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Abstract. We answer a question raised by Donald E. Knuth and Andrew C. Yao, concerning
the class of polynomials on [0, 1] that can be realized as the distribution function of a random
variable, whose binary expansion is the output of a finite state automaton driven by unbiased
coin tosses. The polynomial distribution functions which can be obtained in this way are precisely
those with rational coefficients, whose derivative has no irrational roots on [0, 1].

We also show, strengthening a result of Knuth and Yao, that all smooth distribution functions
which can be obtained by such automata are polynomials.

1. Introduction

In a 1976 paper, Donald Knuth and Andrew C. Yao laid the foundations for a complexity theory
of probability distribution functions. They defined a computability class of distribution functions
that can be “computed” by a random walk on an edge-labelled graph (this can also be thought
of as a finite-state automaton driven by a sequence of random bits). They called such a graph a
finite-state gemerator, or f.s.g.

Formally, an f.s.g. is a finite directed graph whose vertices are called states, with one designated
state called the initial state. Some of the edges in the graph are labelled with output strings,
which are finite binary strings. The output of the f.s.g. is the random sequence of bits ajasas...
obtained by performing a simple random walk on its states, starting from the initial state, and
writing down sequentially the output strings that are encountered along the way. We identify the
output with the real-valued random variable 0 < X < 1 whose binary expansion is the output
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A distribution function F(z) supported on [0,1] (that is, F(0—) = 0 and F'(1) = 1) is called
computable by an f.s.g., or just computable, if it can be realized as the distribution function of
a random variable X generated by an f.s.g.

A natural question is to identify all computable distribution functions. Clearly there is a
countable number of such functions, so the class of computable distribution functions is rather
small. However, since the set of such distributions contains many Cantor-like distributions, and
other singular distributions which do not have a simple description, one soon realizes that this
question is (probably) too general to possess a meaningful answer.

On the other hand, if the discussion is limited to “nice” distributions, e.g. piecewise smooth
distribution functions, then a beautiful algebraic connection is revealed. Knuth and Yao showed
that if F' is a computable distribution function, and F' is real-analytic in an interval (a,b) C [0, 1]
then it must be a polynomial with rational coefficients there. (Theorem 2 below shows that
it is enough to require that F' be smooth in (a,b).) They constructed a family of polynomial
distribution functions which are computable, but left open the question ([3], question (v) on page
427) of precisely which polynomials are distribution functions that can be computed by an f.s.g.
The question was raised again by Yao [5], who gave some necessary conditions.

The purpose of this paper is to show that Yao’s necessary conditions are sufficient. Our main
result is

Theorem 1. A polynomial Q(z) which is monotone increasing on [0,1] and satisfies Q(0) =
0,Q(1) = 1, can be realized as the distribution function of a random variable that is generated
by an f.s.g., if and only if

1. Q(z) has rational coefficients;

2. Q'(z) has no irrational roots in [0, 1].

We prove two additional results. The next theorem further substantiates Knuth and Yao’s
claim that polynomials form the main class of interesting computable distribution functions, by
showing that if a computable distribution function is smooth, then it is a polynomial. This
strengthens Theorem 7.4 of [3], which shows the same for analytic computable distribution func-
tions.

Theorem 2. Let F be a computable distribution function. If F' is infinitely differentiable on
an interval (a,b) C [0,1], then F' is a polynomial there.

The last theorem investigates some structural properties of f.s.g.’s that compute non-smooth
distributions. Recall that any distribution function F' can be decomposed into a mixture

F=MFpe+(1—NFg, 0<A<I1 (1)

of an absolutely continuous distribution function F,. and a singular distribution function Fj,g
(for the purpose of this paper we include the atomic part of F' in Fyng — see also the comment
in Section 5). A is determined uniquely, and if 0 < A < 1, namely if F' is not purely singular or
absolutely continuous, then F,. and Fy;,g are also determined uniquely (otherwise, one of them is
trivially not).



Theorem 3. Let F(z) be a computable distribution function, let F' = AF,c + (1 — ) Fying be
the decomposition of F' as in (1), and assume that 0 < A < 1. Then A is rational, and F,. and
Fing are both computable.

In the proof of Theorem 3 it is shown that essentially, the contributions to the absolutely
continuous and singular parts, respectively, come from different parts of the f.s.g. which do not
interact.

