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Abstract

We de�ne a general procedure for simulating a given discrete distribution using a sequence of i.i.d. random variables.
This procedure is used to prove that a natural information-theoretic bound on the number of samples required to simulate
the distribution can be arbitrarily approached in a limiting sense. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

The subject of the simulation of one discrete distribution using another, and in particular the expected time
it takes, has been investigated by several authors (e.g. Blum, 1986; Elias, 1972; Knuth and Yao, 1976; Stout
and Warren, 1984; see Section 4 for discussion of the di�erent approaches in these papers). It is perhaps
not surprising that the entropies of the simulated and simulating distribution show up in these investigations.
Knuth and Yao (1976) explore the simulation of distributions using fair coins, and show that the expected
number of coin tosses in such a simulation is always at least the entropy of the simulated distribution, and that
it is possible to simulate the distribution using on the average at most two tosses more than the entropy. This
makes information-theoretic sense: a coin toss produces one bit of information, and the distribution q1; q2; : : : ; qd
“contains” H (q1; q2; : : : ; qd) bits (where H (q1; q2; : : : ; qd) := −∑d

i=1 qilog qi is the entropy of the distribution
q1; q2; : : : ; qd); it is thus reasonable to expect, that the simulation should require at least H (q1; q2; : : : ; qd) tosses
on the average, and that it should be possible to approach that number, in the sense that for any �¿ 0, there
exists an n such that it is possible to simulate n independent copies of q1; q2; : : : ; qd in such a way that the
expected number of tosses, divided by n, is not greater than H (q1; q2; : : : ; qd)+�. Although not stated explicitly
in Knuth and Yao’s paper, this follows immediately from the result stated above.
Consider now a more general situation: simulation of the distribution q1; q2; : : : ; qd using another discrete

distribution, which will be modelled by a sequence of i.i.d. r.v.s X1; X2; X3; : : : distributed over a �nite alphabet
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A = {�1; �2; : : : ; �k}. How many samples of the Xi’s are required on the average to simulate q1; q2; : : : ; qd?
Again thinking information-theoretically, since each sample “contains” H (X1) (the entropy of X1) bits, and
we need H (q1; q2; : : : ; qd) bits, it is reasonable to expect, and it is the goal of this paper to prove, that the
following result holds:

Theorem 1. (i) For any simulation method of q1; q2; : : : ; qd using the process X1; X2; : : : ; the expected number
of samples of the Xi’s is not smaller than H (q1; q2; : : : ; qd)=H (X1);
(ii) It is possible to arbitrarily approach that ratio, in the following exact sense: for any �¿ 0, there

exists an n such that it is possible to simulate n independent copies of q1; q2; : : : ; qd in such a way that the
expected number of samples, divided by n, is not greater than H (q1; q2; : : : ; qd)=H (X1) + �.

Theorem 1 can be thought of as a theorem about the meaning of entropy as much as a theorem about
simulation: compare it with the Noiseless Coding Theorem (see Abramson, 1963, pp. 72–73):

The Noiseless Coding Theorem. (i) For any immediate code for the distribution q1; q2; : : : ; qd over the al-
phabet {0; 1; : : : ; k − 1}, the expected word length is not smaller than H (q1; q2; : : : ; qd)=log k,
(ii) It is possible to arbitrarily approach this ratio, in the sense that for any �¿ 0, there exists an n such

that it is possible to code n independent copies of q1; q2; : : : ; qd using the alphabet {0; 1; : : : ; k − 1} in such a
way that the expected word length, divided by n, is not greater than H (q1; q2; : : : ; qd)=log k + �.

