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Abstract

In two previous papers, the study of partitions with short sequences

has been developed both for its intrinsic interest and for a variety of ap-

plications. The object of this paper is to extend that study in various

ways. First, the relationship of partitions with no consecutive inte-

gers to a theorem of MacMahon and mock theta functions is explored

independently. Secondly, we derive in a succinct manner a relevant

definite integral related to the asymptotic enumeration of partitions

with short sequences. Finally, we provide the generating function for

partitions with no sequences of length K and part exceeding N .

1 Introduction

In his classic two volume work, Combinatory Analysis [5], P.A. MacMahon
devotes Chapter IV of Volume 2 to ”Partitions Without Sequences”. His
object in this chapter is to make a thorough study of partitions in which no
consecutive integers (i.e. integers that differ by 1) occur. He concludes this
chapter with what we will call MacMahon’s Theorem.

Theorem 1.1. The number of partitions of an integer N into parts 6≡ ±1 (mod 6)
equals the number of partitions of N with no consecutive integers as sum-
mands and no ones.
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For example, for n = 10, the first set of partitions is 10, 8 + 2, 6 + 4,
6 + 2 + 2, 4 + 4 + 2, 4 + 3 + 3, 4 + 2 + 2 + 2, 3 + 3 + 2 + 2, 2 + 2 + 2 + 2 + 2;
the second set is 10, 8 + 2, 7 + 3, 6 + 3, 6 + 4, 6 + 2 + 2, 5 + 5, 4 + 4 + 2,
4 + 2 + 2 + 2, 2 + 2 + 2 + 2 + 2. The fact that each set of partitions has the
same number of elements (in this case 9), is MacMahon’s assertion.

In two previous papers [2, 4], MacMahon’s ideas have been generalized
to the consideration of partitions in which sequences of consecutive integers
have been restricted to contain fewer than k terms (MacMahon only dealt
with k = 2).

In Section 2 of this paper we shall explore in detail various aspects of
MacMahon’s work in [5; Vol. II, Ch. IV]. In Section 3 we discuss the gen-
eralization to partitions without k consecutive parts: First, we obtain a new
and simplified proof of the Holroyd-Liggett-Romik definite integral that was
used in [4] to obtain results on the asymptotic enumeration of these classes
of partitions. Secondly, we strengthen the results of [2] by obtaining a double
series representation of the generating function for partitions in which each
part is ≤ N and sequences of consecutive integers have length less than k.
Finally, Section 4 contains some remarks on a probabilistic interpretation of
the mock theta function χ(q) studied by Ramanujan.

2 Investigation of MacMahon’s theorem

We begin with some definitions.

Definition 2.1. Let

gn = the number of partitions of n with no two consecutive parts,

hn = the number of partitions of n with no two consecutive parts

and no 1’s,

G2(q) =
∞
∑

n=0

gnqn, (2.1)

H2(q) =
∞
∑

n=0

hnqn, (2.2)

χ(q) =
∞
∑

n=0

qn2

∏n

j=1(1 − qj + q2j)
, (2.3)
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where χ(q) is one of the third-order mock theta function studied by Ramanu-
jan [6]; p. 354.

2.1 A bijective proof of Theorem 1.1

Proof. By passing to the conjugate partition, the number of partitions of n
with no 1’s and no two consecutive parts is clearly seen to be equal to the
number of partitions of n not containing any part exactly once. Here is a
bijection between the set Cn of partitions of n not containing any part exactly
once, and the set Bn of partitions of n into parts congruent to 0, 2, 3, 4 mod 6:
If n =

∑∞
k=1 krk is a partition in Cn (rk is the multiplicity of k, or the number

of parts equal to k in the partition), rk ∈ {0, 2, 3, 4, . . . }, then each rk can be
written uniquely as rk = sk + tk, where sk ∈ {0, 3} and tk ∈ {0, 2, 4, 6, 8, . . . }.
Define a partition n =

∑∞
j=1 jbj by

b6k+1 = 0 (k = 0, 1, 2, 3, . . . )

b6k+5 = 0

b6k+2 =
1

2
t3k+1

b6k+4 =
1

2
t3k+2

b6k+3 =
1

3
s2k+1 + t6k+3

b6k+6 =
1

3
s2k+2 + t6k+6

This partition is in Bn, and it is not difficult to check that any partition in
Bn is obtained in this way from a unique partition in Cn.

