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Abstract

Szekeres proved, using complex analysis, an asymptotic formula for
the number of partitions of n into at most k parts. Canfield discovered a
simplification of the formula, and proved it without complex analysis. We
reprove the formula, in the asymptotic regime when k is at least a constant
times v/n, by showing that it is equivalent to a local central limit theorem
in Fristedt’s model for random partitions. We then apply the formula to
derive asymptotics for the number of minimal difference d partitions with
a given number of parts. As a corollary, we find (explicitly computable)
constants ¢4, B4, Y4, 04 such that the number of minimal difference d par-
titions of n is (14 0(1))can™ %/ exp(B4/n) (a result of Meinardus), almost
all of them (a (1+o0(1))-fraction) have approximately y44/n parts, and the
distribution of the number of parts in a random such partition is asymp-
totically normal with standard deviation (1 4 o(1))oqn'/*. In particular,

72 = VI5 log[(1 + V5)/2/m.

1. Introduction

Let p(n, k) be the number of unordered partitions of n into exactly k parts. Let
P(n,k) = E?Zl p(n, j) be the number of partitions of n into at most k parts, or
equivalently the number of partitions of n into parts all of which do not exceed
k. Hardy and Ramanujan [7] proved the famous asymptotic formula

(1) P(n, 00) ~ 4\}§ne’r\/m

for the total number of all partitions, where a,, ~ b, means lim,_,o a, /b, = 1.
Some 35 years later, Szekeres [11] derived an asymptotic formula for P(n, k). A
few years ago, Canfield [2] discovered a simpler way to write the formula. This
is easiest to understand when k is approximately a constant ¢ times v/n. The
formula then takes the form

2)  P(n,tvn) ~ ?emtwﬁ



where G(t) and H (t) are functions defined as follows: For 0 < z <1, let

. e dt ™
Lio(a) = [ —log1-0% = > 7
0

m=1

be the dilogarithm function. Define a function a : [0,00] — [0,7/v/6] by the
implicit equation

a(t)? = Lig(1 — e M)
a(t) is an increasing function that satisfies a(0) = 0, a(c0) = m/v/6. Then G(t),
g(t) and H(t) are given by

_ a(t)
G(t) = 272 — (£ + 2)e 2|12

H(t) = 2a(t) — tlog(l — e 1Y)

Define also
g(t) = e~ DGt

One can obtain from (2) also an asymptotic formula for p(n, k), namely
t
@ ol Vi) ~ Lo

Theorem 1. As n — oo, (2) holds uniformly for t € [T, 0] for every T' > 0.
(3) holds uniformly as ¢t ranges over compact subsets of (0, 00).

Szekeres’s proof of Theorem 1 used complex analysis and the saddle point
method, and required considerable analytic insight, especially given his more
complicated formulation of (2). As well as simplifying it, Canfield reproved (2)
without recourse to complex analysis, by using only the recurrence equation
satisfied by P(n, k) and elementary real analysis. Our first main goal in this
paper is to give a new probabilistic proof of Theorem 1. QOur proof uses Frist-
edt’s conditioning device for random partitions [6]. We show that the proof
of (2) reduces to proving a local limit theorem in Fristedt’s model. We then
apply the standard methodology of probability theory, namely representing the
probabilities as inverse Fourier integrals. This is formally equivalent to the use
of contour integration and the saddle point method in Szekeres’s paper, but in
our opinion the probabilistic outlook gives important insight into the technique.
A similar use of local limit theorems can be found, e.g. in [6], [9], [3].