The Noiseless Coding Theorem is of fundamental importance in information theory; it is the basis for the
standard interpretation of the entropy of a discrete distribution as the minimal number of letters required on
the average to code the distribution with the ordinary “computer science” {0; 1}-bits, or, more generally, as
the minimal number of letters in the alphabet {0; 1; : : : ; k−1} required on the average to code the distribution,
provided that units are chosen so that one letter is worth 1 unit of information (i.e. log k = 1), and in the
extended sense where coding of multiple independent copies of the distribution is considered.
Similarly, Theorem 1 gives a new interpretation of the entropy of a distribution in terms of simulation rather

than of coding: it says that the entropy of a distribution is the minimal number of fair coin tosses required
on the average to simulate the distribution, or more generally, it is the minimal number of samples of any
other distribution X1 required on the average to simulate the distribution, again provided units are chosen so
that one sample is worth 1 unit of information, i.e. H (X1) = 1, and again in the sense where simulation of
multiple independent copies of the distribution is considered.
In this paper, after giving a formal de�nition of a simulation method in Section 2, we shall see that equality

in Theorem 1 (E(N ) · H (X1) = H (q1; : : : ; qd)) is attained if and only if the simulation method “preserves
information” in a natural sense that will be de�ned. This leads immediately to a proof of part (i). Finally,
in Section 3, after brie
y discussing the situation for simulations using fair coins, we generalize some of the
ideas to simulations using general i.i.d. processes, culminating in the proof of part (ii).

2. De�nitions and a basic equation

Let X1; X2; : : : be a discrete process, distributed over an alphabet A, which we shall think of as de�ned on the
coordinate space (
;F; P), where 
=AN , F is the �-�eld generated by the �nite cylinder sets (see below),
P is the probability measure induced by the process, and Xn(a1a2a3 : : :) = an. Let q1; q2; : : : ; qd be a discrete
distribution, which for the sake of concreteness we assume to be over the alphabet B= {�1; �2; : : : ; �d} (both
d and A are allowed to be in�nite). We wish to de�ne the concept of a simulation method of q1; : : : ; qd using
the process X1; X2; : : : . Intuitively, this means that we sample the Xi’s (graphically this can be visualized as
going down the “tree”

⋃∞
t=1 A

t) until we decide to stop according to some predetermined rule and announce
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the result (one of the symbols �j), and the method produces each �j with respective probability qj. We start
with some basic notations and de�nitions:

Terminology. Elements of the set
⋃∞
t=1 A

t will be called �nite A-words, or brie
y words (A is the only alphabet
whose words will be considered). For a word w ∈ ⋃∞

t=1 A
t , let l(w) denote the length of w, and p(w) denote

the probability of w according to the process X1; X2; : : : ; i.e. p(a1a2 : : : al) = P(X1 = a1; : : : ; Xl = al). To each
w ∈ ⋃∞

t=1 A
t there corresponds a cylinder set {! = a1a2a3 : : : ∈ 
: a1a2 : : : al(w) = w}. We shall frequently

identify a word and its corresponding cylinder set, denoting both by w. A (possibly in�nite) set C ⊂⋃∞
t=1 A

t

will be called a code; an immediate code is a code no word of which is a pre�x of another (in terms
of the corresponding cylinder sets, this is equivalent to saying that di�erent cylinder sets of words in the
code are disjoint). An (almost surely �nite) stopping time for the process X1; X2; : : : is a random variable
N : 
 → {1; 2; 3; : : :} ∪ {∞} such that for each n, the event {N = n} is a union of (cylinder sets of) words
of length n, and such that P(N ¡∞) = 1. Finally, we shall use the letter H loosely to denote entropy – of
partitions, random variables and distributions.

With these preliminaries, we can now de�ne:

De�nition. A simulation method for the distribution q1; : : : ; qd using the process X1; X2; : : : is a triplet (N; C; f),
where: N is a stopping time for the process X1; X2; : : :; C is an immediate code such that P(C)=

∑
w∈C p(w)=1

and for each w ∈ C, N = l(w) on w; and f : C → B is a function satisfying

(∗) qj =
∑

w∈f−1(�j)

p(w); j = 1; 2; : : : ; d:

Remark. The intuitive meaning of the de�nition is the following: the stopping time N represents the decision
as to when to stop sampling the Xi’s; the code C is a partition which represents the information available to
us after stopping, and the function f determines the result of the simulation after stopping, and should be such
that the simulated distribution is indeed q1; : : : ; qd; whence the requirement (∗). Note that, given any stopping
time N , it determines uniquely (up to words of probability 0) an immediate code C with total probability 1
such that for each w∈C, N = l(w) on w: C is simply the totality of words w with this property – for each n,
the event {N = n} is a union of words of length n, and C is comprised of those words for n=1; 2; : : :; hence
P(C)=P(N ¡∞)=1. Conversely, any immediate code C with total probability 1 determines a stopping time
N de�ned as l(w) on each w∈C. Also, note that a stopping time N with an associated code C, but without
a function f, can be thought of as a simulation method for the code itself, i.e. one can take B= C, f= idC
(the identity function on C), and the distribution thus simulated is {p(w):w ∈ C}.