Remarks. The above definition of an f.s.g. is a slight variation on those of [3, 5], but is easily
seen to be equivalent, in the sense that the class of computable distribution functions is the same.
In [3, 5] it was required that the outdegree of each vertex in the graph be 2 (this restriction is
natural when an f.s.g. is interpreted as a coin-tossing automaton). In Section 3 below, we use
another equivalent variation on the f.s.g. model.

Our paper was inspired by the recent work of Mossel and Peres [4], which deals with questions
somewhat similar to ours. Mossel and Peres characterize the class of functions f : (0,1) — (0,1)
for which there exists a finite state automaton whose input is a sequence of random bits with
bias p and whose output is a single random bit with bias f(p). Those functions are precisely the
rational functions of p with rational coefficients.

Structure of the paper. In the next section we prove Theorem 1. The “only if” part was
already proved in [3] and [5]. For the “if” part, we rely essentially on Knuth and Yao’s construction
involving the order statistics of uniform random variables. It is amusing that order statistics
should play a distinguished role in this problem, and that in fact by taking scalings and rational
mixtures of polynomials constructed using order statistics one obtains the most general class of
constructible polynomials.

In section 3 we prove Theorem 3. In section 4 we prove Theorem 2. In section 5 we give an
example of a computable distribution function which is absolutely continuous but whose density
is everywhere locally unbounded, and discuss related open problems.

2. Proof of Theorem 1

It will be convenient, in the proof of Theorem 1, to deal with density functions rather than
cumulative distribution functions. Let D be the set of piecewise polynomial density functions
on [0,1]. Let C be those elements g(z) € D such that the corresponding cumulative distribution
function Q(z) = [ q(t)dt is computable. The elements of C are called computable (piecewise
polynomial) densities.

The following theorem summarizes Knuth and Yao’s constructions of computable densities:

Theorem 4. [3] (i) If 0 < a < b < 1 are rational, then the uniform density on [a,b] is
computable.
(ii) If 0 < a < b < 1 are rational, then the density
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of the (k + 1)’th order statistic of n + 1 independent random variables distributed uniformly on
[a, b], is computable.

(iii) If f1, f2, ..., fn are computable densities, then any rational mixture of the form f = Y7 | a; f;
where 0 < a; € Q, Y, a; = 1, is also computable.

Let g € D be a polynomial density function such that Q(z) = [; ¢(t)dt satisfies the conditions
of Theorem 1. In terms of ¢, this simply means that ¢ has rational coefficients, and no irrational
roots in [0, 1]. Our aim is to show that ¢ is computable. Let 0 =rg < r; <rmo < ... <711 <71 =1
be the roots of ¢ in [0, 1], together with 0 and 1 if they are not roots. In view of Theorem 4(iii),
it is enough to show that each of the densities
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(the density ¢ conditioned on the interval [r;,r;11]) is computable. This is because ¢ is then a
mixture of the g; with rational coefficients.

Now fix 4, 0 < i < k— 1. ¢; is a density that is 0 outside the interval [r;,7j+1]. Inside this
interval ¢; has the form

gi(z) = c(z —13) (riz1 — x)'h(x), (2)
where ¢ € QN (0,00), j,I >0, and h(z) is a polynomial with rational coefficients that is strictly
positive on [r;,r;+1], and integrates to 1 there. Our claim now relies on the following

Proposition 1. h(z) can be expressed as a rational mixture (a convex combination with rational
coefficients) of polynomials which have the form

(@ = 1) (2 — t2)2een(& — tie1)"™ 1 (— + )" 3)

for some rational r; < t; < ty < ... <ty < 71341, and which integrate to 1 on [r;,r;41] — the
constant ¢ takes care of this, and is therefore necessarily rational. The powers v1,vo, ..., vy, above
must be even, with the exception that if t; = r; then v; can be odd, and if ,,, = 741, vy, can be
odd (this is why the last term in (3) is written differently than the other terms).

