
Permutations with short monotone subsequences

Dan Romik

Abstract

We consider permutations of 1, 2, ..., n
2 whose longest monotone sub-

sequence is of length n and are therefore extremal for the Erdős-Szekeres

theorem. Such permutations correspond via the Robinson-Schensted cor-

respondence to pairs of square n×n Young tableaux. We show that all the

bumping sequences are constant and therefore these permutations have a

simple description in terms of the pair of square tableaux. We deduce a

limit shape result for the plot of values of the typical such permutation,

and other properties of these extremal permutations.

1 Introduction

In this paper, we consider a class of permutations which have a certain ex-
tremality property with respect to the length of their monotone subsequences.
The well-known Erdős-Szekeres theorem states that a permutation π =
(π(1), π(2), ..., π(n2)) of the numbers 1, 2, ..., n2 must contain a monotone (either
increasing or decreasing) subsequence π(i1), π(i2), ..., π(in), i1 < i2 < ... < in.
Our main object of study will be those permutations which do not have any
longer monotone subsequences than those guaranteed to exist by this theorem.

Definition 1. A permutation π ∈ Sn2 is called an Extremal Erdős-Szekeres

(EES) permutation if π does not have a monotone subsequence of length n + 1.
Denote by EESn the EES permutations in Sn2 .

The famous example showing sharpness of the Erdős-Szekeres theorem is the
permutation

n, n − 1, ..., 1, 2n, 2n− 1, ..., n + 1, 3n, 3n− 1, ..., 2n + 1,

..., n2, n2 − 1, ..., n2 − n + 1.

However, there are many more examples. Here are the 4 EES permutations in
S4:

2 1 4 3, 2 4 1 3, 3 1 4 2, 3 4 1 2,

and here are a few of the 1764 EES permutations in S9:

5 6 3 1 4 9 2 8 7, 7 3 8 9 1 4 2 6 5, 4 7 3 5 9 8 1 2 6,
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6 2 8 5 9 1 7 3 4, 3 2 8 9 1 6 4 7 5, 4 8 9 3 6 1 2 7 5.

Here is an EES permutation in S25:

13 10 20 15 3 22 23 2 9 25 17 21 14 7 8 1 4 5 16 11 24 19 18 6 12 (1)

It was observed by Knuth [2, Exer. 5.1.4.9] that the EES permutations in
EESn are in bijection with pairs of (standard) Young tableaux of square shape
(n, n, ..., n) via the Robinson-Schensted correspondence, and that, since the
number of square Young tableaux can be computed using the hook formula of
Frame-Robinson-Thrall ([2, Th. 5.1.4.H]), this gives a formula for the number
of EES permutations:

Theorem 1.

|EESn| =

(

(n2)!

1 · 22 · 33 · ... · nn · (n + 1)n−1 · (n + 2)n−2 · ... · (2n − 1)1

)2

.

Apart from this surprising but elementary observation, no one has yet un-
dertaken a systematic study of these permutations. In particular, it seems in-
teresting to study the behavior of the typical EES permutations - what different
properties do they have from ordinary random permutations? An initial step in
this direction was taken in [3].

Here is another elementary observation on EES permutations, which is an
immediate corollary of the fact that taking the inverse of a permutation does
not change the maximal lengths of increasing and decrasing subsequences.

Theorem 2. If π ∈ EESn then π−1 ∈ EESn.

We prove two main results about EES permutations. Our first result con-
cerns the structure of the deterministic EES permutation. The Robinson-
Schensted correspondence gives a description of EES permutations in terms
of pairs of square Young tableaux. This description may not seem like a useful
one, since in general the Robinson-Schensted correspondence is an algorithmic
procedure which can be difficult to analyze. However, we show that when the
inverse correspondence is applied to square Young tableaux, it in fact degener-
ates to a simple mapping which can be described explicitly. First, we introduce
some useful notation. If a is a sequence of distinct numbers and u is one of the
numbers, denote

lis(a) = the maximal length of an increasing subsequence in a,

lds(a) = the maximal length of a decreasing subsequence in a,

lisu(a) = the maximal length of an increasing subsequence in a

containing u,

ldsu(a) = the maximal length of a decreasing subsequence in a

containing u.