We now assume for the rest of this paper that X1; X2; : : : are i.i.d. r.v.s. To avoid trivialities, we assume
that p(�)¿ 0 for all � ∈ A. The following theorem establishes the fundamental equation for simulation using
an i.i.d. process.

Theorem 2. In any simulation method, we have E(N ) ·H (X1)=H (C) (with the understanding that each side
of the equation is �nite i� the other side is �nite).

Proof. Assume �rst that N is bounded (or, equivalently, that C is �nite) by t. Then, using standard properties
of the entropy function (see Abramson, 1963), and using the fact that the partition of X1; : : : ; Xt re�nes the
partition C, we have

tH (X1) =H (X1; : : : ; Xt) = H (X1; : : : ; Xt ; C) = H (C) + H (X1; : : : ; Xt |C)
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=H (C) +
∑
w∈C

p(w)H (X1; : : : ; Xt |w)

=H (C) +
∑
w∈C

p(w)H (Xl(w)+1; : : : ; Xt)

=H (C) +
∑
w∈C

p(w)H (X1)(t − l(w))

=H (C) + tH (X1)− H (X1)
∑
w∈C

p(w)l(w)

=H (C)− E(N ) · H (X1) + tH (X1);

as claimed.
To prove the general case, consider for each t the simulation de�ned by the stopping time N∧t, denoting by

Ct the associated code. It is easy to see that if C is the original code, then Ct={w ∈ C: l(w)6t}∪{w∈At : w
is a pre�x of a word in C}. For each t, by the special case proved above we know that E(N∧t)·H (X1)=H (Ct).
Letting t tend to in�nity, we see that E(N∧t)↗ E(N ), also since −∑

w∈C;l(w)6t p(w)logp(w)6H (Ct)6H (C)
we see that H (Ct)→ H (C), and this gives the desired result.

Remark. An alternative method for proving Theorem 2 would be to apply Wald’s equation for the sequence
of i.i.d. random variables In = −logp(Xn), where p(Xn) is de�ned as p(�) on the event {Xn = �}. This
immediately yields E(N ) · H (X1) = H (C).

Corollary 1 (part (i) of Theorem 1). In any simulation, E(N ) ·H (X1)¿H (q1; : : : ; qd). Furthermore, the dif-
ference E(N ) · H (X1) − H (q1; : : : ; qd) can be identi�ed as the (average) amount of information lost when
di�erent words in the code are combined by the function f into one symbol �j. i.e.

E(N ) · H (X1)− H (q1; : : : ; qd) =
d∑
j=1

qjH
({

p(w)
qj

: w ∈ f−1(�j)
})

:

Proof.

E(N ) · H (X1)− H (q1; : : : ; qd) =H (C)− H (q1; : : : ; qd)

=−
∑
w∈C

p(w)logp(w) +
d∑
j=1

qjlog qj

=−
d∑
j=1

qj
∑

w∈f−1(�j)

p(w)
qj

logp(w) +
d∑
j=1

qjlog qj

=
d∑
j=1

qj


−

∑
w∈f−1(�j)

p(w)
qj

log
p(w)
qj




=
d∑
j=1

qjH
({

p(w)
qj

: w ∈ f−1(�j)
})

¿0:
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Remark. Note that this means that E(N )=H (q1; : : : ; qd)=H (X1) will hold if and only if the simulation method
does not “discard” information, i.e. if the function f is injective. A simulation method with this property might
aptly be termed information-preserving.