The form of the functions G(t), g(t) and H (t) may seem unwieldy. Our sec-
ond main goal in this paper is to show that it is nevertheless possible to extract
useful information from them. We describe an application to the asymptotics
of minimal difference partitions: For d € N, a minimal difference d partition is
a partition Ay > Ay > ... > A such that Vi A\; — A;41 > d. Note that ford =1
these are just partitions into distinct parts. Let g4(n) be the total number of



minimal difference d partitions of n, and let g4(n, k) be the number of minimal
difference d partitions of n into exactly k parts. Then we have the formula

k—1
. k
J:
since the mapping (A\;)%_; — (\; —d(k —i))¥_, gives a bijection between the set

of minimal difference d partitions of n into k parts and the set of partitions of
(n — dk(k —1)/2) into k parts. (3) may now be used to prove:

Theorem 2. For each d € N we have as n — oo, uniformly as ¢ ranges over
compact subsets of (0,/2/d):

5) g, [tv/n]) ~ de(t)eKd(tw

where

1

t dt t
R Ik <\/1 - dt2/2> P (2 T <\/1 - dt2/2>>
Kau(t) = /1—dPj2 H (4)

V1—d2]2

Theorem 3. For each d € N, define yy as the unique solution in the interval
(0,1) of the equation

(1-yi=y
Define
8 2Lis(yq) + logya - log(1 — ya)
- . 1/2
(Lis(ya) + 2 log*(1 — ya)) "/
- —log(1 — ya)
. 1/2
(Lis(ya) + $1og”(1 — ya)) "/
1
o =
! (—K} (7a)1/?
Cq = kd(’Yd)V 271’0,1
Then

(a) (Meinardus [8], see also [1], example 8, p. 99)

~ G Bavn

qd (TL) n3/4



(b) A “typical” minimal difference d partition of n has approximately yisv/n
parts. That is, for any € > 0,

lim
n—00 @4 n)

Z Qd(n; k) =1
[k—vavn|<ev/n

(c) The number of parts in a random minimal difference d partition of n has
asymptotically the normal distribution with expectation y4/n and standard
deviation o4n'/%. That is, for any u € R,

_z2/2d.7]

1 1 w
S k) — —— / e
Qd(n) k< yan/mtuoani/s n—=00 /21 J_o

The first few values of cq, 84,74, 04 are shown in Table 1 below. The explicit
values for d = 1,2 are derived using elementary properties of the dilogarithm
function. The case d = 1 of Theorem 3(a) is the well-known fact ¢;(n) ~
(4 - 3'/%)~ exp(m\/n/3) proved by Hardy and Ramanujan [7]. The result that
almost all partitions of n into distinct parts have about (v/12log(2)/7)+/n parts
was first proved by Erdos and Lehner [5]. The case d = 2 of Theorem 3(a)
is in accordance with (and can be deduced from) the first Rogers-Ramanujan
identity, which states that ¢2(n) is equal to the number of partitions of n into
parts which are congruent to 1 or 4 modulo 5. The result that a typical minimal
difference 2 partition has approximately (v/15log[(1 + v/5)/2]/7)\/n parts is
apparently new. In a forthcoming paper [10] we show a new method of deriving
this result, based on the computation of stationary probabilities for a certain
Markov chain. The method gives more general results on the “limit shape” of
this class of partitions, i.e. the function of s which gives the “typical” number
of parts which are greater than s/n in a random minimal difference 2 partition.
Also, see [4] for a recent work on classes of partitions defined by inequalities (of
which minimal difference partitions are an example).

Table 1: Values of ¢4, B4, 74 and oq4

d Cd Ba Yd Od
1 T V12 log 2
1] S = Vizlog2 0.478815...
2 | 0.216122... o Vislog[(1+v5)/2] | ) 351859...
15 T
3| 0.231676... | 1.505235... |  0.507887... | 0.294510...
4| 0.242867... | 1.42124... 0.453526... | 0.259883...
5| 0.251663... | 1.35607... 0.414727... | 0.236017...

In the next section, we outline the steps required for the proof of Theorem
1. In section 3 we complete the proof, and in section 4 we show how Theorems
2 and 3 follow as easy corollaries to Theorem 1.
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2. Theorem 1 - Preparation for the proof

In the next two sections, we use the following notation:

o] k
F@) =Y Pk =[] 7= (el <)
n=0 7j=1

is the generating function for P(n, k), k fixed. Let t € (0,00] be fixed, and
denote

All our estimates will be uniform in ¢ for ¢ > T > 0. Therefore we may assume
for simplicity of notation that ¢ varies slightly with n in such a manner that
t\/n is always an integer.