Then we have:
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Theorem 3. Let Tn be the set of square n×n standard Young tableaux. There
is a bijection from Tn ×Tn to EESn, defined as follows: to each pair of tableaux
P = (pi,j)

n
i,j=1, Q = (qi,j)

n
i,j=1 corresponds the permutation π ∈ EESn given

by
π(qi,j) = pn+1−i,j , (1 ≤ i, j ≤ n). (2)

In the inverse direction, P and Q can be constructed from π as follows:

qi,j = the unique 1 ≤ k ≤ n2 such that (3)

ldsπ(k)(π(1), π(2), ..., π(k)) = i and

lisπ(k)(π(1), π(2), ..., π(k)) = j.

pi,j = the unique 1 ≤ k ≤ n2 such that (4)

ldsπ−1(k)(π
−1(1), ..., π−1(k)) = i and

lisπ−1(k)(π
−1(1), ..., π−1(k)) = j.

Next, we explore the properties of random EES permutations. For each n, let
Pn be the uniform probability measure on EESn. One result concerning these
permutations was proved in [3], and is a corollary of the connection between
EES permutations and square Young tableaux and the main result of [3] on the
limit shape of random square Young tableaux:

Theorem 4. [3] Let 0 < α < 1, let n → ∞ and k = k(n) → ∞ in such a way
that k/n2 → α. Then for all ε > 0,

Pn

[

π ∈ EESn :

∣

∣

∣

∣

1

n
lis

(

π(1), π(2), ..., π(k(n))
)

− 2
√

α(1 − α)

∣

∣

∣

∣

> ε

]

−−−−→
n→∞

0.

(See [3] for a stronger statement including some rate of convergence estimates.)
If π ∈ EESn, define the plot of π to be the set Aπ given by

Aπ = (i, π(i))1≤i≤n2 .

What does this set look like for a typical π ∈ Sn? Figure 1(a) shows Aπ for
a randomly chosen π ∈ EES100. For comparison, figure 1(b) shows Aπ for a
permutation π chosen at random from all the permutations in S10000. Clearly
the points in Aπ for a random EES permutation cluster inside a certain subset of
the square [1, 10000]× [1, 10000]. The phenomenon is explained by the following
limit shape theorem, and is illustrated in Figure 2.
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Figure 1: A uniform random EES permutation and a uniform random permu-
tation of 1, 2, ..., 10000.

Theorem 5. Define the set

Z =

{

(x, y) ∈ [−1, 1]× [−1, 1] : (x2 − y2)2 + 2(x2 + y2) ≤ 3

}

.

Then: (i) For any open set U containing Z,

Pn

[

π ∈ EESn :

(

2

n2
Aπ − (1, 1)

)

⊂ U

]

−−−−→
n→∞

1.

(ii) For any open set U ⊂ Z,

Pn

[

π ∈ EESn :

(

2

n2
Aπ − (1, 1)

)

∩ U 6= ∅
]

−−−−→
n→∞

1.

In section 4 we state and prove a stronger version of Theorem 5(ii), which
describes the density of points of (the correctly scaled) Aπ in any small region
in Z , and mention additional results.

2 EES permutations and square Young tableaux

In this section, we prove Theorem 3. Our proof uses the Robinson-Schensted
correspondence. Although the bijection between EES permutations and pairs of
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Figure 2: The limiting shape of the plot of a random EES permutation. The
boundary is the quartic curve (x2 − y2)2 + 2(x2 + y2) = 3.

square Young tableaux is a special case of the Robinson-Schensted correspon-
dence, this special case is much simpler than the general case. For instance,
the worst-case computational complexity of (2) is O(n2), and the worst-case
complexity of (3) and (4) is O(n2 log n); compare this with the average-case
complexity of θ(m3/2 log m) of the Robinson-Schensted correspondence applied
to a general permutation of m elements (note that in our case m = n2), see [4].