Example. As an example of the application of Theorem 2, let us calculate the entropy of a geometric random
variable with parameter p: to simulate such a variable using (p; 1−p) coins, the natural way would be: toss the
coins until you get the side corresponding to p, and the number of tosses would then be the result. The variable
being simulated is the same as the stopping time for the simulation. The code is C = {0; 10; 110; 1110; : : :}
where the probability of 0 is p, and f(w)= l(w)=N (w). This simulation method preserves information, and
therefore H (N ) = E(N ) · H (X1) = (1=p)H (p; 1− p). So the entropy of a geometric r.v. with parameter p is
equal to (1=p)H (p; 1− p), because to simulate it using a (p; 1− p) coin takes on the average (1=p) tosses
– a satisfying result.

We turn now to the proof of part (ii) of Theorem 1. To prove the claim, we need to �nd a “good”
simulation method of q1; : : : ; qd using the i.i.d. process X1; X2; : : : .

3. A simulation method

In order to develop a simulation method for discrete distributions using a general i.i.d. source, let us �rst
consider brie
y the case where X1; X2; : : : are fair coins, i.e. A={0; 1} and p(w)=2−l(w). Fair coins are literally
the “standard currency” of information theory. Thus as we might expect, this special case is simpler to treat
than the general one – there is no need to “convert” our currency to the standard one �rst. By considering
fair coins �rst, we will gain insights that will prove helpful in treating the general situation.
Knuth and Yao (1976) give a simple characterization of the optimal simulation method for q1; : : : ; qd

using fair coins, and show that it is possible to construct this simulation method. However, this method
does not lend itself to generalization to other i.i.d. sources. We describe a di�erent method using fair coins
which does; the method is as follows: de�ne t0 = 0, t1 = q1, t2 = q1 + q2; : : : ; td = q1 + · · · + qd = 1. Thus
[0; 1) = [t0; t1) ∪ [t1; t2) ∪ · · · ∪ [td−1; td). The samples of the coin generate the binary expansion of a number
x ∈ [0; 1), that is, U =∑∞

n=1 Xn2
−n is distributed uniformly in [0; 1). The algorithm is, toss the coin until

you know which of the intervals [tj−1; tj) the number U ends up in, and then the result is the corresponding
�j. In e�ect, this means: represent each interval [tj−1; tj) (whose length is qj) as a disjoint union of dyadic
intervals of maximal size.
We have used here binary expansion in the unit interval. To generalize this idea, it is necessary to understand

more clearly how it works. In measure-theoretic terminology, one can say that we are using an isomorphism
between the interval [0; 1) (with Lebesgue measure) and the space {0; 1}N with the probability measure of
fair coin tosses to build the simulation; we know how to partition [0; 1) into sets of respective measures
qj, and how to represent each of these sets as a union of dyadic intervals (which correspond to cylinder
sets, or �nite words, in {0; 1}N ), and this knowledge, when phrased in terms of {0; 1}N , leads exactly to the
desired simulation method. Thus, to generalize this to simulation using any i.i.d. process, we need to �nd
a measure-theoretic isomorphism between [0; 1) (with Lebesgue measure) and 
 = AN with the measure P
induced by the process. Furthermore, this isomorphism, in order to be of use to us, has to admit a representation
of any interval [a; b) (or more precisely, the image thereof) as a disjoint union of cylinder sets.
The idea is as follows: Let k = |A|. De�ne an increasing sequence of partitions Pn of the interval [0; 1)

(increasing in the order of re�nement), such that for each n, the partition Pn = {I nw:w ∈ An} consists of kn
intervals indexed by the words of length n, the length of each I nw is equal to p(w), and I

n
w=

⋃
�∈A I

n+1
w� (disjoint

union). The isomorphism will match each I nw to the cylinder set corresponding to w, and it is easy to see that
the requirements above are both su�cient and necessary for it to be an isomorphism. The construction of the
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partitions Pn is by induction: To de�ne P1, divide [0; 1) into intervals I 1� (� ∈ A) of respective lengths p(�);
next, assuming that Pn is de�ned, de�ne Pn+1 by dividing each interval I nw into intervals I

n+1
w� (� ∈ A) of

respective lengths p(w�). This is possible because p(w) =
∑

�∈A p(w�). Note that there are many ways to
carry out this construction; it will be convenient to single out one speci�c way, as follows: if A = {�i}ki=1,
then the division of I nw into a union of I

