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Abstract. We observe returns of a simple random walk on a finite graph to
a fixed node, and would like to infer properties of the graph, in particular
properties of the spectrum of the transition matrix. This is not possible in
general, but at least the set of eigenvalues can be recovered under fairly general
conditions, e.g. when the graph has a node-transitive automorphism group.
The main result is that by observing polynomially many returns, it is possible
to estimate the spectral gap of such a graph up to a constant factor.

1. Introduction

A spelunker has an accident in the cave. His lamp goes out, he cannot move, all
he can hear is a bat flying by every now and then on its random flight around the
cave. What can he learn about the shape of the cave?

In other words: What can we learn about the structure of a finite graph using
only information obtained by observing the returns of a random walk on the graph
to this node?

Let G = (V, E) be a connected simple graph with n = |V | > 1 vertices, and let
r ∈ V be a fixed node. Let w0 = r, w1, w2, . . . be the steps of a simple random walk
on G starting from r. Assume that we observe the return time sequence, the infinite
sequence of (random) times 0 < T1 < T2 < . . . when the walk visits r. Alternatively
this can be described as a sequence a1, a2, a3, ... of bits, where ai = 1 if the walk is
at r at time i, 0 otherwise. Note that T2 −T1, T3 −T2, . . . are independent samples
from the same distribution as T1, which we call the return distribution of G to r.

We say that a parameter p(G, r) of the graph G and root r can be reconstructed
(from the return time sequence), if for every two rooted graphs (G, r) and (G′, r′)
for which the return time sequence has the same distribution, we have p(G, r) =
p(G′, r′).

Which graph parameters can be reconstructed from the return time sequence?
There is a trivial way to construct different graphs with the same return sequence:
take two isomorphic copies and glue them together at the root. Sometimes it makes
sense to assume that we also know the degree d(r) of the root. In this case, we can
reconstruct the number of edges through

|E| = d(r)E(T1)/2. (1)

If the graph is regular, then we can reconstruct the number of nodes:

n = |V | = E(T1). (2)

Another trivial example is to observe if all the numbers Ti are even. This is so
if the graph is bipartite, and it happens with probability 0 otherwise.
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A natural candidate for a reconstructible quantity is the spectrum of the transi-
tion matrix M of the random walk on G. Let λ1 = 1, λ2, ..., λn be the eigenvalues
of M , arranged in decreasing order. Bipartiteness is equivalent to saying that
λn = −1.

We are going to show by a simple example that the spectrum is not recon-
structible in general. On the other hand, we show that if λ is an eigenvalue of G
which has an eigenvector v ∈ R

V such that vr 6= 0, then λ is reconstructible. We
note that the multiplicity of λ is not necessarily reconstructible.

A special case where the eigenvector condition above is satisfied for all eigenvalues
is when G is node-transitive. We don’t know whether in this case the multiplicities
are reconstructible.

Of particular interest is the issue of efficient reconstruction, by which we mean
observing a polynomial (or expected polynomial) number of returns. We consider
this question in the case of the spectral gap τ = 1−λ2. Assuming the graph is node
transitive, we describe a procedure to estimate τ up to a constant factor, using just
polynomially many (in n) of the first values of the Ti. We give an example of a
graph where the spectral gap cannot be recovered at all from observations made at
one particular node.

This question was first mentioned, together with other related problems, in [3].
Another related work is that of Feige [4] which presents a randomized space-efficient
algorithm that determines whether a graph is connected. His method uses return
times of random walks to estimate the size of connected components.

2. Examples

Example 1. Consider the two trees in Figure 1. The distribution of the return time
to the root is the same in both trees (see later). The eigenvalues of the tree on the
left are

1,
√

3/2,
√

6/4, 0, 0, 0, 0, 0,−
√

6/4,−
√

3/2,−1,

while the eigenvalues of the tree on the right are

1,
√

3/2,
√

3/2,
√

6/4, 0, 0, 0,−
√

6/4,−
√

3/2,−
√

3/2,−1.