Proposition 1 implies our claim that ¢; is computable. To see this, let f be a polynomial
density on [r;,r;+1] which has the form (3) (note that not only A, but also ¢; is a mixture of
such polynomials, by (2)). We prove that f is computable by showing that its restriction to each
subinterval [t;,%;41] (normalized to have integral 1) is a computable density. On [t;,t;11], write
f as

fl@) =cl(@—t) + @t —t)]" [(z = tj) + (t; — t2)]”...(z — t;)"7-

(11— ) (41 — 2) + (G2 — 8097 [ — 2) + (B — i40)]"

Now expand out the products, observing that t;—t,, t;—1o, ..., t;—t; 1, tj12—tj11, ..., ty,—1j41 are
all positive rational numbers. This gives a representation of f as a rational mixture of polynomials
proportional to (z —t;)®(tj+1 — z)?, hence by Theorem 4(ii),(iii), the restriction of f to [t;,%;+1]
is computable.



Our goal is now to prove Proposition 1. We start by discussing how a non-negative polynomial
density on an interval can be represented as a convex combination of polynomial densities which
are not necessarily rational:

Lemma 1. Let Cpla,b] be the closed convex set of non-negative polynomials of degree at most
n on an interval [a, b] that integrate to 1 there. Then C),[a,b] is a compact set, and its extreme
points are precisely the polynomials in Cy[a,b] of degree exactly n which have the form (3) for
some a < t] < tg < ... <ty < b and positive even vy, v, ..., Uy, (again, with the exception that if
t1 = a, v1 can be odd, and if ¢,,, = b, v,,, can be odd).

As was indicated to us by a referee, a proof of Lemma 1 appears in the 1953 paper [1] by
Karlin and Shapley (Theorem 9.2, page 28). We include the proof here for completeness.

Proof. Recall that a bounded closed set within a finite-dimensional normed space is compact.
The space of n-degree polynomials is finite dimensional, and it can be equipped with the norm
defined by ||f|| = f; |f(z)|dz. The set Cyla,b] is bounded with respect to this norm (all of its
elements have norm 1), and it is obviously closed, hence it is compact.

Now let f € Cy[a,b] be a polynomial of degree n with all n roots (counting multiplicities) in the
interval [a, b] (the evenness of the multiplicities is automatic from the non-negativity requirement),
and suppose f = ag + (1 — a)h, where g,h € Cyla,b], and 0 < a < 1. From positivity we have
that wherever f vanishes, g and A must also vanish with at least the same order, so they share
the same n roots as f and are therefore equal to it, since they are both of degree at most n and
integrate to 1. Thus f is an extreme point of Cy[a, b].

Conversely, if f € C),[a, b] does not have n roots in the interval [a, b], then it can be represented
as

f(z) =clx —t1)" (x — t2)%...(—z + t)"™ - g(z) =: w(zx) - g(z),
where a <t <ty < ... <ty < b, the sum of the multiplicities degw = ), v; is strictly less than
n, the constant ¢ > 0 is chosen so that g € Cy[a,b], and g has no roots in [a,b]. Now, either of
two cases must hold: if g is a constant, then deg f = degw < n, and then

flz) = (/b Z:Zf(ﬂdt) ((/b Z:Zf(t)dt>_l ‘;:Zf(x)>
+ (/b g_;;f(t)dt) ((/” ::Zf(t)dt>1 Z:zf(x)>

represents f as a convex combination of two unequal polynomials in C),[a, b]. Otherwise, degg > 1,
in which case, letting € = ming¢(,4) g(7), the equation
fe) = (Li’w(rf)(g(t) - e)dt> __w(@)(g(=) ~ )
2 J2 w(®)(g(t) - e)dt
. (ffw(t)(g(t) + e)dt) _w(a)(g(z) +e)
2 S w(t)(g() +
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represents f as a convex combination of two polynomials in Cy[a,b] which (because degg > 1)
are not equal. Therefore f is not an extreme point of Cy[a, b]. ]

Proof of Proposition 1. First, note that it is enough to show that h(z) can be expressed as a
mixture of polynomials of the form (3), without insisting on a rational mixture: this is since for
a linear system of equations with rational coefficients, the set of rational solutions is dense in the
set of real solutions.

Now, the idea of the proof is to first use Lemma 1 to represent h(z) as a convex combination
of polynomials of the form (3), with r; < ¢; < t3 < ... < t;, < 1341 not necessarily rational. The
t;’s are then slightly perturbed to make them rational.

