
ON VIAZOVSKA’S MODULAR FORM INEQUALITIES

DAN ROMIK

Abstract. Viazovska proved that the E8 lattice sphere packing is the densest sphere packing in 8
dimensions. Her proof relies on two inequalities between functions defined in terms of modular and
quasimodular forms. We give a direct proof of these inequalities that does not rely on computer
calculations.

1. Introduction

Viazovska [9] proved that the sphere packing associated with the E8 lattice, which has a packing

density of π4

384 , is the densest sphere packing in 8 dimensions. Her proof relied on properties of
certain functions, denoted φ0(z) and ψI(z), which were defined in terms of classical modular and
quasimodular forms: the Eisenstein series E2, E4 and E6, and the Jacobi thetanull functions θ2, θ3
and θ4. A key step in the proof consisted of showing that these functions satisfied a certain pair
of inequalities; this was essential to verifying that a radial function defined by taking an integral
transform of φ0(z) and ψI(z) (combined in a particular way) was the so-called magic function that
had been conjectured to exist by Cohn and Elkies [4] and certifies the correct sphere packing bound.

The goal of this paper is to give a new and direct proof of Viazovska’s inequalities. To recall the
result, let z denote a complex variable taking values in the upper half plane, and denote q = eπiz.
Let σα(n) =

∑
d |n d

α denote the divisor function. Recall the definitions of the functions E2, E4,

E6, θ2, θ3 and θ4:

E2(z) = 1− 24

∞∑
n=1

σ1(n)q2n, θ2(z) =

∞∑
n=−∞

q(n+1/2)2 ,

E4(z) = 1 + 240
∞∑
n=1

σ3(n)q2n, θ3(z) =
∞∑

n=−∞
qn

2
,

E6(z) = 1− 504

∞∑
n=1

σ5(n)q2n, θ4(z) =

∞∑
n=−∞

(−1)nqn
2
.

Next, set

φ0(z) = 1728
(E2(z)E4(z)− E6(z))

2

E4(z)3 − E6(z)2
, (1)

ψI(z) = 128

(
θ3(z)

4 + θ4(z)
4

θ2(z)8
+
θ4(z)

4 − θ2(z)4

θ3(z)8

)
, (2)

and define functions A(t), B(t) of a real variable t > 0 by

A(t) = −t2φ0(i/t)−
36

π2
ψI(it),

B(t) = −t2φ0(i/t) +
36

π2
ψI(it).

Theorem 1 (Viazovska’s modular form inequalities). The functions A(t), B(t) satisfy

A(t) < 0 (t > 0), (V1)

B(t) > 0 (t > 0). (V2)
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Viazovska’s original proof of Theorem 1 relied heavily on computer calculations. The proof
consisted of two main steps: first, analogues of the inequalities (V1)–(V2) were verified numerically

for approximating functions A
(6)
0 (t), A

(6)
∞ (t), B

(6)
0 (t), B

(6)
∞ (t) of A(t) and B(t), which were formed

by truncating the asymptotic expansions of A(t) and B(t) near t = 0 and t = ∞; this could be
done in a finite calculation. Second, rigorous bounds were derived that made it possible to deduce
the inequalities (V1)–(V2) from the corresponding inequalities for the approximating functions.

Another pair of inequalities of similar flavor to (V1)–(V2) was proved by Cohn et al [5] in their
subsequent proof of optimality of the Leech lattice packing in 24 dimensions. Their proof used
different techniques, but that proof as well remained dependent on extensive computer calculations.

Below, we give a new proof of Theorem 1 that is fully human-verifiable and requires no numerical
calculations beyond the elementary manipulation of a few standard mathematical constants. This
helps to simplify and demystify a critical step in Viazovska’s celebrated sphere packing proof.

2. Proof of (V1)

It is sufficient to prove that φ0(it) > 0 and ψI(it) > 0 for all t > 0. The first of these claims
follows immediately from the standard identities [10, pp. 20, 21, 49]

E3
4 − E2

6 = 1728q2
∞∏
n=1

(1− q2n)24, (3)

E2E4 − E6 =
3

2πi

dE4

dz
= 720

∞∑
n=1

nσ3(n)q2n, (4)

which imply that both E3
4 −E2

6 and E2E4 −E6 take positive real values on the positive imaginary
axis.

For the claim about ψI(it), recall Jacobi’s identity θ42 + θ44 = θ43 (see [10, p. 28]), and set
λ(z) = θ42/θ

4
3 = 1− θ44/θ43 (the modular lambda function [10, p. 63]). It is clear from these defining

relations of λ(z) that for t > 0, λ(it) takes real values in (0, 1). Now note that

1

128
ψI =

θ43 + θ44
θ82

+
θ44 − θ42
θ83

=
1

θ43
· θ

8
3 + θ43θ

4
4

θ82
+

1

θ43
· θ

4
4 − θ42
θ43

=
1

θ43

(
1

λ2
+

1

λ
· 1− λ

λ
+ (1− λ)− λ

)
=

1

θ43

(1− λ)(2 + λ+ 2λ2)

λ2
.

