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Abstract. We prove a limit shape theorem describing the as-
ymptotic shape of bumping routes when the Robinson-Schensted
algorithm is applied to a finite sequence of independent, identi-
cally distributed random variables with the uniform distribution
U [0, 1] on the unit interval, followed by an insertion of a determin-
istic number α. The bumping route converges after scaling, in the
limit as the length of the sequence tends to infinity, to an explicit,
deterministic curve depending only on α. This extends our previ-
ous result on the asymptotic determinism of Robinson-Schensted
insertion, and answers a question posed by Moore in 2006.

1. Introduction

Let Sn denote the symmetric group of order n. Recall that the
Robinson-Schensted correspondence associates with a permuta-
tion σ(n) ∈ Sn a pair of standard Young tableaux (Pn, Qn) whose com-
mon shape λ is a Young diagram of order n. A fruitful area of study
concerns asymptotic properties of the Robinson-Schensted shape λ and
the tableaux Pn, Qn associated with a random permutation σ(n) sam-
pled from the uniform distribution on Sn. The existing results on this
subject are too numerous to list here, but some of the important high-
lights of the theory are the limit shape result of Logan-Shepp [LS77]
and Vershik-Kerov [VK77, VK85], which led to the solution of the so-
called Ulam-Hammersley problem on the typical length of a longest
increasing subsequence in random permutations; and the celebrated
Baik-Deift-Johansson theorem [BDJ99a] and its refinements and vari-
ants [BDJ99b, BOO00, Joh00] that tied the behavior of longest increas-
ing subsequences in random permutations to the Tracy-Widom distri-
bution and other naturally-occurring stochastic processes from random
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matrix theory. See the book [Rom14] for a survey of many of these de-
velopments that also touches on diverse connections to random growth
processes, interacting particle systems, representation theory and more.

In this paper we continue this line of investigation by studying the
bumping route computed during the application of an insertion pro-
cedure, which is the fundamental building block of the Robinson-Schen-
sted correspondence. Let us recall briefly the relevant definitions. A
Young diagram λ of order n is an integer partition of n, that is, an ar-
ray of positive integers λ1 ≥ · · · ≥ λm ≥ 0 such that n =

∑m
j=1 λj, rep-

resented graphically as a diagram of left-justified square boxes wherein
the jth row contains λj boxes. If λ is a Young diagram of order n and
x1, . . . , xn are distinct real numbers, an increasing tableau of shape
λ and entries given by x1, . . . , xn is a filling of the boxes of λ with
the numbers x1, . . . , xn that is increasing along rows and columns. A
standard Young tableau is such an increasing tableau whose entries
are precisely the numbers 1, . . . , n.

Given an increasing tableau P with entries x1, . . . , xn and a number
z distinct from x1, . . . , xn, the insertion procedure applied to P and
z produces a new increasing tableau P ← z with entries x1, . . . , xn, z
whose shape λ+ is obtained from λ by the addition of a single box.
The new tableau P ← z is computed by performing a succession of
bumping steps whereby the number z is inserted into the first row
of the diagram, displacing an existing entry from the first row; the
displaced entry is bumped onto the second row, and in turn bumps an
entry of the second row onto the third row; and so on, until finally the
entry being bumped settles down in an unoccupied position outside the
diagram λ. In each row, the position where the bumping (or settling-
down, in the last step) occurs is the leftmost position containing an
entry bigger than the incoming number, or a new unoccupied position
to the right of all existing entries if no such entry exists. An example
is shown in Figure 1.

Define the bumping route BP,z associated with an insertion proce-
dure performed on the tableau P with a new input z to be the sequence
of positions where a bumping occurred during the insertion, together
with the position of the final box added to the shape. The jth po-
sition in the bumping route is of the form

(
bP,z(j), j

)
, so it is conve-

nient to encode the bumping route using only the x-coordinates of the
positions, which form a monotone nonincreasing sequence of positive
integers bP,z(1) ≥ bP,z(2) ≥ · · · ≥ bP,z(kP,z) whose length we denote
by kP,z. For example, the bumping route associated with the insertion
step in Figure 1 is (4, 3, 2, 2, 2).
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Figure 1. Inserting a number into a tableau results in a
cascade of bumping events. The bumping route is the
sequence of positions where a bumping occurred.

The insertion tableau corresponding to a sequence x1, . . . , xn is
defined as the outcome of the iterative application of the insertion
procedure

P (x1, . . . , xn) :=
((

(∅ ← x1)← x2
)
← . . .