Note that the eigenvalues are the same, but their multiplicities are different.

G1 G2

hG1
(x) = hG2

(x) =
1 + h(x)

1 + (1 − x)h(x)
, where h(x) =

12− 3x

4 − 3x

Figure 1. Two trees with the same return times but different spectra
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Example 2. Let T be a tree in which all internal nodes have degree d+1 and which
has a “root” r such that all leaves are at distance h from the root. We construct a
graph G by adding a d-regular graph on the leaves.

For a fixed h and d, all graphs obtained this way are (d +1)-regular graphs, and
the distribution of the return time to the root is the same in all such graphs. On
the other hand, graphs obtained this way can have very different properties. If we
add an expander on the leaves, the graph G will be an expander. (Recall that G is
a c-expander iff |∂S| > c|S| for every non empty set of vertices S with |S| < |G|/2.
For background on expanders and spectral gap see e.g. [5].) If we connect “twin”
leaves to each other, and also match up “cousins” to get d new edges at each node,
then for h > 2 the root will be a cutpoint. For expanders, the eigenvalue gap
λ1 − λ2 is bounded from below by a positive function of d, while for the graphs
with cutpoints in the middle the eigenvalue gap tends to 0 as h → ∞.

3. Preparation: some algebra and generating functions

3.1. Return probabilities and eigenvalues. Denote by Pk(x, y) the probability
that a simple random walk on G starting at x ∈ V will be at y ∈ V at time k.
Clearly

Pk(x, y) = eT

xMkey. (3)

Here M , the transition matrix of the random walk on G, is not symmetric, but we
can consider the symmetrized matrix N = DMD−1, where D is a diagonal matrix
with the positive numbers

√

d(i) in the diagonal. The matrix N has the same
eigenvalues as M , and so we have

Pk(r, r) =

n
∑

i=1

fi(r)
2λk

i , (4)

where f1, f2, ..., fn is an orthonormal basis of eigenfunctions of N corresponding to
the eigenvalues λ1, λ2, ..., λn.

We note that if the graph is node-transitive, then the value Pk(r, r) is the same
for all r, and hence by averaging (4) we get the simpler formula

Pk(r, r) =
1

n
trace(Mk) =

1

n

n
∑

i=1

λk
i . (5)

At some point, it will be convenient to consider the lazy version of our chain,
i.e., the Markov chain with transition matrix M ′ = (1/2)(I + M) (before doing a
step, we flip a coin to decide if we want to move at all). The observer can easily
pretend that he or she is watching the lazy version of the chain: after each step,
he flips a coin in quick succession until he tosses a head, and advances his watch
by the number of coinflips. The distribution after k lazy steps is easy to compute
from (3):

P ′
k(x, y) = 2−keT

x(I + M)key = 2−k
k
∑

j=0

(

k

j

)

eT

xM jey = 2−k
k
∑

j=0

(

k

j

)

Pj(x, y). (6)

The main advantage of the lazy chain is that its eigenvalues are nonnegative.
Furthermore, for a lazy chain we have

λ2 + · · · + λn = trace(M) − 1 =
n

2
− 1.
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3.2. The generating function of return times. Let us introduce the generating
function

F (t) =
∞
∑

k=0

Pk(r, r)tk =
n
∑

i=1

fi(r)
2 1

1 − tλi
. (7)

There are several other useful expressions for F (t); for example, we get from (3)
that

F (t) = eT

r (I − tM)−1er,

and expressing this in terms of determinants, we get

F (t) =
det(I ′ − tM ′)

det(I − tM)
, (8)

where M ′ is the matrix obtained from M by deleting the row and column corre-
sponding to the root, and I ′ is the (n − 1) × (n − 1) identity matrix.

