting of
uniformly random ASM’s. Nevertheless, the function αk has recently been
the subject of several very fruitful studies. Fischer [10] derived the following
beautiful “operator formula” for αk:

αk(x1, . . . , xk) =

[ ∏
1≤i<j≤k

(Id + EiDj)

]
∆(x1, . . . , xk)

∆(1, . . . , k)
. (28)
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Here, ∆ is the Vandermonde function as before, and Id, Ej and Di are opera-
tors acting on the ring of polynomials C[x1, . . . , xk]: Id is the identity opera-
tor, Ej is the shift operator in the variable xj (that substitutes xj+1 for each
occurrence of xj in a polynomial), and Di = Ei−Id is the (right-)differencing
operator in the variable xi.

Fischer then showed in several subsequent papers that it is possible to use
(28) to get highly non-trivial information on the enumeration of alternating
sign matrices: In [11] she obtained a new proof of the celebrated Refined
Alternating Sign Matrix Theorem (see [1] for the statement and fascinating
history of this result); in [15] she and the author obtained additional results
concerning a “doubly-refined” enumeration of ASM’s; and in [13] and [14] she
extended these results further to a “multiply-refined” enumeration. Thus, it
seems quite conceivable that additional study of αk may eventually lead to a
deeper understanding of this function, that, in combination with Theorem 13
and the techniques of this paper, could provide a basis for a successful attack
on the limit shape problem for uniformly random ASM’s.
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