)
← xn,

starting with the empty tableau ∅. The Robinson-Schensted cor-
respondence associates with a permutation σ(n) ∈ Sn a pair of stan-
dard Young tableaux (Pn, Qn) with the first one Pn = P

(
σ(n)) =

P
(
σ(n)(1), . . . , σ(n)(n)

)
being the insertion tableau corresponding to

the permutation; the definition of the second tableau Qn, known as the
recording tableau, will not be necessary for our purposes. More de-
tails on Young tableaux, the Robinson-Schensted correspondence and
their properties can be found in several well-known sources such as
[Ful97, Knu98, Sta99].

If σ(n) is a uniformly random permutation of order n, the bump-
ing route computed in the last insertion step performed while calcu-
lating the insertion tableau Pn is equal to BPn−1,σ(n)(n), where Pn−1 =

P
(
σ(n)(1), . . . , σ(n)(n− 1)

)
denotes the insertion tableau computed from

the truncated sequence. The question we wish to address is that of un-
derstanding the asymptotic behavior of this bumping route.

Since the computation depends only on the relative order of the num-
bers σ(n)(j), 1 ≤ j ≤ n, it will be equivalent, and more convenient, to
formulate the result in terms of a sequence X1, . . . , Xn of independent
and identically distributed (i.i.d.) random variables with the uniform
distribution U [0, 1] on the unit interval [0, 1], which gives a canonical
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way of realizing uniformly random order structures of all orders n si-
multaneously. If we denote by Tn = P (X1, . . . , Xn) the corresponding
insertion tableau, then the bumping route BTn−1,Xn is equal in distri-
bution to BPn−1,σ(n)(n).

Our result will pertain to an even more general scenario in which the
final input Xn is taken to be an arbitrary (non-random) number α in
the unit interval [0, 1]. Note that, by obvious monotonicity properties of
the insertion procedure, as α increases from 0 to 1, the bumping route is
deformed monotonically between the two extreme cases α = 0 and α =
1, where in the case α = 0 the bumping route will be the first column of
the diagram and an additional new box at the top of the first column,
and in the case α = 1 the bumping route consists of a single new box
at the end of the first row of the diagram. Note also that the bumping
route (except for the last box) is contained in the Young diagram of the
tableau Tn−1; this random Young diagram, whose distribution is known
as the Plancherel measure of order n− 1, converges to a well-known
limit shape discovered in the celebrated works of Logan-Shepp [LS77]
and Vershik-Kerov [VK77, VK85].

Figure 2a shows the bumping routes BTn−1,α for various values of α
in a numerical simulation with n = 104. Our goal will be to show that
the bumping routes converge after scaling to a family of deterministic
limiting curves, which are shown in Figure 2b. As preparation for the
precise formulation of this result, let us first define this family of curves.
First, define auxiliary functions F , Ω, uα, vα, xα, yα, κ by

Ω(u) =
2

π

(
u sin−1

(u
2

)
+
√

4− u2
)

(|u| ≤ 2),(1)

F (u) =
1

2
+

1

π

(
u
√

4− u2
4

+ sin−1
(u

2

))
(|u| ≤ 2),(2)

uα(t) =
√
t F−1

(α
t

)
(0 ≤ α ≤ t ≤ 1),(3)

vα(t) =
√
tΩ
(
F−1

(α
t

))
(0 ≤ α ≤ t ≤ 1),(4)

xα(t) =
vα(t) + uα(t)

2
(0 ≤ α ≤ t ≤ 1),(5)

yα(t) =
vα(t)− uα(t)

2
(0 ≤ α ≤ t ≤ 1),(6)

κ(α) = yα(1) =
Ω(F−1(α))− F−1(α)

2
(0 ≤ α ≤ 1).(7)
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Figure 2. (a) Bumping routes BTn−1,α in a simulation
with n = 104 and the values α = 1/10, 2/10, . . . , 9/10;
(b) the limiting curves

(
βα(s), s

)
for the same values of

α. The region bounding the limit shapes is the Logan-
Shepp-Vershik-Kerov limit shape of Plancherel-random
Young diagrams [Rom14].

The limiting bumping route curves are now defined as the one-
parameter family

(
βα(t)

)
0≤α<1

of functions, where for each α ∈ [0, 1),

βα(·) is given by

(8) βα(s) = xα(y−1α (s)) (0 ≤ s ≤ κ(α)).