We now describe a version of Fristedt’s probabilistic model for partitions [6]:
Fix0 < z < 1and k € N. Define independent random variables Ry, R», R3, ..., Ry,
such that R; + 1 has geometric distribution with parameter 1 — 2. More pre-
cisely

Por(Rj=0)=(1-2h2" 1=0,1,2,..

where P, ; denotes probability, with parameters z and k. Let N = Ele JR;.
Then (Ry, Ra, ..., Ri;) can be thought of as the frequential coding of a random
partition of the (random) integer N into parts not exceeding k, i.e. the partition
in which 1 appears R; times, 2 appears Ry times, etc. For any (nonrandom)
partition

n=1-r+2-r9+...4+k-rg

of n into parts not exceeding k, given in frequential coding, the probability of
it appearing in the random model is

k

Ppp(Bi=r1,Ry =12, Rp =1p) = HPz,k(Rj =rj) =
j=1

k n
JYpiti) — T
:jl;ll((l—:c):c )_Fk(m)

Therefore the probability that N = n is a sum over all P(n, k) different parti-
tions of n into parts not exceeding k, of this quantity, namely

P(n,k)x"

Pz,k(N:n): Fk(ﬂf)



This is the key observation that we will require for our proof; we have con-
structed a random variable whose value probabilities are related to P(n, k) in
a relatively simple way. Furthermore, this random variable is a sum of lattice
random variables, and thus we can expect it to be an approximately normal
lattice random variable and satisfy a local limit theorem.

The proof of (2) will now follow from the following propositions:

Proposition 1. Asn — o
log Fi, () = (a(t) — tlog(1 — e~®t)) /m — i log n+

1 t
+§ log (27r(1 i(’(e)‘l@)t)) +o(1)

Proposition 2. For choice of parameters z,,, k,, N is a random variable with

expectation
1
B ka(N) =7 (1 +0 (%))

2 t2 e—a(t)t
2 N~ |2 - - 3/2
Tenn (V) (a(t) a(t) 1= ea(t>t> "

Proposition 3. For choice of parameters ., k,, the random variable N “sat-
isfies a local limit theorem at 07, that is

and variance

(N:n),\,;

P,
ok V2rog, k. (N)

n

as n — o0.

In the next section we prove these claims. To see that (2) follows from them,
write

P(n,k,) = z," - Fy, (xn) - Py, k..

1/2
. a(t) 1 (a-tiogti—e—=0y i) |
27(1 — e—a(t)t) nl/4

o -1/2
(L (2 2 e no8/1) =
V27 \a(t)  a(t)1—ea®t
a(t) a(t—tlog(i—e=2®t)yn _ GO m@yn
27[2 — (#2 + 2)e~*(Dt]1/2 n

(3) follows easily from (2) using the relation p(n, k) = P(n — k, k) together with
the equation (which is easy to verify)

(N =n) ~ ea®vn,

(6) - %tH(t) + %t2H’(t) = —ta(t).



3. Proof of the propositions
3.1. Proof of Proposition 1

We use Euler-Maclaurin summation: Denote as usual {z} = 2 — |z], then

log Fi, (zn) = log F, (e~ *(/V™) Zlogl—e (0i/v7y =

VG
_ / —log(1 — e~ eOu/VA )du+2( log(1 — e @®/VA) _log(1 — ¢ Oty) 4
1

tVn _g—a(t)u/vn
+/ e QN (1) 1Y g, =
\ 1— e alu/vn

a(t)t
= vn / —log(l —e™¥)dv — 1log(l —eme/Vny _ 1log(l — e
a(t) Jaw/vn 2 2

[ e (assat) - §) o=

(t)/yn 1 —€7"

\§

: —Q ]' —Q n ]' —Q
5 (Lia (e —al)/vVn) _Liy(e <t>t))_§1og(1_e )/ vn )~ 5log(1—e (0t