We assume that the reader is familiar with the definition and basic properties
of the Robinson-Schensted correspondence; for background consult [2, section
5.1.4]. Recall that the Robinson-Schensted correspondence attaches to each
permutation π ∈ Sm two standard Young tableaux P and Q whose shape is the
same Young diagram λ of size m. The length of the first row λ1 of λ is equal to
lis(π), and the length of the first column λ′

1 of λ is equal to lds(π). In particular,
if π ∈ EESn, then λ is a Young diagram of size n2 whose first row and column
are both of length n; the only such diagram is the square diagram of shape
(n, n, ..., n), and this proves Knuth’s observation mentioned in the introduction.
Theorem 1 follows using the hook formula.

Our proof of (2) now relies on the following lemma.

Lemma 1. When the Robinson-Schensted correspondence is applied to an EES
permutation π ∈ EESn to compute the tableaux P, Q, all the bumping se-

quences are constant.

We encourage the reader to try applying the Robinson-Schensted correspon-
dence to the permutation given in (1) before reading on, to get a feeling for
what is happening.
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Proof. We prove the obviously equivalent statement that in the application
of the inverse Robinson-Schensted correspondence to two square n × n Young
tableaux P and Q, all the bumping sequences are constant.

Recall that the inverse Robinson-Schensted correspondence consists of n2

deletion operations, where at each step a corner element is deleted from the
shape of P and Q corresponding to where the maximal entry in Q is located,
and P is modified by bumping the entry of P that was in the deleted corner up
to the next higher row, then repeatedly bumping up an element from each row
until reaching the top row.

The proof will be by induction on k, the number of deletion operations
performed. For a given k ≥ 1, let λ be the shape of the tableaux P and Q after
k − 1 deletion operations (so λ is the shape of the subtableau of the original Q
consisting of all entries ≤ n2 − k + 1). Denote by P = (pi.j)

n
i,j=1 the entries of

the original tableau P , and denote by P̂ = (p̂i,j)i,j the entries of the tableau
P after k − 1 deletion operations. Assume that the k-th corner element to be
deleted is at location (i0, j0). A little reflection will convince the reader that
the k-th bumping sequence will be constant if and only if for all 2 ≤ i ≤ i0
we will have that p̂i,j0 < p̂i−1,j0+1 (where we take p̂i−1,j0+1 = ∞ if location
(i − 1, j0 + 1) lies outside λ).

By the induction hypothesis, all the bumping sequences before time k were
constant; another way to express this is via the equation

p̂i,j = pi+n−λ′(j),j , (1 ≤ j ≤ n, 1 ≤ i ≤ λ′(j)),

where λ′(j) is the length of the j-th column of λ, which simply says that the
j-th row of P̂ contains the λ′(j) bottom elements of the j-th row of P , in the
same order. So we have

p̂i,j0 = pi+n−λ′(j0),j0 ,

p̂i−1,j0+1 = pi−1+n−λ′(j0+1),j0+1.

But (i0, j0) is a corner element of λ, so λ′(j0) = i0 > λ′(j0 + 1). This implies
that i + n− λ′(j0) ≤ i− 1 + n−λ′(j0 + 1), and therefore p̂i,j0 < p̂i−1,j0+1, since
P is a Young tableau.

Lemma 1 easily implies (2). At the k-th deletion step, if the corner cell
being deleted is at location (i0, j0) (so λ′(j0) = i0), then qi0,j0 = n2 − k + 1,
and the element bumped out of the first row will be p̂1,j0 = pn+1−λ′(j0),j0 . As a
consequence we get π(n2 − k + 1) = π(qi0,j0) = pn+1−i0,j0 .