Our main result is as follows.

Theorem 1 (Limit shapes of bumping routes). For each 0 ≤ α < 1,
the curve βα(·) describes the limiting bumping route BTn−1,α, in the
following precise sense: for any ε > 0, we have that

P
(∣∣∣∣kTn−1,α√

n
− κ(α)

∣∣∣∣ > ε

)
−−−→
n→∞

0, and(9)

P
(

max
1≤m≤kTn−1,α

∣∣∣∣bTn−1,α(m)√
n

− βα
(
m√
n
∧ κ(α)

)∣∣∣∣ > ε

)
−−−→
n→∞

0.(10)

The problem of understanding the limit shapes of the bumping routes,
which our result answers, was posted by C. Moore on his personal web
page (along with simulation results similar to our Figure 2a) in 2006
[Moo06].
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2. Preliminary remarks

As a first step towards proving Theorem 1, let us recall some facts
from the theory of Plancherel measure, which will immediately prove
(9) and also help elucidate the somewhat involved definition of the fam-
ily of limiting curves βα(·). First, when discussing Plancherel-random
Young diagrams and Young tableaux it is convenient to use the so-
called rotated (also known as “Russian”) coordinate system, related to
the standard x-y coordinates by the linear change of variables

(11)
u = x− y,
v = x+ y.

In this coordinate system, the curve v = Ω(u), where Ω(u) is de-
fined in (1), describes the Logan-Shepp-Vershik-Kerov limit shape of
Plancherel-random Young diagrams mentioned in the introduction.

Second, the function F (u) defined in (2) is the cumulative distri-
bution function of the semicircle distribution on [−2, 2]; that is, we
have

F (u) =
1

2π

∫ u

−2

√
4− s2 ds (|u| ≤ 2).

Its importance for the present discussion is that, according to one of
the main results of our previous paper [RŚ14], the point

(12)
(
U(α), V (α)

)
=
(
F−1(α),Ω

(
F−1(α)

))
is the limiting scaled position (in rotated coordinates) of the new
box added to the Robinson-Schensted shape after applying the in-
sertion procedure with the number α ∈ [0, 1] to the existing inser-
tion tableau Tn−1. More precisely, when stated using our current
terminology, the result [RŚ14, Theorem 5.1], which we dubbed the
“asymptotic determinism of RSK insertion,” says that the last
position

(
bα(kTn−1,α), kTn−1,α

)
of the bumping route BTn−1,α satisfies

(13)
1√
n

(
bα(kTn−1,α)− kTn−1,α , bα(kTn−1,α) + kTn−1,α

)
P−−−→

n→∞

(
U(α), V (α)

)
.

After applying the inverse transformation of (11) to rewrite the result
in x-y coordinates, and noting that

κ(α) = yα(1) =
V (α)− U(α)

2
,

we get the relation (9), the first claim of Theorem 1.
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Next, turn to the pair of functions
(
uα(t), vα(t)

)
defined in (3)–

(4), with the associated pair
(
xα(t), yα(t)

)
from (5)–(6) representing

the same functions in x-y coordinates. Note that for any fixed α,
the planar curve

(
xα(t), yα(t)

)
α≤t≤1 is a reparametrized version of the

curve
(
βα(s), s

)
0≤s≤κ(α), which according to our claim (10) is the limit

shape of the bumping route BTn−1,α (one needs to note that yα(·) is a
strictly decreasing function; see Lemma 2 below). It turns out that the
parametrization of the curve as

(
xα(t), yα(t)

)
is the correct one when

trying to prove the limit shape result (although the parametrization(
βα(s), s

)
is the one that answers the original question). To see why,

we need to explain the role of the parameter t. Note that for fixed
t, the points

(
uα(t), vα(t)

)
0≤α≤1 all lie on the curve v =

√
tΩ(u/

√
t),

which is a copy of the limit shape v = Ω(u) scaled down by the fac-
tor
√
t. The idea is that this scaled-down copy represents the limiting

shape of the “t-sublevel tableau” of Tn−1—that is, the subset of boxes
of Tn−1 containing an entry ≤ t. We will show below that the point(
uα(t), vα(t)

)
(or
(
xα(t), yα(t)

)
, in the usual coordinate system) corre-

sponds to the limiting position, after scaling, of the point at which the
bumping route BTn−1,α exits this sublevel tableau. The reason for this
is that this exit position relates to the sublevel tableau in roughly the
same way that the final bumping route position

(
bα(kTn−1,α), kTn−1,α

)
relates to the entire tableau Tn−1, except that there is a scaling rela-
tion that causes the number being inserted to change from α to α/t. A
more precise formulation of this statement is discussed in the next sec-
tion, after which we will see that our main result follows without much
difficulty by another appeal to the “asymptotic determinism of RSK”
theorem. A schematic illustration of the argument described above is
shown in Figure 3.