Proposition 1 follows from the three lemmas below as follows. First, note that since h(z) has
no roots, it is actually an interior point of Cy[r;, 7i+1], where n = deg h (we consider Cy[r;, 7i+1]
as a subset of the affine vector space of polynomials of degree at most n that integrate to 1 on
[ri,7i+1]).- By Lemma 2, this implies that h(z) is also in the interior of the convex hull of some
finite set P of polynomials of the form (3). According to Lemma 3 the polynomials in P may
be perturbed slightly while maintaining A(z) in the interior of their convex hull. Finally, Lemma
4 implies that these perturbations can be chosen so that the roots of the polynomials become
rational.

Lemma 2. For a set B, denote by B° the interior of B. Let K be a compact convex body in a
finite-dimensional vector space V', and let n = dim(V'). Then for every interior point z € K° there
exists extreme points y1, . .., ymy of K, such that x € Conv°(y1, ..., Ym ). The number of points, m,
is at most 2n.

Lemma 3. Let z,y1,...,y, be points in a finite-dimensional vector space V. Suppose that
x € Conv°(y1,..,yn). Then there exists a neighborhood U of 0 € V' with the following property.
If z1,...,2, € V satisfy z; — y; € U for all 4, then = € Conv®(zy, .., z,)-

Lemma 4. The set of extreme points in C),[r;,7;41] all of whose roots are rational is dense in
the set of extreme points of Cy[r;,r;+1] (with the obvious topology).

Lemmas 3 and 4 are obvious, hence we only prove Lemma 2. Note that the bound 2n on the
number of required extreme points in Lemma 2 is tight, as can be seen by taking x = 0 and
K = Conv(tey,...,xep).

Proof of Lemma 2. Assume that K° # (), so that there will be something to prove. Without
loss of generality, assume that £ = 0. We choose a basis yi,...,y, for V whose elements are
extreme points of K, as follows.

Take y; to be any extreme point of K (y; # 0). Having chosen yi,...,y; for i < n, we
set H; = span(yi,...,y;). Since K contains a neighborhood of 0, it cannot be contained in H;.
Therefore there exists an extreme point ;11 of K, satisfying ;11 ¢ H; (for example, there exists
an extreme point maximizing the convex function dist(-, H;), where dist is computed according to



some norm on V. Recall that a convex function defined on a closed convex body always attains
its maximum on some extreme point). This process obviously yields a basis for V.

Take z to be the intersection of the boundary of K with the ray {t-(—y1 —y2—...—yn) : t > 0}.
Obviously, the convex hull of yi, ..., y,, z contains a neighborhood of 0. Now let H, be an affine
hyperplane supporting K at z. The intersection of K with H, is a convex body in a vector space
of dimension < n—1, and therefore by Carathéodory’s theorem (see [2]) z is a convex combination
of at most n extreme points yp11,...,Yn in it. Since these are also extreme points of K, and
since obviously Conv(y1,-..,Yn,2) C Conv(yi,...,Ym), the proof is complete. [

3. Proof of Theorem 3

In the next two sections, we modify slightly our model of finite state generators to an equivalent
model. In the modified model, the outgoing edges are labelled with transition probabilities, which
are arbitrary rational numbers in (0,1] (and which sum to 1 for any given state). The random
walk which is performed is then a weighted random walk with these transition probabilities. We
also require every edge to be labelled with a single output bit.

The equivalence of the two models is simple, and was noted in [3], p. 421-422.

Let S be the set of states of such a modified f.s.g. An alternative description of the f.s.g. is in
terms of the matrix of transition probabilities, which we denote by

A= (ps—>s')s,s’€S

A is a Markov transition matrix with rational entries, and is decomposed as the sum of two
sub-stochastic matrices with rational entries

A=Ay + Ay

where Ay has non-zero entries for those edges whose output label is “0”, and A; has non-zero
entries for those edges with output label “1”. Specifying the f.s.g. is equivalent to specifying the
matrices Ay, A; and the initial state sg.

Let F = AF,c + (1 — A\)Fing be as in Theorem 3, and suppose that S is the set of states of
a given f.s.g. that computes F', with initial state syp € S. For any state s € S, let F® be the
distribution function generated by the same f.s.g. with the initial state replaced by s. Thus,
F = F* . Thinking of the F'* as measures on [0, 1], we denote for any Borel subset B C [0, 1]

F(B) = /B dF (z)

A state s € S is said to be of absolutely continuous (a.c.) type, if F** is an absolutely continuous
measure. Call s of singular type (or just singular) if F* is a singular measure. Call s pure if it is
either absolutely continuous or singular.