It will be convenient to do a little algebraic manipulation. The reciprocal of this
function is also an interesting generating function:

1

F (t)
= 1 −

∞
∑

k=1

sktk, (9)

where sk = P(T1 = k) is the probability that the first return to the root occurs at
the k-th step. This function has a zero at t = 1, so it makes sense to divide by
1 − t, to get the analytic function

1

(1 − t)F (t)
=

∞
∑

k=0

zktk, (10)

where

zk = 1 −
∑

j≤k

sk =
∑

j>k

sk

is the probability that the random walk does not return to the root during the first
k steps.

4. Reconstructing nondegenerate eigenvalues

It is these formulas which form the basis of learning about the spectrum of
G from the visiting times of the random walk at x, since Pk(r, r) is determined
by the distribution of return times, and can be easily estimated from the visiting
times (see section 6). We call an eigenvalue of M nondegenerate if at least one
of the corresponding eigenfunctions fi(x) satisfies fi(r) 6= 0. One can see from
(4) that the nonzero nondegenerate eigenvalues are determined by the distribution
of return times. Using

∑n
i=1 fi(r)

2 = 1 for the orthonormal basis fi we conclude
that whether zero is a nondegenerate eigenvalue of M is also determined. The
return time distribution determines F (t) and this can also be used to find the
nondegenerate eigenvalues: the poles of F (t) are exactly the reciprocals of the
nonzero, nondegenerate eigenvalues of M . Zero is a nondegenerate eigenvalue if
and only if limt→∞ F (t) > 0. Then we get

Proposition 1. If two rooted graphs have the same return time distribution, then
they have the same nondegenerate eigenvalues.
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Let us remark that if G has a node-transitive automorphism group, then every
eigenvalue of M is nondegenerate. Indeed, every eigenvalue has an eigenvector,
which does not vanish at some node; by node-transitivity, it also has an eigenvector
that does not vanish at the root.

Let us also remark that the multiplicity of a nondegenerate eigenvalue is not
uniquely determined: 0 is a nondegenerate eigenvalue of both trees in Example
1, but it has different multiplicities in the two. Furthermore, degenerate eigen-
values are not determined by the return times: the second largest eigenvalues of
the transition matrices of the two (d + 1)-regular graphs constructed in Example 2
are different. It follows from Proposition 1 that at least for the second graph, the
second largest eigenvalue is degenerate.

5. Trees

We want to put Example 1 in broader context. For trees, we can simplify the
generating function a bit: Since trees are bipartite, we have z2k = z2k+1, and hence
it makes sense to divide by t + 1 and then substitute x = t2. It will be convenient
to scale by the degree of the root, and to work with the function

hG(x) = d(r)

∞
∑

k=0

z2kxk =
d(r)

(1 − x)F (
√

x)
. (11)

It is easy to see that we did not lose any information here: we have hG1
(x) = hG2

(x)
for two trees G1 and G2 if and only if they have the same return time distribution
and their roots have the same degree.

For a rooted tree with a single edge, hG(x) = 1. If a rooted tree G is obtained
by gluing together the roots of two rooted trees G1 and G2, then

hG(x) = hG1
(x) + hG2

(x). (12)

This is easily seen by conditioning on which tree the random walk starts in. Fur-
thermore, if we attach a new leaf r′ to the root r of a tree G and make this the
root to get a new rooted tree G′, then

hG′(x) =
1 + hG(x)

1 + (1 − x)hG(x)
. (13)

To see this, consider a walk on G′ starting at r′, and the probability z′
2k that it does

not return to r′ in the first 2k steps. Let z2k denote the corresponding probability
in the random walk in G starting from r. Let d be the degree of r in G. The first
step of the random walk in G′ leads to r. If the walk does not return to r′ for 2k
steps for some k ≥ 1, then the second step has to use a different edge, this happens
with probability d/(d+1). We can view the walk now as a random walk on G until
it returns to r. The probability that this happens after 2j steps is z2j−2 − z2j . If
j ≥ k then the walk will certainly not return to r′ in the first 2k steps. If j < k,
then we can think of the situation as just having made a step from r′, and so the
probability that we don’t return to r′ in the next 2k−2j−1 steps is z′

2k−2j . Hence
we get the equation

z′2k =
d(r)

d(r) + 1



z2k−2 +

k−1
∑

j=1

(z2j−2 − z2j)z
′
2k−2j



 .