We conclude this section with another small but useful observation.

Lemma 2. The function yα(·) is strictly decreasing. In particular, the
limit shape functions βα(·) defined in (8) are well-defined.

Proof. Denote(
X(α), Y (α)

)
=

1

2

(
V (α) + U(α), V (α)− U(α)

)
,

where U(α), V (α) are defined in (12). First, note that Y (·) is strictly
decreasing, since it is the composition of the increasing function α 7→
F−1(α) with the function u 7→ 1

2
(Ω(u)−u), the latter being decreasing

(this can be seen by interpreting this function geometrically, or by
differentiating and using the fact that Ω′(u) = 2

π
sin−1(u/2)). Now, if
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1.0 2.0

1.0

2.0

v = Ω(u)

v=
√
tΩ(u/

√
t)

x=βα(y)

βα(s)=xα(t)

s=yα(t)

κ(α)

Figure 3. The meaning of the parameter t: for a fixed
value of α, the intersection

(
uα(t), vα(t)

)
of the as-

ymptotic bumping curve with the scaled-down copy
v =
√
tΩ(u/

√
t) of the Logan-Shepp-Vershik-Kerov limit

shape is computed by applying the asymptotic determin-
ism theorem to the t-sublevel tableau; when the numbers
in the sublevel tableau are scaled to the range [0, 1], the
number α being inserted is scaled to α/t.

t < t′ are numbers in [α, 1] then

yα(t) =
√
t Y (α/t) <

√
t′ Y (α/t) <

√
t′ Y (α/t′) = yα(t′),

proving the claim. �

3. Plancherel measure and sublevel tableaux

Recall that the distribution of the insertion tableau Pn associated
via the Robinson-Schensted correspondence with a uniformly random
permutation σ(n) in Sn is also called the Plancherel measure of order
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n (this refers to the measure on standard Young tableaux; the distri-
bution of the shape of this tableau is the Plancherel measure on Young
diagrams of order n that was mentioned in the introduction). By the
remarks made in the introduction, a tableau Pn with this distribution
arises by taking the tableau Tn and “standardizing” it by replacing each
entry Xk with the ranking of Xk in the list X1, . . . , Xn (i.e., the num-

ber σ(k) such that Xk = X
(n)
σ(k), where X

(n)
1 ≤ · · · ≤ X

(n)
n are the order

statistics of X1, . . . , Xn). Note also that the vector (X
(n)
1 , . . . , X

(n)
n )

of order statistics is independent of the tableau Pn and is distributed
uniformly on the simplex

∆n = {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}.

It follows that, conversely, if we start with a random standard Young
tableau Pn distributed according to the Plancherel measure of order n
and a random vector (W1, . . . ,Wn) that is independent of Pn and is
distributed uniformly on ∆n, then the tableau T ′n obtained by replacing
each entry p of Pn by Wp is equal in distribution to Tn.

We will now apply these observations to prove a simple lemma about
sublevel tableaux. As mentioned above, for any 0 < t ≤ 1, the t-

sublevel tableau of Tn−1, which we denote by T
(t)
n−1, is the subtableau

of Tn−1 consisting of those boxes with entries ≤ t. An essential fact
that makes our main result possible is a self-similarity property that

says that T
(t)
n−1 is distributed roughly as a scaled version of Tk for k ≈

tn. Since the number of entries in T
(t)
n−1 is itself random, we need to

condition on its value to make this statement precise. The details are
as follows.

Lemma 3. Let 0 < t ≤ 1 and 0 ≤ k ≤ n− 1.

• The number |T (t)
n−1| of boxes in T

(t)
n−1 satisfies

(14)
|T (t)
n−1|

n− 1

P−−−→
n→∞

t.

• Conditioned on the event |T (t)
n−1| = k, the rescaled sublevel tableau

1
t
T

(t)
n−1 (where the rescaling means that each entry of T

(t)
n−1 is di-

vided by t) is equal in distribution to Tk.