Lemma 5. 1. If s € S is pure, and s’ € S is a state such that there exists a path in the graph
of the f.s.g. leading from s to s, then s’ is pure and of the same type as s.

2. If the graph of the f.s.g. is strongly connected (namely there is a path from any state to any
other state), then all the states are pure (and are therefore of the same type by part 1).



Proof. Let y = (F?®)ses be the vector-valued measure whose coordinates are the measures F'*.
The definition of the f.s.g. and the measures F* can be translated into the following system of
equations satisfied by u: For any Borel subset B C [0,1] and any state s € S,

F(B) = Y pose Y 2BOI0,1) + 3 peseF¥ (2B — 1) N[0, 1),
0 1
s—rs! s—rs!

with s = s’ meaning that s has an outgoing edge to s, labelled by the output bit . In matrix
notation, this can be written as

w(B) = Aop(2B 1 [0,1]) + Ayu((2B — 1) N[0, 1) (4)

where p is thought of as a column vector.
Now let s be an a.c. state, and let s’ be a state such that s = s, with « being either 0 or 1.
Then for any Borel set B C [0, 1] which has Lebesgue measure 0, we have

0=F((B+0)/2) > pesyF* (B) (5)

Therefore F*' is also a.c. Similarly, if s is singular, then, taking C C [0,1] a set of Lebesgue
measure 0 such that F*(C) =1, and B =[0,1]\ (2C — ), again (5) holds. This proves that s’ is
singular.

For part 2 of the Lemma, observe first that (4) uniquely determines a vector u = (F*)scs
of probability measures on [0, 1] — this is equivalent to saying that the output of the f.s.g. is a
well-defined random variable. Now, for any state s € S, let F'* = X(s)Fy, + (1 — A(s))Fgp, be
the decomposition of F'* into a mixture of an a.c. probability measure and a singular probability
measure. We claim that, when the graph of the f.s.g. is strongly connected, the coefficients A(s)
in these decompositions are all equal. This is because, by (4), A(s) is a harmonic function on this
(finite) graph and is therefore constant (take as the subset B in (4) the union of the supports of
all the measures F ).

sin,

So if 0 < A = A(s) < 1 then we have shown that
= AMlac + (1 - )\),U/sing

where fi,c and piging are vector-valued measures each coordinate of which is a probability measure.
But then, both pac and pging are easily seen to be solutions of (4), and therefore we have found
two different (in fact, mutually singular) solutions to (4), in contradiction to the fact that (4) has
exactly one solution. Therefore A must be 0 or 1, and all the states are pure. [ |

Corollary. X = A(sp) is rational, and F29, Fssiflg are computable.

Proof. The states of the f.s.g. decompose into strongly connected components. Call a strongly
connected component terminal, if it has no edges going out to other strongly connected compo-
nents. Clearly, with probability one the random walk on the states must end up in a terminal
component. Looking at a terminal component as a sub-f.s.g., Lemma 5 implies that its states



must be pure, since the measures F; for the sub-f.s.g. are the same as for the original one. Call
a strongly connected component with pure states either a.c. or singular, according to the type of
its states.

The above discussion leads to an identification of the mixture coefficient A(sg): it is simply the
probability that the random walk eventually ends up in one of the a.c. terminal components. This
probability is clearly rational, as it can be represented as the solution of a (well-posed) system
of linear equations with rational coefficients. From the discussion it is also easy to see how to
build an f.s.g. that computes F,.: simply delete any edges going into singular components, and
renormalize the transition probabilities so that the sum of the probabilities of outgoing edges for
any state is 1. (In other words, the new f.s.g. is the old f.s.g. conditioned never to go into a
singular component.) A similar construction replacing the words “singular” and “a.c.” computes
Fsing- u

4. Proof of Theorem 2.

Let F be a distribution function, computable by a given f.s.g. with state set S and initial state sg,
which is infinitely differentiable on an interval (a,b) C [0,1]. Let = € (a,b) be a dyadic number,
i.e. of the form z = k/2™ for some integers m > 1,0 < k < 2™. For every n > m, we shall apply
(4) n times repeatedly starting with the set

1
B = |:$,£C+2—n:|

Some notation will help: If the binary expansion of z is z = 0.ajs...a, (the last n — m digits
are 0), and for o € {0,1} we denote by T, the set operation