- n/c:t()t/)j/ﬁ 1 i_ev*v ({\/ﬁv/a(t)} - %) dv

Recall that the dilogarithm function satisfies the identity

L

2
Lis(z) + Lio(1 — ) = % —logz -log(1 — x),

which is easily verified by differentiating both sides. Denote

Lo = [ 1o (- ) a

s

1
(1) L(s) 02 log(2m) — 1
uniformly in z for z > X > 0. Assuming this, for the moment, we have

. — n t —Q n
log Fy, ( ):% —Lix(1—e (t)/‘/_)—k%log(l—e ®/vry 4

+Lig(1 — e~ M) — a(t)tlog(1 — e~

_% log(1 — e—a(t)/\/ﬁ) _ %log(l _ e—a(t)t) t)t( alt )/\/_)



Lio(1 — e—()t
=/n (—12( a(tt?) ) _ tlog(l — e_a(t)t)) +
—a(O/vry _ L op(1 — e=a®ty _ 1100 1=
)_§Og( —e )—§0g(7f)+0()—
_— (a(t) ~tlog(1 — e—a“)t)) +

+5 (log(a(t)/v/n) — log(1 — e~ *(1) — log(2r) ) +o(1) =

1
—|—§log(1 —e

l\DIb—l

=vn (a(t) —tlog(1l — e_a(t)t)) — ilogn + %log (%) +0(1)

which was the expression we wanted.

Proof of (7). To prove (7) and thus finish the proof of Proposition 1, write
I.(s), in the range z > X, as

o= (s -5)wr

[ [ 1) s e o] (- 1)

The second integral is a scalar product in L ([0, 00)) of the saw-tooth function
{v/s} — 1/2 with a bounded, square-integrable function, and so can easily be
seen to converge to 0, with the required uniformity in z, as s \, 0 (this is a
version of the Riemann-Lebesgue lemma). For the first integral, we compute

[X/s] (k+1)s 1
/ ({v/s}——)dv—Z/ (——k—%)varO(s):
[X/s]
= Z ( (k‘—l— ) log((k + )/k)) +0(s) = | X/s] — %log(LX/sJ +1)+

k=1

[X/s] [X/s]+1

+ Z klogk — Z (k—1)logk+ O(s) =
k=1 k=2

= [X/s] = %log(LX/SJ +1) +1log(|X/s]!) — [ X/s]log(|X/s] +1) + O(s)

1
) log(2m) — 1

sN\0

by Stirling’s formula. ]



3.2. Proof of Proposition 2

We use the simple probabilistic facts that if X is a random variable such that
X + 1 has geometric distribution with parameter 0 < p < 1, that is

PX=0)=p1-p' 1=0,1,2,3,..

then
o) . 1— p
E(X) =Y ip1—p) = —=F
1=0 p
> 1-p 2 1= p
200 =3 rpa - - (22) =12
—0 p p
Now with choice of parameters x,, k,, N = Zj;l JR;, so
kil i x] n ]_ .] e_a(t)J/\/H
n,kn( ) ‘7-:21]1—1'% = n\/ﬁl_e—a(t)J/\/ﬁ

The sum is a Riemann sum, with Au = 1/4/n, for the integral
1_e—alt)t

t —a(t)u _ _ in(1 — e—a(t)t
/ ue du = 1 / log(1 —v) do — Lio(1—e ) _1
o 1—e-atu a(t)? Jo v a(t)?

The difference between the Riemann sum and the integral is easily seen to be

O(1/y/), 0

By, k (N) =n(14+0(1/v/n))

Similarly, the variance
j Fn i\ 2 —a(t)i/vn
sy Nm e T s L () e N
O kn (N) = Z] Tz n ]:21 Vi \Vi) —eamilvyp

t 2 ,—a(t)u
opdz [ e
n A (1 _ efa(t)u)Q du

The integral can be evaluated to be
/t uZe—(u du— L /le_a(m log(1 —v) dr —
o (L= ema2 ™ = a7 Jy 2
v=1—e~ ()t

= ﬁ [QLig(v) - l%v log®(1 — v)] L =

) 2 efa(t)t
Talt)  alf)1—e e

_ 1 [2L12(1 — e 2t _ o(t)%?

efa(t)t
a(t)? ]