Proof. Recall that the entries of Tn−1 are the i.i.d. uniform random

numbers X1, . . . , Xn−1, so the entries of the sublevel tableau T
(t)
n−1 con-

sist of the subset of the numbers X1, . . . , Xn−1 which are ≤ t. It follows
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that the random variable Zn = |T (t)
n−1| is given by

Zn =
n−1∑
j=1

1{Xj≤t},

so the first claim follows from the law of large numbers.
Denote by (Y1, . . . , YZn) the sequence (of random length Zn) of those

Xj’s (for 1 ≤ j ≤ n− 1) for which Xj ≤ t, in the order in which they
appear. From elementary probability theory, it is easy to see that,
conditioned on the event {Zn = k}, the random variables Y1, . . . , Yk
are independent and uniformly distributed in [0, t]. But now observe

that (still conditioning on {Zn = k}) the sublevel tableau T
(t)
n−1 can be

constructed as follows:

Standardize:
Replace Tn−1 by a standard Young tableau Pn−1, where each
entry of Pn−1 is the ranking of the corresponding entry of Tn−1
in the list X1, . . . , Xn−1.

Sublevel:
Take the k-sublevel tableau P

(k)
n−1 of Pn−1.

Destandardize:
Replace each entry p of P

(k)
n−1 by the pth order statistic Y

(k)
p of

the sequence Y1, . . . , Yk.

By the remarks made at the beginning of this section, Pn−1 is a Plancherel-
random standard Young tableau of order n − 1. We now use the ele-
mentary fact that the Plancherel measures are a consistent family of
probability measures, in the sense that for any k ≤ m, the k-sublevel
tableau of a Plancherel-random tableau Qm of order m is a Plancherel-
random tableau of order k. (The case k = m − 1 of this claim cor-
responds to the simple operation of removing the maximal entry of
a Plancherel-random tableau; this clearly implies the general case by
induction, and the fact that the claim is true in this case is a version
of a well-known property of the Plancherel measures, mentioned for

example in [Rom14, Lemma 1.25].) So, the tableau P
(k)
n−1 is distributed

according to the Plancherel measure of order k. Finally, since (still con-
ditioning on the event {Zn = k} as before) the vector of order statistics

(Y
(k)
1 , . . . , Y

(k)
k ) = (X

(n)
1 , . . . , X

(n)
k ) is independent of Pn−1 (and hence

also of P
(k)
n−1) and is distributed like t times a random vector distributed

uniformly in ∆k, again by the remarks made above we have that T
(t)
n−1

is (conditionally on {Zn = k}) equal in distribution to t · Tk. �
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4. Finishing the proof

To prove (10), we first reparametrize the bumping route BTn−1,α ac-
cording to the parameter t associated with the sublevel tableaux. For
each 0 ≤ α < 1, this reparametrized bumping route will now be a
random function Φn,α : [α, 1]→ N× N defined by

(15) Φn,α(t) =
(
bTn−1,α(m),m

)
where for each t we denote by m the minimal number for which(
bTn−1,α(m),m

)
lies outside the sublevel tableau T

(t)
n−1. Note that al-

most surely we have that

Φn,α(α) =
(
bTn−1,α(1), 1

)
,

Φn,α(1) =
(
bTn−1,α(kTn−1,α), kTn−1,α

)
,

and the range of Φn,α consists of the entire bumping route BTn−1,α.

Theorem 4. For any 0 ≤ α < 1 and ε > 0 we have

(16) P
(

max
α≤t≤1

∥∥∥∥Φn,α(t)√
n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε

)
−−−→
n→∞

0.

Proof. Fix α ∈ [0, 1). First, we prove the weaker statement that for
any ε > 0 and t ∈ [α, 1] we have

(17) P
(∥∥∥∥Φn,α(t)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε

)
−−−→
n→∞

0.

Denote Zn = |T (t)
n−1| as before, and let δ > 0 be some small number

(depending on ε) whose value will be fixed shortly. We have

(18) P
(∥∥∥∥Φn,α(t)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε

)
≤ P

(∣∣∣∣ Zn
n− 1

− t
∣∣∣∣ > δ

)
+

∑
| k
n−1
−t|≤δ

P(Zn = k)P
(∥∥∥∥Φn,α(t)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε
∣∣∣Zn = k

)

≤ P
(∣∣∣∣ Zn
n− 1

− t
∣∣∣∣ > δ

)
+ max
| k
n−1
−t|≤δ

P
(∥∥∥∥Φn,α(t)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε
∣∣∣Zn = k

)
.