T.(C) =2C — q, C c0,1]
then applying (4) successively gives the vector equation string
p(B) = A p(Te,(B)) = Aoy Aasi(Ta, © To, (B)) = ...
= AupAnyAa, 1 Aa, (T, © ... 0 Ty, (B))
= (Aa1Aa2---Aam—1Aam)(Aam+1 iAoy, ) (10, 1])
= (Aa1Aas--Aa,, 1Acn)Ay "1([0,1]) = Az Ay~ " p([0,1]) = Az Ay~ ™1,

Here, 1 is the vector of all ones (1);cs, and A; is, as above, the matrix with rational entries
obtained by multiplying Ay’s and A;’s corresponding to the m bits in the binary expansion of x.
Taking the sp-th coordinate in the above equation we obtain

F(B)=F (w + 2%) — F(z) =1 A, A ™1 (6)

where 1, is the state vector all of whose coordinates are 0 except the sgp-th coordinate, which is
1. Now observe that, since F' is infinitely differentiable at z, then for any j the left-hand side of
(6) has the asymptotic expansion as n — oo

1 o 1 F'(z) 1 FO(z) 1 1
F(m—l—z—n)—F(m)—F(x)z—n—i— 5 -2Tn+...+ 7 -2J—.n+0 2GTm




For the right-hand side, on the other hand, we can write down a complete expansion in terms of
the eigenvalues A1, Ao, ..., \; of the matrix Ag: clearly it must be of the form

!
> cidpai(n)
i=1

for some constants ¢; and polynomials py, (t) derived from z, the matrices A;, Ag and the vectors
15,,1 (the polynomials py, appear when A is not diagonalizable).

Equating the two expansions as n — 0o, we conclude the following.

Lemma 6. At any dyadic z € (a,b), F' can have at most |S| nonzero derivatives.

The proof of Theorem 2 will be complete once we prove the following simple lemma;

Lemma 7. Let F be an infinitely differentiable function on an interval (a, b), and let D C (a,b)
be a dense subset, such that in every point x € D, F has at most [ nonzero derivatives. Then F'
is a polynomial on (a,b) of degree at most I.

Proof. Suppose for the sake of contradiction that F' is not a polynomial of degree at most I.
Then there exists a point = € (a,b) where its (I + 1)’th derivative is nonzero. By continuity, there
exists a subsegment (a;+1,b;41) C (a,b) where the (I + 1)’th derivative of F is nonzero.

The I’th derivative is strictly monotone on (a;11,b;41), and hence it crosses zero at most once.
Hence there is a subsegment (a;, b;) C (a1, b;11) where both the I’th derivative and the (I+1)’th
derivative are nonzero. Continuing by induction one obtains an interval (a1, b;) C (a,b) where all
derivatives up to order (I + 1) are non-zero. This is a contradiction to the assumption that F' has
at most [ nonzero derivatives in every point of D (since DN (a1,b1) # 0). ]

5. Open problems

Several natural questions arise from the paper:

1. Our proof of Theorem 1, which is presented in a somewhat abstract form, can easily be
translated into an algorithm for constructing an f.s.g. that computes a given polynomial
distribution function F. The resulting algorithm, however, seems to generate extremely
large f.s.g.’s, as a function of the degree of the given polynomial and the denominators of
its coefficients.

It is interesting to determine the complexity class of finding the smallest f.s.g. that computes
a given polynomial. Another interesting question is to give a sharp bound on the number
of states required to compute a polynomial of given parameters.

2. One may consider the same questions that are discussed here, in the case of pushdown
automata. Partial results in this direction are given in [5].
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3. It may be of interest to investigate the computable distribution functions among the ab-
solutely continuous (and not necessarily smooth) distributions. This class contains some
peculiar specimens, such as the distribution computed by the f.s.g. in Figure 1 below. This
distribution is absolutely continuous, yet its density function is nowhere locally bounded.

“07/0.4  “0"/0.99 “0” /0.5

OINONRO

/0.2 Q “/0.01 _ Q

) )

“17 /0.4 “17/0.5

Figure 1: An f.s.g. generating a nowhere bounded density

4. A sufficient condition for the distribution function F' computed by a given f.s.g. to be a.c.,
is that any terminal component of the graph (considered as a sub-f.s.g.), outputs a uniform
distribution on [0, 1] starting from any of its states. Is this condition necessary?

5. Characterize all the atomic computable distributions.
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