1 — e—a(®)t



3.3. Proof of Proposition 3

We now reach the most delicate part of the analysis, namely the proof of the
claim that N satisfies a local limit theorem at 0. The idea is to use Fourier
inversion. Denote by ¢ 1(s) = E; r(e®") the characteristic function of N for
parameter choice x, k. Then

_ > _ ins > P(n, k)z" ins _ Fp(ze®)
¢$7k(8) - ;P.Z,k(N - n)e - 7;) Fk((l’}) € - Fk(.Z') ’

and using Fourier inversion we get what is really a disguised contour integral

1 [7 »
Popen (N = 1) = 5- - Prn kn (8)e7 " 0ds =
]_ MOy kn (N) . / (N)
— N —iNU/Tep, kn d
27T0wn,kn (N) /;ﬂ'dz,n’kn (N) d)w"’kn (U/Umﬂukn ( ))e v

So it is enough to prove that

TO e kn (V) X
(8) / G on (W] Oz, ko (N))e_m“/"”"”“" My —— V2r

— MOy kp (V) n— 00

Indeed, probabilistic thinking leads us to expect that for any u € R,

(9) ¢wn,kn (U/a'zn,kn (N))e*i"u/dm",k" (N) m efu2/2’
which will give us (8) if we can prove some additional boundedness estimates.
Note that (9) is equivalent to the claim that N satisfies a (non-local) central
limit theorem, i.e. that (N —n)/og, k., (N) — N(0,1) in distribution as n — oo.
This can be deduced e.g. by using the Lindeberg-Feller central limit theorem
for triangular arrays. Instead, we give a direct proof. First, we need a technical
lemma:

Lemma 1. For0<zx<1,s€R, let

11—z T 1 T
=1 : —3 - 2
f(s) Og(l—e”w) Zl—xs+ 2(1—.13)28

Then there exists a constant C' > 0 such that

a|s|*

(1—z)?

Proof. First, consider the case |s| < (1 —z)/2:

lfa(s)] < C 0<z<1,s€R)




_ k1,5 | k. 1 2 w1 k1.5 | &
_Z_! 2-7 Sk =15 2(1—x)28+ ! k!zj s
j k= j=1

So that

o0

o) <D0 %Za"“—lxi sl <> Z G+ +k=227 | |s|° =
T k=3 =

_y s iz( 5| )k_§|8|3/(1—w)3
k:3k 1—:1: =3 \l-x 31— |s]/(1—x)
When |s| < (1 — z)/2 this gives us |f.(s)| < 2z|s|3/3(1 — z)3. Next, for |s| >
(1 —z)/2 we have

I A

.z +1 z 9
Tz T 2a 22

zls]® 1 zlsP 1
“1-zs? (1-2x)?%]|s

z|s|?

(1-=)%’

<@+2)

so it remains to prove

g (15 )| < ol s> o)

xets (1—-2x)3

For |s| > 1/4, clearly

1— S
log(l_ L )‘SZ%Ie”S—HS—?log(l—w)S

meZS
=1

3
, < on or 2l
<c(1_ 5 SO

Finally, for 0 < (1 —)/2 < |s| < 1/4 (which implies in particular 1/2 <z <1,)

1-= T, s
log (1 —xe”) log (1 1 _m(e ))
—log<1—

where we denote S = 25sin(s/2)z/(1 — z). We have

T 9ieis/? sin(s/Q)) = —log(1 —ie®/29),
—z

1 x s x
— < — < <
40_1—1'10_'5'_1—37

and therefore, since 7/2 — 1/8 < arg(iSe**/?) < 7/2 4+ 1/8,

|s]

1- .y ERY zsf?
- % — _ is/2 <c"sP <o | 12 < n
10g(1_$ez.s>‘ |log(1—1iSe*/?)| < C"|S]P < C (1—33) <20 E

11



Proof of (9).
108 (6t (/72 (V)00 10 80 =
nu

= log Fkn (xneiu/am" oo (N)) - lOg Fkn ("En) - W =
O kn

kn ; .
1—a! mnu
= E log . o - =
= 1 — zleiit/Ten iy (N) O ko (V)

kn kn . s
. . jxd, u
:E i (Ju/oz, by (N)) +i E —-n| —
= fw,. (.7 / k ( )) (j:l 1— w% ) O kon (N)

