Roots of the Derivative of a Polynomial

Dan Romik

1. INTRODUCTION. The object of this note is to show a simple but amus-
ing result on the roots of the polynomial d/dz(z(z — 1)(z — 2)(z — 3)...(x — n))
that I discovered while working on explicit formulas for the Markov transform.
I describe the result and then mention briefly how it is related to this beautiful
subject. I hope that the interested reader will consult [2] or [3] for additional
information.

2. THE RESULT. Consider the polynomial p,(z) = z(x —1)(z — 2)...(x — n).
Its derivative has a root between each two adjacent roots of p,,, so we may write
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where the ay, 1, the fractional parts of the roots of p],, are between 0 and 1. A
plot of the a,, ; as a function of k reveals the following picture (in this example,
n = 30):
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Figure 1: Fractional parts of the roots of pj,.

Figure 1 suggests that for k£ properly scaled the a,  approach the graph of
some continuous function as n — oo. Indeed, this is true, and the function is
given by Theorem 1:

Theorem 1. For allt in (0,1),

. 1 1 1-—1t¢
nh_)rrgo Qn,|tn] = ;arccot (; log (T)) . (1)



Here, and later, arccot signifies the branch of the inverse cotangent function
taking values between 0 and 7, and |z| denotes the largest integer not greater
than z. Figure 2 shows the superposition of the function on the right-hand side
of (1) on the roots.
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Figure 2: Fractional parts of the roots of p}, and the limiting curve.

Proof. Let ¢ satisfy 0 < t < 1, and write kK = |¢-n]. The k + a, are the
solutions of the equation
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This equation for ay  cannot be solved explicitly (otherwise we would have
explicit expressions for o, k), but an asymptotic solution is easily obtained using
a well-known asymptotic formula, that is related to Euler’s product formula for
the gamma function:
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Relation (3), which holds for all u in C\ Z, transforms (2) to
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The right-hand side of (4) is the same as log((1 —t)/t) + o(1), since k = [t-n].
The left-hand side is exactly mcot(may,,r) (to see this, take the logarithmic
derivative of the identity I'(u)I'(1 —u) = m/ sin(mu)). Thus, we have shown that

7 cot(ma, ) = log (%) +o0(1) (n = 0).
The last statement can be rephrased
1 1 1-t
Q) = —arccot (— log (—)) +0(1) (n = o0)
™ 0 t

as claimed. u
3. THE MARKOV TRANSFORM. Theorem 1 can be thought of as a

special case of an inversion formula for the Markov transform. The Markov
transform is a correspondence between measures 7 and p on R defined by the

equation
/de_(u) = exp (/R log 1 d’l’(u)> (Im z # 0). (5)

Z—U zZ—U

Here 7 is an interlacing measure (i.e., T is a signed measure of total measure
7(R) = 1 that satisfies 0 < 7((—o0, z]) < 1 for each z in R), and p, the Markov
transform of 7, is a probability measure, whose existence is guaranteed (see [2]).

Equation (5) is fascinating for the interplay it expresses between the additive
and multiplicative structures on its two sides. A natural question that arises is
how to calculate the transform explicitly in the important case where p is an
absolutely continuous measure. I recently obtained the following partial answer
[3]: If u (hence, also T) is supported on an interval [a, b], then under some fairly
general conditions it is the case that
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where the integrals are principal-value integrals. The expression on the right
side of (ii) reminds us of the limiting curve in Theorem 1. In fact, Theorem 1
is the special case in which p is the uniform measure on [0,1] (i.e., Lebesgue
measure), so the limiting curve is simply the inverse Markov transform of the
uniform law! It was while trying to find the inverse formula (ii) for the Markov
transform that I arrived at the calculation in Theorem 1. Generalizing the
same asymptotic calculation, it is not hard to obtain the general formula (ii)
from there.



4. FURTHER REMARKS. Equation (5) was first studied by Markov, who
considered it in the context of continued fraction expansions. It has since been
applied to moment problems, means of Dirichlet processes, the growth of random
Young diagrams, and in other places. Kerov’s survey [2] is a good reference.
Regarding the explicit formulas, (i) was proved by Cifarelli and Regazzini [1]
in the case where 7 is a probability measure and was conjectured by Kerov to
hold in the general case. Note that it is not at all obvious that the expression
on the right-hand side of (i) is a probability density! Thus, substituting various
expressions for 7 gives rise to some amusing and perhaps unknown integration
identities.
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