Multiplying by xk and summing over all k ≥ 0, we get (13).
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Formulas (12) and (13) imply that hG is a rational function with integral coeffi-
cients. They also provide us with a fast way to compute hG, and through this, to
verify that the two trees in Example 1 have the same return distribution. But we
can get more, a way to generate many such pairs.

Suppose that we find a linear dependence between functions hG for various trees
G. This can be written as

a1hG1
+ · · · + akhGk

= b1hG′

1
+ · · · + bmhG′

m

with some positive integers a1, . . . , ak, b1, . . . , bm. Now if we glue together the roots
of a1 copies of G1, . . . , ak copies of Gk to get G, and the roots of b1 copies of G′

1,
. . . , bm copies of G′

m to get G′, then by (12) we’ll have

hG(x) = hG′(x).

We can add a new root to both if we prefer to have an example rooted at a leaf.
Obviously, we only need to look for trees rooted at leaves. To find such linear

dependencies, it is natural to find trees for which hG(x) is “simple”, namely the
ratio of two linear functions, and then find three with a common denominator. A
general example is a tree G = Ga,b of height 3, where the neighbor of the root has
degree a and has a − 1 neighbors of degree b. We can allow the degenerate cases
b = 1 (when G is a star rooted at a leaf) and a = 1 (when G is a single edge). It is
easy to compute that

hG(x) =
ab − (b − 1)x

ab − (ab − 1)x
.

So if we fix a k which is not a prime, and consider trees G = Ga,b with ab = k,
they all have the same denominator k− (k−1)x, and so for any three of them their
functions hG will be linearly dependent. The simplest choice is k = 4, when we get
the trees G1,4 (a single edge), G2,2 (a path of length 3) and G4,1 (a 4-star). Simple
computation shows that

hG1,4
− 3hG2,2

+ 2hG4,1
= 0.

Gluing these together as described above, and adding a new root for good measure,
gives the two trees in Example 1.

Using (8) and (11), it is not hard to see that the roots of the numerator of hG(x)
are the squared reciprocals of the nondegenerate non zero eigenvalues of G, except
for the trivial nondegenerate eigenvalues ±1. The multiplicities, as we have seen,
are not necessarily determined by hG.

Remark. In the special trees constructed above, the squareroots of the root of the
denominator are exactly the degenerate eigenvalues of G. We don’t know if this
is always so. An interesting open question seems to be whether the degenerate
eigenvalues are reconstructible for trees. Several other questions concerning the
functions hG(x) arise: Are the trees above the only trees for which hG has linear
numerator and denominator? Are there interesting trees for which hG(x) is the ratio
of quadratic polynomials? What can be said about hG(x) for trees of depth 4?
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6. Effective reconstruction

In the previous section, we assumed that the exact distribution of the return
time is known, which is the same as saying that we can observe the random walk
forever. In this section we are concerned with determining quantities after observing
a polynomial number of returns.

6.1. Estimating return probabilities. We show that we can estimate Pk(r, r),
the probability that the random walk starting from r is at r at time k, from the
observation of polynomially many return times. Fix k and observe the returns
T1, T2, . . . until the first Ti1 with Ti1 ≥ k; call this period an experiment. Call the
experiment successful if Ti1 = k. The probability that an experiment is successful
is Pk(r, r). Note that observing the next k steps and then until the first return
(i.e., Ti1+1, . . . , Ti2 with the smallest i2 such that Ti2 ≥ Ti1 + k) is an independent
experiment.

Continuing in this way, we obtain a sequence of independent events A1, A2, ...
with the same probability p = Pk(r, r), and we want to estimate p. Let ε, δ be given
positive numbers, and set m = ε−2δ−1. By Chebyshev’s inequality, after observing
m of these events, the relative frequency of their occurrence is closer than ε to its
mean, p, with probability at least

1 − p(1 − p)

mε2
> 1 − δ.