To conclude the proof of Theorem 3, we now prove (3) and (4). Clearly
it is enough to prove (3), since replacing π by π−1 has the effect of switching
P and Q in the output of the Robinson-Schensted correspondence. Note that
qi,j = k if and only if (i, j) was the corner cell that was added to the tableau P
at the k-th insertion step. Because of the properties of the Robinson-Schensted
correspondence (specifically, [2, Th. 5.1.4.D(b)] and [2, Exer. 5.1.4.2]), this
implies in particular that

ldsπ(k)(π(1), π(2), ..., π(k)) ≥ i, (5)
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lisπ(k)(π(1), π(2), ..., π(k)) ≥ j. (6)

Now, it is easy to see that

{

(

ldsπ(k)

(

π(1), π(2), ..., π(k)
)

, lisπ(k)

(

π(1), π(2), ..., π(k)
)

)

: 1 ≤ k ≤ n2

}

is a set of distinct points in Z
2 - this is the fact used in the well-known proof of

the Erdős-Szekeres theorem using the pigeon-hole principle (and this fact also
validates the use of the word “unique” in (3) and (4)). However, since π is an
EES, all these n2 points lie in [1, n]× [1, n]. So in fact the inequality in (5) and
(6) must be an equality, and (3) holds.

3 Proof of the limit shape result

We now prove Theorem 5. First, we recall the limit shape result for random
square Young tableaux proved in [3]. For each n ∈ N, let µn denote the uniform
probability measure on Tn, the set of n × n square Young tableaux. Pittel and
Romik [3] proved that there is an (explicitly describable) function L : [0, 1] ×
[0, 1] → [0, 1] that describes the limiting surface of the typical square Young
tableau (see Figure 3). More precisely:

Theorem 6. [3] For all ε > 0,

µn

[

T = (ti,j)
n
i,j=1 ∈ Tn : max

1≤i,j≤n

∣

∣

∣

1

n2
ti,j − L(i/n, j/n)

∣

∣

∣
> ε

]

−−−−→
n→∞

0.

For a stronger result with explicit rates of convergence, see [3]. The only
properties of the limit surface L that we will need are that it is an increasing
function of either coordinate, and that its values on the boundary of the square
are given by

L(t, 0) = L(0, t) =
1 −

√
1 − t2

2
, (7)

L(t, 1) = L(1, t) =
1 +

√
2t − t2

2
. (8)

Let π be a uniform random permutation in EESn. By Theorem 3, its plot can
be described in terms of the tableaux P and Q (which are uniform random n×n
square tableaux) by

Aπ =

{

(

qi,j , pn+1−i,j

)

: 1 ≤ i, j ≤ n

}

.

By Theorem 6, each point n−2(qi,j , pn+1−i,j) is with high probability (as n →
∞) uniformly close to the point (L(u, v), L(1 − u, v)), where u = i/n, v = j/n.
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Figure 3: A random 50× 50 square tableau and the limit surface

It follows that Theorem 5 is true with the limit shape set

Z ′ =

{

(

2L(u, v) − 1, 2L(1− u, v) − 1) : 0 ≤ u, v ≤ 1

}

.

By (7) and (8), it follows that the mapping (u, v) → (2L(u, v)−1, 2L(1−u, v)−1)
maps the boundary of the square [0, 1] × [0, 1] into the four curves described
parametrically by

(

−
√

1 − t2,−
√

2t − t2
)

0≤t≤1
,

(

−
√

1 − t2,
√

2t − t2
)

0≤t≤1
,

(

√

2t − t2,
√

1 − t2
)

0≤t≤1
,

(

√

2t − t2,−
√

1 − t2
)

0≤t≤1
.

Setting x = ±
√

2t − t2, y = ±
√

1 − t2, it is easy to verify that

(x2 − y2)2 + 2(x2 + y2) = 3,

so these curves are the parametrizations of the boundary of the set Z . It is also
easy to check that the interior of the square is mapped to the interior of Z , so
Z ′ = Z .