= 1—x5
, u u? —1/4 u?
= Z(Ezmkn (N) - TL) Ton ko (N) - 7 + Rn(u) = 0(” )u - ? + Rn(U),
where
Ral = |3 oy Gufonin )| < -80S 850 st
u)| = i (Ju/og, k., < E— =u n=/%),
n P 23, z Ugn,kn (N) et (1—2d)3
since i i
DAL T (L)g e O
j=1 (1 - xiz)s j=1 \/ﬁ \/ﬁ (1 - e_a(t)j/\/ﬁ)3
t 3 —a(t)v
9 vie
n /0 (1 _e—a(t)v)3dv
so altogether we have shown that for all w € R
2
—inu/0gz, ky (N) _u_
10g (e o (/0 0 (N))e ) — -5

Proof of (8). To prove that (8) follows from (9), note first that for |z| < 1,

12



so for z = zpets/ VR,

o~ =

(o (80| = \

kn
=exp (Z (Re(2?) — 2%) + Re

Jj=1

oo
=2

kn
(2 — :cﬂ <
J=1

(Z Re(2?) — 2%, ) =exp (Zx’ (cos( _78/\/_)—1)>

7j=1

kn
= exp (—\/ﬁ Y eIV~ cos(jswﬁ))%>

j=1

Around s = 0 the Taylor expansion

k k .
n . 1 1 - i 21

—a(t)j/Vrq — ; - —at)j/vmd_ L 2 4
E e ( cos(gs/\/r_z))\/_ =3 (jgle " \/_> s“+ 0(s)

=1

holds uniformly in n, since the coefficient of s2* is asymptotically

k— t
(_(;-I)g)' ! / e—a(t)uUdeu_
- 0

Therefore for s in some neighborhood [—Sy, Sp] of 0, we have for some A > 0

(10)  [¢a, .k, (s/v/n)| < exp(=Av/ns?)

For |s| > So, it is easy to check that for some B > 0 not depending on n and
not depending on ¢ for t > T,

k

3 e OIVEQL — cos(js/ Vi)

i=1

Si-
%

(approximate the sum by an integral, and take B = %inf s|>So fOT e~/ ‘/6(1 -
cos(su))du > 0.) This leads to the estimate

(11)  |za,ka (8/v0)| < exp(=Bv/n), (|s| > So)
Now (8) follows readily from (10) and (11), because

TO2p kn (N) .
/ B ton (W] T o (N)) e~ Tomotn (V) iy, —
— MOy kp (V)

N / Bt (1] Ty o ())& T b (N iy
IVAU/0ap k| <So

+/ ¢znakn (U/O'mn,kn (N))efinu/om",k" ™ du
So<| Vw0, ki | <72y Jor (N)

13



In the first term, the integrand is dominated by exp(—A(n®/?/o2 , (N))u?) =
exp(—A'u?), therefore this term converges to /27 by the dominated convergence
theorem. The second term is bounded in absolute value by

2704, k., (N)exp(—By/n) —— 0
n—oo

4. Proofs of Theorems 2 and 3
4.1. Proof of Theorem 2
Use (4):

qd(n,t\/ﬁ) =p (n _ M’t\/ﬁ) — p(n',t'\/ﬁ) ~ %eH(t')\/ﬁ,

where
dt? dt dt
r— —_— —_— = - 2 Py —
n =n 2n+2\/ﬁ n(1 dt/2)<1+2(1—dt2/2)\/ﬁ>

t dt 1/
t'=ty/n/n' = {1+ )
"= =g ( N
(Again, it may be checked that assuming that the relevant quantities are integers
does no harm.) Now we have

' t
g(t') ~g (m)
dt +1/2 dt
(1 taao dt2/2)¢ﬁ> = —arp)ve

Therefore

H(tl)m: vny/1 —dt?/2 (1 + 4(1—;;% +O(1/n)> .