In the last expression, the first term tends to 0 as n → ∞, by (14).
Let k = k(n) be the value for which the maximum of the second term
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is attained. Note that the second claim of Lemma 3 implies that the
conditional probability in the second term can be replaced by its un-
conditional counterpart

(19) P
(∥∥∥∥Φk+1,α/t(1)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε

)
= P

(∥∥∥∥∥
√
k

n

Φk+1,α/t(1)√
k

−
√
t
(
xα/t(1), yα/t(1)

)∥∥∥∥∥ > ε

)
.

If we had the precise equality k = tn, it would immediately follow from
(13) that this probability tends to 0 as n (and therefore also k) tends
to ∞. As it is, such an equality does not hold; however, we restricted
k to a range such that

t− δ ≤ lim inf
n→∞

k

n
≤ lim sup

n→∞

k

n
≤ t+ δ.

This is good enough, since it is easy to check that if δ is taken (as a
function of ε) to be a small enough positive number, then the right-
hand side of (19) can be bounded from above by

(20) P
(∥∥∥∥Φk+1,α/t(1)√

k
−
(
xα/t(1), yα/t(1)

)∥∥∥∥ > ε

2

)
+ P

(∥∥∥∥Φk+1,α/t(1)√
k

∥∥∥∥ > 3
√

2

)
.

The first probability tends to 0 as n → ∞ by (13). The second prob-
ability is bounded by the probability that a Plancherel-random Young
diagram of order k has a row or column of length ≥ 3

√
k; it is well-

known that this probability decreases to 0 at a rate that is exponential
in
√
k (see [Rom14, Lemma 1.5]). Thus, combining these observations

with (18), (19) and the bound (20) proves (17).
Finally, to finish the proof we need to show that (17) implies (16).

This is a standard argument: first, (17) clearly implies a version of
(16) in which the maximum is taken over finitely many values α ≤
t1 < · · · < tp ≤ 1 of t. Second, since both the functions t 7→ Φn,α(t)
and t 7→

(
xα(t), yα(t)

)
have the property that their x-coordinate is

weakly decreasing and their y-coordinate is weakly increasing, and since
t 7→

(
xα(t), yα(t)

)
is continuous, knowing that the bound∥∥∥∥Φn,α(t)√

n
−
(
xα(t), yα(t)

)∥∥∥∥ > ε
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holds for all values of t in a finite set that is sufficiently dense in [α, 1]
ensures that the same inequality (with ε replaced by, say, 2ε) will hold
for all t ∈ [α, 1]. The details are easy and are left to the reader. �

Proof of (10). It is now easy to derive (10) from (16). The idea is that
the relation between t and m in (15) can be inverted, expressing the
mth point

(
bTn−1,α(m),m

)
of the bumping route as Φn,α(t(m)) where

t(m) is the minimal value t ≥ α for which the y-coordinate of Φn,α(t) is
equal tom. (Note that t(·) also depends on n and α, but for convenience
we leave this dependence implicit in our notation.) Expressing (16) in
terms of t(m) gives the convergence in probability

max
1≤m≤kTn−1,α

∥∥∥∥∥
(
bTn−1,α(m),m

)
√
n

−
(
xα(t(m)), yα(t(m))

)∥∥∥∥∥ P−−−→
n→∞

0,

which can be broken down into two separate convergence relations,

(21) max
1≤m≤kTn−1,α

∣∣∣∣yα(t(m))− m√
n

∣∣∣∣ P−−−→
n→∞

0,

(22) max
1≤m≤kTn−1,α

∣∣∣∣bTn−1,α(m)√
n

− xα(t(m))

∣∣∣∣ P−−−→
n→∞

0.

Now observe that z 7→ y−1α (z ∧ κ(α)) is a continuous function on
[0, 2κ(α)]. Combining this with (21) and the fact that (by (9))
kTn−1,α/

√
n ≤ 2κ(α) with asymptotically high probability, we see that

max
1≤m≤kTn−1,α

∣∣∣∣t(m)− y−1α
(
m√
n
∧ κ(α)

)∣∣∣∣ P−−−→
n→∞

0.

Finally, this relation, together with (22) and the fact that xα(·) is
continuous, implies that

max
1≤m≤kTn−1,α

∣∣∣∣bTn−1,α(m)√
n

− xα
(
y−1α

(
m√
n
∧ κ(α)

))∣∣∣∣ P−−−→
n→∞

0,

which is exactly (10). �
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