The amount of time a particular experiment takes is a random variable, whose
expectation is k plus the time it takes to get back to r after k steps. This can be
bounded by the maximum hitting time between nodes, which is O(n3). Summing
up,

Proposition 2. In an expected time of O((k + n3)ε−2δ−1) we can compute an
estimate of Pk(r, r) which is within an additive error of ε with probability at least
1 − δ.

6.2. Reconstructing the eigenvalue gap. We restrict our attention to node-
transitive graphs, in which case we can use the trace formula (5). We can use (2)
to reconstruct the number of nodes n. Furthermore, we assume that the chain is
lazy, so that its eigenvalues are nonnegative, and their sum is n/2.

For a lazy chain, Pk(r, r) tends to 1/n monotone decreasing. Furthermore, (5)
implies that setting

qk = Pk(r, r) − 1

n
,

we have

nqk+1 =

n
∑

i=2

λk+1
i ≥ 1

n − 1

(

n
∑

i=2

λi

)(

n
∑

i=2

λk
i

)

=
1

n − 1
(trace(M) − 1)nqk,

and hence

qk+1 ≥ 1

3
qk (14)

for n ≥ 4 (which we assume without loss of generality).
We can try to compute recursively λ1 = 1 and

λi = lim
k→∞



Pk(r, r) −
i−1
∑

j=1

λk
j

n





1/k

.
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This, however, does not seem to give an effective means of estimating λi in poly-
nomial time. But to estimate at least the eigenvalue gap τ = 1−λ2 we can use the
following fact.

Lemma 1. We have
(

1 +
ln n

ln qk

)

(1 − q
1/k
k ) ≤ τ ≤ 1 − q

1/k
k . (15)

Proof. From (5),

Pk(r, r) =
1

n
+

n
∑

i=2

λk
i

n
,

and hence

λk
2

n
≤

n
∑

i=2

λk
i

n
= qk ≤ λk

2 .

Thus

1 − (nqk)1/k ≤ τ ≤ 1 − q
1/k
k .

Using the elementary inequality

1 − x

1 − y
≤ ln x

ln y

valid for 0 < x < y < 1, (15) follows. Simply take x = q
1/k
k , y = (nqk)1/k. Note

that nqk > 1 makes the lower bound in (15) trivially true. �

Let c > 1. It follows that if we find an integer k > 0 such that qk < 1/nc,

then 1 − q
1/k
k is an estimate for the eigenvalue gap τ which is within a factor of

1/(1 − 1/c) to the true value. So, if we want to estimate τ to within a factor of

1 ± ε, for some 0 < ε < 1, then picking c = 5/ε we get that 1 − q
1/k
k estimates τ

to within a factor of 1 ± ε/4. But of course we don’t know qk exactly, only with
an additive error: by proposition 2, we can estimate qk in polynomial time with an
additive error less than (say) ε/nc, with high probability.

It is known (see, e.g., [2, Chapter 4]) that the eigenvalue gap of a connected
node-transitive graph with n nodes is at least 1/n2. So we get that for k ≥ K0 =
(c + 1)n2 ln n,

qk ≤ n

(

1 − 1

n2

)k

< ne−k/n2 ≤ 1

nc
.

Applying proposition 2, we can compute an approximation Qk of qk that is
within an additive error of ε/(8nc) with probability ≥ 1 − δ/(log2 K0). By binary
search, we can find a k in the interval [0, K0] for which

Qk ≤ 1/nc but Qk−1 > 1/nc. (16)

Proposition 3. Let 0 < ε < 1, and let 0 < δ < 1. Let Qk be as above and let k be

defined by (16). Then 1−Q
1/k
k is an estimate of the spectral gap τ that is within a

factor of 1 ± ε of τ with probability at least 1 − δ.