Since the function x 7→ (1−x)(2+x+2x2)
x2

is positive for x ∈ (0, 1), and since θ3(it)
4 > 0 for t > 0, we

get the claim that ψI(it) > 0. �

3. Proof of (V2)

We will make use of the standard modular transformation properties [9, pp. 996–997]

θ2(z + 1)4 = −θ2(z)4, θ2(−1/z)4 = −z2 θ4(z)4, (5)

θ3(z + 1)4 = θ4(z)
4, θ3(−1/z)4 = −z2 θ3(z)4, (6)

θ4(z + 1)4 = θ3(z)
4, θ4(−1/z)4 = −z2 θ2(z)4, (7)

E2(z + 1) = E2(z), E2(−1/z) = z2E2(z)−
6iz

π
, (8)

E4(z + 1) = E4(z), E4(−1/z) = z4E4(z), (9)

E6(z + 1) = E6(z), E6(−1/z) = z6E6(z). (10)

Using (8)–(10), a simple calculation shows that

z2φ0(−1/z) = 1728

[
(E2E4 − E6)

2

E3
4 − E2

6

z2 − 12i

π
· E4(E2E4 − E6)

E3
4 − E2

6

z − 36

π2

(
E2

4

E3
4 − E2

6

)]
.
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(This is a slightly simplified version of Eq. (29) from [9].) Similarly, with the help of (5)–(7) we see
that

z2ψI(−1/z) = −128

(
θ43 + θ42
θ84

+
θ42 − θ44
θ83

)
.

We will separate the proof of (V2) into two parts, proving separately that

B(t) > 0 for t ≥ 1 and t2B(1/t) > 0 for t ≥ 1,

that is, equivalently, that

π2

36
t2φ0(i/t) < ψI(it) for t ≥ 1 and

π2

36
φ0(it) < t2ψI(i/t) for t ≥ 1.

It is convenient to clear the denominators in each of these inequalities by multiplying both sides
by E3

4 − E2
6 , which is also equal to 27

4 (θ2θ3θ4)
8 by a well-known identity. [10, p. 29] We therefore

define

f(z) =
1

864
· π

2

36
(E3

4 − E2
6)φ0(z) =

π2

18
(E2E4 − E6)

2, (11)

f̃(z) = − 1

864
· π

2

36
(E3

4 − E2
6)z2φ0(−1/z)

= −π
2

18
(E2E4 − E6)

2z2 +
2πi

3
E4(E2E4 − E6)z + 2E2

4 , (12)

g(z) = − 1

864
(E3

4 − E2
6)z2ψI(−1/z) = θ82(θ123 + θ42θ

8
3 + θ42θ

8
4 − θ124 ). (13)

g̃(z) =
1

864
(E3

4 − E2
6)ψI(z) = θ84(θ123 + θ44θ

8
3 + θ82θ

4
4 − θ122 ). (14)

By the above remarks, in order to deduce (V2) it will be sufficient to prove the following inequalities:

f(it) < g(it) for t ≥ 1, (V2-I)

f̃(it) < g̃(it) for t ≥ 1. (V2-II)

As a final bit of preparation, recall the known explicit evaluations

E2(i) =
3

π
, E4(i) =

3Γ(1/4)8

64π6
, E6(i) = 0, (15)

θ2(i) =
Γ(1/4)

(2π)3/4
, θ3(i) =

Γ(1/4)√
2π3/4

, θ4(i) =
Γ(1/4)

(2π)3/4
. (16)

Here, Γ(·) denotes the Euler gamma function. (The numerical value of Γ(1/4) is approximately
3.62561. [3]) For the proof of (16), see [2, p. 325], [6, eq. (2.21), p. 307]. The identity E2(i) = 3/π
is an immediate consequence of (8). The relation E6(i) = 0 is proved in [1, p. 40], and the formula
for E4(i) follows from (16) and the identity E4 = 1

2(θ82 + θ83 + θ84), proved, e.g., in [10, p. 29]; see
also [8, p. 290].