n+1
w� is performed such that I n+1w�1 is the leftmost interval, I n+1w�2 the

second leftmost, etc., and I n+1w�k the rightmost interval (or, if k =∞, then there is no rightmost interval).
Now that the partitions are de�ned, we can simulate as before: sample the Xi’s, generating more and

more letters of an in�nite word ! = a1a2a3a4 : : :; each �nite subword a1 : : : an determines an interval I na1 :::an ,
and the in�nite word ! determines a single point x ∈ [0; 1) which is the intersection of all the intervals:
{x} =⋂∞

n=1 I
n
a1 :::an (in fact, this is the isomorphism that we have de�ned as a point transformation: ! ↔ x).

The algorithm is to sample the process until you know which of the intervals [tj−1; tj) the point x will end
up in (where as before tj=q1 +q2 + · · ·+qj), and then the result is the corresponding �j. In other words, the
simulation stops as soon as the interval I na1 :::an is contained in one of the intervals [tj−1; tj). Thus, as before,
each [tj−1; tj) is represented as a disjoint union of “cylinder sets” I nw.
Note that just as any in�nite word determines a point x ∈ [0; 1), any such point x determines uniquely

an in�nite word ! = a1a2a3 : : : ∈ AN , by the requirement that x ∈ ⋂∞
n=1 I

n
a1 :::an . We call ! the expansion of

x with respect to the sequence of partitions Pn – this is a generalization of the ordinary binary expansion.
This remark now enables us to describe the code of this simulation: denote by ≺ the order relation on AN

induced by the usual order relation on [0; 1) via the isomorphism x → expansion of x; this is simply the
lexicographical order on AN induced by the order �1 ≺ �2 ≺ · · · ≺ �k on A, and can also be thought of
as a partial order on

⋃∞
t=1 A

t , two words being comparable if one is not a pre�x of the other. For each
j=0; 1; : : : ; d let !j = aj;1aj;2aj;3 : : : ∈ AN be the expansion of tj. Then for a word w ∈ ⋃∞

t=1 A
t , we will have

I l(w)w ⊂ [tj−1; tj) if and only if !j−1 ≺ w ≺ !j. For w to be in the code and to give the result �j, this has to
hold, and should not hold for the word w′ de�ned as w truncated by one letter: w′ must not be comparable
to either !j−1 or !j; i.e. either w′ = aj−1;1aj−1; 2 : : : aj−1;l(w)−1 or w′ = aj;1aj;2:::aj;l(w)−1; in the �rst case we
must have aj−1; l(w) ≺ �, where w = w′�, and in the latter � ≺ aj;l(w); in both cases

aj−1;1aj−1;2 : : : aj−1;l(w)−1 ≺ aj;1aj;2 : : : aj; l(w)−1
must hold. This can be summarized in:

De�nition. For each j = 1; : : : ; d, let �j be the maximal number such that

aj−1;1aj−1;2 : : : aj−1;�j = aj;1aj;2 : : : aj;�j :

Then the Unit Interval simulation method is de�ned by the code C =
⋃d
j=1 Cj, where for each j,

Cj =
∞⋃

n=�j+1

{aj−1;1aj−1;2 : : : aj−1; n−1� ∈ An: aj−1; n ≺ �}

∪
∞⋃

n=�j+1

{aj;1aj;2 : : : aj;n−1� ∈ An: � ≺ aj;n}

and by the function f : C → B de�ned as �j on Cj ( j = 1; 2; : : : ; d).

Lemma 1. The Unit Interval simulation method simulates q1; q2; : : : ; qd.

Proof.