+0(1/n)

t ) t dt? _
(H <\/1_7 M) - <m> aa—aers O ")> i
2 ¢ n
:< 1—dt /2H<m>>f+

dt t dt? / ¢ B

dt t
= Kt S o <\/1 - dt2/2) +OW/vn)

(using (6).) This implies (5). [ |

14



4.2. Proof of Theorem 3

We begin by showing that 74, 84 are the coordinates of the global maximum of
the function Ky(t). Introduce auxiliary variables

t

T = — y=1—e )2

V1—di2]2
Then we have

. Gt )}

1+dz2/2’ Liz(y)
logy - log(1 —
H(z) = 2/Tin(y) + 8L 0e1 = ¥)
Lis(y)

2Lis(y) + logy - log(1l —y)
(Liz(y) + (d/2) log*(1 — )"
—log(1 —y)
(Liz(y) + (d/2) log*(1 — ))'""?

Differentiating K4(t) as a function of the variable y now gives, after a lengthy
computation (which is best done by computer)

94 ) = V2 - (dlog(l —y) —logy) - (2yLia(y) — (1 — y) log2(1 — 1))
a(t) = | ‘
W (1—-y)-y-[dlog®(1 —y) + 2Lix(y)]3/2

Note that y is in the range 0 < y < 1. The function 2yLis(y) — (1 —y) log?(1—y)
is positive in (0,1) (its derivative is 2Liz(y) + log”(1 — )). It follows that the
critical point y4 is the solution of the equation (1 —y)¢ = y, and by substituting
t and K4(t) above one obtains the expressions for 4, 34 given in Theorem 3.

Theorem 3 will now follow by summing g4(n, k) over the appropriate range
of k’s, and expanding K (t) into a Taylor series around its critical point ¢ =
~v4- The only potential obstacle is the lack of complete uniformity in (5), that
prevents ruling out a significant contribution for g4(n, k) coming from very small
or very large values of k. Only an upper bound on g(n, k) is necessary, since in
the vicinity of the maximum point, where a lower bound might be necessary,
(5) holds uniformly. We will make use of the following lemma.

Kq4(t) =

t =

Lemma 2. For anyn € Nand ¢ >0,
P(n,ty/n) < e®Vn

Proof. Note that for any k € Nand 0 < = < 1, since Fi(z) = Y.,~ , P(n, k)z",
P(n,k)x™ < Fr(z),

or

log P(n, k) < —nlogz + log Fy,(x)
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Set k = ty/n and & = e~*/V™, Then
k ] t
log Fi(z) = — Zlog(l —27) < \/ﬁ/ —log(l —e™*)ds =
i=1 0

=/ (Lis(1) = Lis(e=t)) = v/ (M

u

—tlog(1 — e_“t)>

So
Liy(1 — e~ut
log P(n, k) < v/ (u =) e - e_”t)>
Setting u = a(t) gives the desired bound. [ |

We are now ready to conclude the proof. Write

Ka(t) = fa— gy (= 7" + O((t — 7)),

g
ka(t) = ka(va) + Ot — 7a),
both big-O’s being uniform in some neighborhood [y4 — €,74 + €] of 4. Let
mq = max{Kqy(t) : t € [0,/2/d]\ [va — €,7a + €]} < Ba

For an integer k = yg\/n + uogn/*, u € R, (5) gives

u/mn / u
qd(n,k) _ (1 + O( / 1 4))kd(7d) exp (/Bd\/ﬁ_ ; + 0(u3/n1/4)) —

n

= (1 + O(u3/n1/4)) —kdgjd)eﬁd‘/ﬁ Lemu/2

Summing over k, and using Lemma 2 outside [y4 — €, v4 + €] and the uniformity
in (5) inside gives

k u
Z qa(n, k) ~ dgﬁ—ad eﬁd‘/ﬁ/ e~ 24y
k<vav/n+uoanl/* e

Setting u = oo (this is permitted, again because of Lemma 2) gives

k V2o -
ga(n) = _ qa(n, k) ~ %eﬁd\r
[

This is Theorem 3(a). The ratio of the last two equations gives 3(c), which
implies 3(b). [ |
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