3.1. Proof of (V2-I). The functions f(z), g(z) have Fourier expansions

f(z) = 28800π2q4 + 1036800π2q6 + 14169600π2q8 + . . . =:
∞∑
n=4

anq
n, (17)

g(z) = 20480q3 + 2015232q5 + 41656320q7 + . . . =:
∞∑
n=3

bnq
n. (18)

The coefficients an in (17) are nonnegative: this is immediate from (4). Similarly, we have bn ≥ 0
for all n. To see this, let γ(z) = θ82θ

12
3 +θ122 θ

8
3, and observe that, by (5)–(7), g(z) can be represented

as

g(z) = γ(z)− γ(z + 1). (19)
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The Fourier coefficients of γ are manifestly nonnegative, and, since the substitution z 7→ z + 1
corresponds to replacing each occurrence of q by −q in the Fourier series, the relationship (19)
means that the Fourier expansion of g consists of twice the odd terms in the Fourier expansion
of γ, and therefore also has nonnegative coefficients.

From the above remarks it now follows that the function t 7→ e3πtf(it) =
∑∞

n=4 ane
−π(n−3)t is a

nonincreasing function of t. Using (15), we then get for all t ≥ 1 the bound

e3πtf(it) ≤ e3πf(i) = e3π
π2

18

(
3

π

3Γ(1/4)8

64π6
− 0

)2

= e3π
9Γ(1/4)16

8192π12
≈ 13130.47. (20)

On the other hand, by (18) and the observation about the nonnegativity of the coefficients bn, the

bound e3πtg(it) = 20480 +
∑∞

n=4 bne
−π(n−3)t ≥ 20480 holds for all t > 0. Combining this with (20)

gives (V2-I). �

3.2. Proof of (V2-II). In a similar vein, we examine the q-series expansions of f̃(z), g̃(z) and their
properties. From (12) and (14), we obtain expansions of the forms

f̃(z) = 2 + (480πiz + 960)q2 + (−28800π2z2 + 123840πiz + 123840)q4

+ (−1036800π2z2 + 3150720πiz + 2100480)q6 + . . . =:

∞∑
n=0

cn(z)qn, (21)

g̃(z) = 2 + 240q2 − 10240q3 + 134640q4 − 1007616q5 + . . . =:
∞∑
n=0

dnq
n. (22)

Here, (22) is a conventional Fourier series, whereas (21) is a more unusual expansion in powers of
q = eπiz in which each coefficient cn(z) is itself a quadratic polynomial in z. It is convenient to
renormalize these expressions, defining new functions

F̃ (z) = − f̃(z)− 2

q2
= −

∞∑
n=2

cn(z)qn−2

= (−480πiz − 960) + (28800π2z2 − 123840πiz − 123840)q2 + . . . , (23)

G̃(z) = − g̃(z)− 2

q2
= −

∞∑
n=2

dnq
n−2 = −240 + 10240q − 134640q2 + 1007616q3 + . . . . (24)

The inequality (V2-II) can now be restated as the claim that G̃(it) < F̃ (it) for all t ≥ 1. This will
follow from the combination of the following two lemmas.

Lemma 2. G̃(it) ≤ 288 for all t ≥ 1.

Lemma 3. F̃ (it) ≥ 468 for all t ≥ 1.

The following auxiliary claim will be used in the proof of Lemma 2.

Lemma 4. We have (−1)ndn ≥ 0 for n ≥ 0.

Proof. By (5)–(7), the function g̃(z + 1) =
∑∞

n=0(−1)ndnq
n can be written as

g̃(z + 1) = θ123 θ
8
2 + θ83θ

12
2 + θ123 θ

8
4 + θ83θ

12
4 . (25)

The claim is that the Fourier series of this function has nonnegative coefficients. This fact was
proved by Slipper [7, p. 76], who deduced it from a certain identity representing the function on
the right-hand side of (25) in terms of the theta series of a certain 20-dimensional lattice, known
as “DualExtremal(20,2)a”. Here is a self-contained proof that only uses elementary properties of
the thetanull functions. Denote for convenience

Z = θ43, X = θ42, Y = 2Z −X.
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Then X and Z have Fourier series with nonnegative coefficients, and, again recalling the identity
θ42 + θ44 = θ43, we see that Y = θ43 + θ44 = θ3(z)

4 + θ3(z + 1)4 (recall (6) above), so the Fourier series
of Y also has nonnegative coefficients. Now, observe that g̃(z + 1) can be expressed as

g̃(z + 1) = Z3X2 + Z2X3 + Z3(Z −X)2 + Z2(Z −X)3

=
1

16

(
6X5 + 15X4Y + 10X3Y 2 + Y 5

)
,

and therefore also has nonnegative Fourier coefficients. �

Proof of Lemma 2. Define

H(z) =
G̃(z)− G̃(z + 1)

2
=
∞∑
m=1

(−d2m+1)q
2m−1 = 10240q + 10007616q3 + . . . . (26)