P(Cj) = P({! ∈ 
: !j−1 ≺ ! ≺ !j}) = Lebesgue measure of (tj−1; tj) = qj:
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We are now in a position to prove:

Theorem 3. If k ¡∞, then there exists a constant c, depending on the distribution of X1, such that for any
distribution {qj}dj=1, if N is the stopping time of the Unit Interval simulation method, then

E(N ) · H (X1)6H (q1; : : : ; qd) + c:

Proof. We assume that H (q1; : : : ; qd)¡∞, since the claim is vacuous otherwise. For each j, denote
∞⋃

n=�j+1

{aj−1;1aj−1; 2 : : : aj−1; n−1� ∈ An: aj−1; n ≺ �}= {wj;n}∞n=1;

where wj;n are ordered by increasing length, and similarly
∞⋃

n=�j+1

{aj;1aj;2 : : : aj;n−1� ∈ An: � ≺ aj;n}= {w′
j;n}∞n=1;

so that Cj={wj;n}∞n=1∪{w′
j;n}∞n=1. It is clear that l(wj;n)¿l(wj;1)+b(n−1)=(k−1)c, where bxc is the greatest

integer 6x. Since

wj;1 = aj−1;1aj−1;2 : : : aj−1;l(wj; 1)−1�; wj;n = aj−1;1aj−1;2 : : : aj−1;l(wj; n)−1�

for some �; � ∈ A, we have
p(wj;n)6c · el(wj; n)−l(wj; 1)+1 · p(wj;1)6c · el(wj; n)−l(w;1)+1 · qj;

where e=max�∈Ap(�), c=(min�∈Ap(�))−1, and since l(wj;n)−l(wj;1) grows at least linearly in n, there exist
other constants r ¿ 0; 0¡s¡ 1 such that for all n, p(wj;n)6r · sn · qj. Likewise, we have p(w′

j;n)6r · sn · qj.
Note that the constants r; s depend only on the distribution of X1, and not on j or on the distribution q1; : : : ; qd.
Now, let Cj={uj;n}∞n=1, where uj;n are obtained by interlacing wj;n and w′

j;n, i.e. uj; 2n−1=wj;n and uj; 2n=w
′
j;n.

Clearly, by replacing r and s by other constants, the inequality

p(uj;n)6r · sn · qj
will hold for all j; n, again with constants depending only on the distribution of X1.
By Corollary 1, the di�erence E(N ) · H (X1) − H (q1; : : : ; qd) represents the loss of information when for

every j, {uj;n}∞n=1 are combined into �j, namely

E(N ) · H (X1)− H (q1; : : : ; qd) =−
d∑
j=1

qj
∞∑
n=1

p(uj;n)
qj

log
p(uj;n)
qj

:

Since this is a convex combination of numbers, it is enough to show that for every j, −∑∞
n=1 p(uj;n)=

qjlogp(uj;n)=qj is bounded by a constant which depends neither on j nor on the distribution q1; : : : ; qd. Using
the well-known inequality −∑

n anlog an6 − ∑
n anlog bn, which holds provided that

∑
n an = 1;

∑
n bn61

(see Abramson, 1963, p.16), we have

−
∞∑
n=1

p(uj;n)
qj

log
p(uj;n)
qj

6−
∞∑
n=1

p(uj;n)
qj

log 2−n =
∞∑
n=1

p(uj;n)
qj

· n6
∞∑
n=1

r · sn · n;

and thus we can take as our constant c =
∑∞

n=1 r · sn · n¡∞.

Corollary 2 (Part (ii) of Theorem 1). For any distribution q1; : : : ; qd (with �nite entropy) and for any �¿ 0,
there exists an n such that it is possible to simulate n independent copies of q1; : : : ; qd using the process
X1; X2; : : : with a stopping time N; such that (1=n)E(N )6H (q1; : : : ; qd)=H (X1) + �.
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Proof. Consider �rst the case k ¡∞: take n¿c=� · H (X1), where c is the constant from Theorem 3. Then
using the Unit Interval simulation method to simulate n independent copies of q1; : : : ; qd, we have

E(N ) · H (X1)6n · H (q1; : : : ; qd) + c6n · H (q1; : : : ; qd) + n · � · H (X1);
and therefore (1=n)E(N )6H (q1; : : : ; qd)=H (X1) + �. For the case k =∞: again there are two possibilities,
H (X1)¡∞ and H (X1) =∞. If H (X1) =−∑∞

j=1 p(�j)logp(�j)¡∞, then: for some small enough �¿ 0 to
be determined later, there exists an m such that the process X ′