Proof. With large probability, we have

|qm − Qm| <
ε

8nc
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for all m for which we compute Qm, in particular for m = k − 1 and m = k. Using
(14),

qk ≥ 1

3
qk−1 ≥ 1

3

(

Qk−1 −
ε

8nc

)

≥ 1

4nc
,

and also
Qk ≥ qk − ε

8nc
≥ (1 − ε

2
)qk. (17)

Similarly,

Qk ≤ (1 +
ε

2
)qk . (18)

We claim that

1 − ε

2
≤ 1 − Q

1/k
k

1 − q
1/k
k

≤ 1 +
ε

2
. (19)

To show the upper bound, we may assume that Qk ≤ qk. Then using (18),

1− Q
1/k
k

1 − q
1/k
k

≤ ln Qk

ln qk
≤ ln((1 − ε

2 )qk)

ln qk
= 1 +

ln(1 − ε
2 )

ln qk
< 1 − ln(1 − ε

2
) ≤ 1 +

ε

2
.

The lower bound in (19) follows similarly. Hence by Lemma 1,

τ ≥ 1 − q
1/k
k ≥ (1 − ε)(1 − Q

1/k
k ),

and

τ ≤ 1 −
(qk

n

)1/k

≤
(

1 +
ln n

ln(1/qk)

)

(1 − q
1/k
k )

≤
(

1 +
1

c

)

(

1 +
ε

2

)

(1 − Q
1/k
k ) ≤ (1 + ε)(1 − Q

1/k
k ).

�

7. Concluding remarks

1. We can estimate for every node-transitive graph, by similar means, the value
1 − max(λ2, |λn|), which governs the mixing time of the chain. The trick is to
consider the matrix M2 instead of M , i.e., observe the chain only every other step.
A little care is in order, since this new chain is not connected if G is bipartite. We
have to start by observing if the graph is bipartite and if so return 0 as λn = −1. As
mentioned in the Introduction, whether G is bipartite can be decided by checking if
all return times are even. Clearly, considering only a polynomial number of return
times introduces a negligible error probability.

2. The second moment of the first return time also has some more direct meaning.
Let H(π, r) denote the expected number of steps before a random walk starting from
the stationary distribution π hits the root r. Then it is not hard to show using that
the walk is close to stationary at a far away time that

H(π, r) =
E(T 2

1 )

2E(T1)
− 1

2
.

To see this consider a random walk from r with return times T1, T2, etc. Let t be
large enough and fixed and let s be distributed uniformly among the integers in
t < s ≤ 2t. The walk after s steps gets us very close to the stationary distribution.
So H(π, r) is close to the expected time it takes to return to r after the first s steps.
The contribution to this expectation from the return Ti with t ≤ Ti−1 < Ti ≤ 2t is



WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME) 10

exactly
(

Ti−Ti−1

2

)

/t. The contribution of the first returns after step t and after step
2t can be neglected (t is large). Here Ti−Ti−1 is distributed independently as T1 so

each return contributes approximately E(
(

T1

2

)

)/t to the expectation and we have an
expected number of approximately t/E(T1) such returns in the interval. This yields

an estimate of H(π, r) ≈ E(
(

T1

2

)

)/E(T1). The error of this approximation goes to 0
as t grows, so it has to be exact yielding the claimed formula.

It is not clear whether any of the higher moments have any direct combinatorial
significance.

3. Here are a couple of related problems.

Problem 1: Let G be a connected graph of size n. We label the vertices randomly
by m(n) colors and observe the colors as they are visited by a simple random walk:
after each step, the walker tells you “now I’m at red”, “now at blue”, and so on.
How many colors are needed in order to recover the shape of G almost surely from
this sequence of colors?

Problem 2: Consider an n-node connected graph. Take n particles labeled 1, ..., n.
In a configuration, there is one particle at each node. The interchange process
introduced in [1] is the following continuous time Markov chain on configurations:
For each edge (i, j) at rate 1 the particles at i and j interchanged. Assume you
observed the restriction of the interchange process to a fixed node, what graph
properties can be recovered? Obviously you get more information than in the case
discussed in the paper, which corresponds to noticing only one of the particles. But
is it really possible to use this information to discover more about the graph?
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