Two crucial properties of H(z) are: (a) the function t 7→ H(it) =
∑∞

m=1(−d2m+1)e
−π(2m−1)t is

nonincreasing (each summand is nonincreasing, by Lemma 4); and (b) G̃(it) + 240 ≤ H(it) for all
t > 0 (this follows from Lemma 4 together with the observation that the constant coefficient in (24)
is −240). Now note that, by (5)–(7), (14), and (24), H(z) can be expressed explicitly as

H(z) = −1

2
q−2
[
θ84(θ123 + θ44θ

8
3 + θ82θ

4
4 − θ122 )− 2− θ83(θ124 + θ43θ

8
4 + θ82θ

4
3 + θ122 ) + 2

]
=

1

2
q−2

(
θ82θ

12
3 + θ122 θ

8
3 + θ122 θ

8
4 − θ82θ124

)
=

1

2
q−2

(
θ82(θ123 − θ124 ) + θ122 (θ83 + θ84)

)
.

Therefore using the evaluations (16) we get that for all t ≥ 1,

G̃(it) ≤ −240 +H(it) ≤ −240 +H(i)

= −240 +
1

2
e2π
(

Γ(1/4)

(2π)3/4

)20 (
(21/4)12 − 1 + (21/4)8 + 1

)
= −240 +

1

2
e2π

Γ(1/4)20

(2π)15
(8 + 4) = −240 + 6e2π

Γ(1/4)20

(2π)15
≈ 287.02, as claimed. �

Proof of Lemma 3. We strategically separate F̃ (z) into three components, defining

F̃1(z) = −480πiz + (28800π2z2 − 123840πiz − 123840)q2, (27)

F̃2(z) =
π2

18
q−2(E2E4 − E6)

2z2 − 2q−2(E2
4 − 1) + (−28800π2z2 + 123840)q2, (28)

F̃3(z) = −2πi

3
q−2E4(E2E4 − E6)z + (480πiz + 123840πizq2), (29)

so that, by (12) and (23), we have

F̃ (z) = F̃1(z) + F̃2(z) + F̃3(z). (30)

We now make the following elementary observations:

(a) The function t 7→ F̃1(it) is monotone increasing on [1,∞),

Proof. Assume that t ≥ 1. A trivial calculation gives that

d

dt

(
F̃1(it)

)
= 480πe−2πt

(
e2πt + 120π2t2 − 636πt+ 774

)
≥ 480πe−2πt

(
e2π + 120π2t2 − 636πt+ 774

)
.

The last expression is of the form e−2πt times a quadratic polynomial in t, which, it is easy to

check, is positive on the real line. Thus, we have shown that F̃ ′1(t) > 0 for t ≥ 1, which proves
the claim.
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(b) The function t 7→ F̃2(it) is monotone increasing on [1,∞).

Proof. Let (αn)∞n=2 and (βn)∞n=1 be the coefficients in the Fourier series

(E2E4 − E6)
2 =

∞∑
n=2

αnq
2n, E2

4 − 1 =

∞∑
n=1

βnq
2n.

Clearly αn ≥ 0 (see (4)) and βn ≥ 0 for all n. One can also easily check that α2 = 518400
and β2 = 61920. Then, on inspection of (28), we see that

F̃2(it) = −2β1 +
∞∑
n=3

(
−π

2

18
αnt

2 − 2βn

)
e−π(2n−2)t.

(The summand associated with n = 2 is precisely cancelled out by the term (−28800π2z2 +
123840)q2 in (28).) Now for each n ≥ 2, the nth summand in this series is easily seen to be

an increasing function of t for t ≥ 1
(n−1)π , so in particular for t ≥ 1. Thus t 7→ F̃2(it) is also

increasing for t ≥ 1.

(c) F̃3(it) ≥ 0 for all t > 0.

Proof. Let (δn)∞n=1 be the coefficients in the Fourier series E4(E2E4−E6) =
∑∞

n=1 δnq
2n. Then

δn ≥ 0 for all n, and we have δ1 = 720 and δ2 = 185760. Referring to (29), we then see that

F̃3(it) =
2πt

3

∞∑
n=3

δne
−π(2n−2)t ≥ 0,

since the summands associated with n = 1, 2 are cancelled by the term (480πiz+ 123840πizq2)
in (29).

Finally, combining (30) with the observations (a)–(c) above, we get that for t ≥ 1,

F̃ (it) ≥ F̃1(it) + F̃2(it) ≥ F̃1(i) + F̃2(i)

= 480π + 123840e−2π + e2π
(
− π2

18
(E2(i)E4(i)− E6(i))

2 − 2(E4(i)
2 − 1)

)
= 480π + 123840e−2π + e2π

(
2− 45Γ(1/4)16

8192π12

)
≈ 468.39, as claimed. �
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