1 ; X
′
2 ; : : : obtained from X1; X2; : : : by identifying

the symbols �m+1; �m+2; �m+3; : : : into one symbol �∗m has entropy H (X
′
1)¿H (X1)− �. The process X ′

1 ; X
′
2 ; : : :

has a �nite alphabet A∗ = {�1; �2; : : : ; �m−1; �∗m}, and therefore by what we proved, there exists an n such that
it is possible to simulate n independent copies of q1; : : : ; qd using X ′

1 ; X
′
2 ; : : : with a stopping time N such that

1
n
E(N )6

H (q1; : : : ; qd)
H (X ′

1)
+
�
2
6
H (q1; : : : ; qd)
H (X1)− � +

�
2
;

and if � is chosen to be su�ciently small, then (1=n)E(N )6H (q1; : : : ; qd)=H (X1)+ � will hold; but simulation
using X ′

1 ; X
′
2 ; : : : can be thought of as a simulation using X1; X2; : : : ; since the former are a function of the

latter. The case where H (X1) =∞ is dealt with in a similar manner.

4. Additional comments and questions

1. The approach towards simulation taken in this paper is similar to that taken by Knuth and Yao (1976),
although di�erent terminology has been used. Other authors (Blum, 1986; Elias, 1972; Stout and Warren,
1984) have considered the generation of a random number of independent copies of the distribution q1; : : : ; qd
using a �xed number n of i.i.d. r.v.s X1; X2; : : : ; Xn, concentrating mainly on the case where the Xi’s are biased
coins and the goal is to generate fair coins. In the framework set here, this can be described as a simulation
method using biased coins with a constant stopping time, and the simulated distribution is of a pair of r.v.s
(A; B) such that, given that {A= m}, B is distributed uniformly on {1; 2; 3; : : : ; 2m}. The natural measure for
the e�ciency of such a method is the (average) number of fair coins produced per biased coin used, namely
E(A)=n. Using Corollary 1, we see that

n · H (X1) = E(N ) · H (X1)¿H (A; B) = H (A) + H (B|A) = H (A) + E(A)¿E(A);
and therefore E(A)=n6H (X1), a result similar in nature to part (i) of Theorem 1. Elias (1972) shows that it
is possible to approach the bound H (X1) in the limit as n→ ∞.
2. So far we have discussed simulation using i.i.d. processes. The natural question now arises, whether

Theorem 1 stays true for simulation using more general Markov and stationary ergodic processes, when H (X1)
is replaced by the entropy of the process. It should be noted that part (i) in its present form cannot stay true in
such a setting: for example, let X1; X2; : : : be a non-i.i.d. stationary Markov process, then one can simulate the
stationary distribution X1 with a stopping time of 1 in the obvious way, and then H (X )=H (X )·E(N )¡H (X1).
However, we can expect an asymptotic lower bound on E(N ) to remain true. We conjecture the following:

Conjecture. Let X1; X2; : : : be a �nite-state stationary ergodic process, and q1; q2; : : : ; qd a discrete distribution
with �nite entropy. Then:
(i) For any �¿ 0, there exists an n such that for any simulation method of m¿n copies of q1; : : : ; qd using

the process X1; X2; : : : ; with a stopping time N , we will have (1=m)E(N )¿H (q1; : : : ; qd)=H (X )− �;
(ii) For any �¿ 0, there exists an n such that it is possible to simulate n copies of q1; : : : ; qd using the

process X1; X2; : : : with a stopping time N , in such a way that (1=n)E(N )6H (q1; : : : ; qd)=H (X ) + �.

Partial results in this direction, in particular regarding Markov processes, have been obtained by the author
and will be published at a later date. We remark that the Unit Interval method has an immediate generalization
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to simulation using any non-i.i.d. process. However, it remains to show that it satis�es a condition similar to
that in Theorem 3 when X1; X2; : : : is a stationary ergodic process.
3. In the case of simulation using fair coins, it is possible to �nd the optimal simulation method. This

extends in an obvious way to simulation methods using fair k-sided dice. Can the optimal simulation method
be found in the general case of an i.i.d. process?
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