4 Concluding remarks

Theorem 3 shows that square Young tableaux behave in a simpler and more rigid
way than tableaux of arbitrary shapes in relation to the Robinson-Schensted
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algorithm. This turns out to be true for other tableau algorithms as well.
We show as a consequence of Theorem 3 that the Schützenberger evacuation
involution also takes on an especially simple form for square tableaux, a result
originally due to Schützenberger [?]:

Theorem 7. [?] For a standard Young tableau P , let evac(P ) denote the
evacuation tableau of P , as defined in [5, p. 425-426]. Then for a square
tableau P = (pi,j)

n
i,j=1 ∈ Tn, we have

(evac(P ))i,j = n2 + 1 − pn+1−i,n+1−j .

Proof. This is an immediate corollary of (2) and [5, Th. 7.A1.2.10].

The Edelman-Greene bijection [1] between Young tableaux and balanced
tableaux also degenerates to a very simple mapping when the tableau shape is a
square. See also [1, Cor. 7.23] for a result analogous to Theorem 7 for tableaux
of staircase shape.

We mention some additional results on random EES permutations. A special
case of Theorem 5 which seems particularly noteworthy is the following:

Theorem 8. For all ε > 0,

Pn

[

π ∈ EESn : |π(1) − n2/2| > ε · n2

]

−−−−→
n→∞

0.

We can also strengthen Theorem 5(ii) somewhat, by counting approximately
how many points of the plot of a typical EES permutation fall in any small region
in Z :

Theorem 9. Let ϕ : [0, 1] × [0, 1] → Z be the 1-1 and onto mapping defined
by

ϕ(u, v) = (2L(u, v)− 1, 2L(1− u, v) − 1).

For any open set U ⊂ Z and for any ε > 0, we have

Pn

[

π ∈ S :

∣

∣

∣

∣

1

n2
card

( (

2

n2
Aπ − (1, 1)

)

∩ U

)

−
∫

U

|Jϕ−1(x, y)|dx dy

∣

∣

∣

∣

> ε

]

−−−−→
n→∞

0,

where Jϕ−1 is the Jacobian of the mapping ϕ−1 and card(·) is the cardinality of
a set.
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Figure 4: The grid decomposition of an EES permutation

The proof is an obvious extension of the proof of Theorem 5, and is omitted.
The function Jϕ−1 does not seem to have a simple explicit formula. See [3] for
the explicit description of the limit surface function L.

Finally, we mention an interesting way of looking at Fig. 1(a) suggested
by Omer Angel. The grid structure inherited from the square tableau can be
imposed on the picture by connecting two points (k, π(k)), (m, π(m) with k < m
in the plot of π if k = qi,j , m = qi,j+1 or k = qi,j , m = qi+1,j . This is related to
the observation that an EES permutation can be decomposed in a unique way as
a union of n disjoint increasing subsequences of length n and simultaneously a
union of n disjoint decreasing subsequences of length n such that the intersection
of any of the increasing subsequences with any of the decreasing subsequences
contains exactly one element. The grid picture is a way of representing this
decomposition graphically.

Fig. 3(a) shows the deformed grid that is obtained as a result. Fig. 3(b)
shows the ideal grid that is typically obtained in the limit as n → ∞. This is
also a simple corollary of Theorem 6 and Theorem 3. It seems interesting to
study the small-scale behavior of this grid near a fixed point in Z for a random
EES permutation as n grows large.

Acknowledgements. I thank Omer Angel for useful discussions and for sug-
gesting the grid decomposition of EES permutations described above.

10



References

[1] P. H. Edelman, C. Greene, Balanced tableaux. Adv. Math. 63 (1987),
42–99.

[2] D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, 2nd. ed. Addison-Wesley, 1998.

[3] B. G. Pittel, D. Romik, Limit shapes for random square Young tableaux
and plane partitions. Preprint,
http://www.arxiv.org/abs/math.PR/0405190.

[4] D. Romik, The number of steps in the Robinson-Schensted algorithm. To
appear in Funct. Anal. Appl.

[5] R. P. Stanley, Enumerative Combinatorics, vol. 2. Cambridge University
Press, 1999.

11