2.2 A q-series for G2(q)

We give a simplified proof of the following q-series representation for G2(q),
which was stated in [2, eq. (4.2)]:

Theorem 2.2.

G2(q) = 1 +
∞
∑

n=1

qn
∏n−1

j=1 (1 − qj + q2j)
∏n

j=1(1 − qj)
. (2.4)
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Proof. Again by passing to the conjugate partition, we see that gn is the
number of partitions of n where all the parts except possibly the largest part
do not appear exactly once.

Write (2.4) as

G2(q) = 1 +
∞
∑

n=1

[

qn

1 − qn
·

n−1
∏

j=1

(

1 − qj + q2j

1 − qj

)

]

= 1 +
∞
∑

n=1

[

qn

1 − qn
·

n−1
∏

j=1

(1 + q2j + q3j + q4j + . . . )

]

.

The coefficient of qN in the n-th summand on the right-hand side is equal to
the number of partitions of N with maximal part n, where no part except
possibly the largest part appears exactly once. So the coefficient of qN in the
entire sum on the right-hand side is exactly gN .

2.3 The MacMahon-Fine identity

In [2], it was shown that a combination of identities due to MacMahon [5];
Vol. II, p. 52, and Fine [3]; p. 57 show that

G2(q) = H2(q)χ(q). (2.5)

This identity can be given the following combinatorial interpretation:

Theorem 2.3. For each integer n ≥ 1 and 0 ≤ k ≤ √
n, let fn,k be the

number of partitions of n − k2 in which no part which is greater than k
appears exactly once. Then for each n ≥ 1,

gn =

b√nc
∑

k=0

fn,k. (2.6)

Proof. From the remark at the beginning of the proof of Theorem 2.2, we
can write

H2(q) =
∏

(1 + q2j + q3j + q4j + . . . ) =

∞
∏

n=1

1 − qj + q2j

1 − qj
, (2.7)
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(this is an alternative way to prove Theorem 1.1). Now combining (2.5) and
(2.7) and the definition of χ(q) gives

G2(q) =
∞
∑

k=0

qk2

(

k
∏

j=1

1

1 − qj

)

·
( ∞
∏

j=k+1

1 − qj + q2j

1 − qj

)

.

The coefficients of qn in the left- and right-hand side of this equation are
clearly the left and right-hand sides of (2.6), respectively.

A natural question is whether Theorem 2.3 has a simple combinatorial
explanation.

3 Partitions without k consecutive parts

3.1 The Holroyd-Liggett-Romik integral

In [4], the following result concerning the asymptotic enumeration of parti-
tions without k consecutive parts was proved:

Theorem 3.1 (Holroyd, Liggett and Romik, [4]). Let pk(n) denote the
number of partitions of n not containing k consecutive parts. Then for each
fixed k > 1, we have as n → ∞

pk(n) = e(1+o(1))ck

√
n,

where

ck = π

√

2

3

(

1 − 2

k(k + 1)

)

.

The proof of this result relies on a special case of the following family
of definite integrals, also proved in [4]: For every 0 < a < b, a decreasing
function fa,b : [0, 1] → [0, 1] can be defined by fa,b(0) = 1, fa,b(1) = 0 and
fa,b(x)a−fa,b(x)b = xa−xb in between. In the simplest case f1,2−f 2

1,2 = x−x2,
we have f1,2(x) = 1 − x. Then we have:

Theorem 3.2 (Holroyd, Liggett and Romik, [4]).

∫ 1

0

− log fa,b(x)

x
dx =

π2

3ab
.
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We give here a new and shorter proof of this result. We remark that the
proof given in [4], while considerably more complicated, seems to contain
more interesting information, see [7].

Proof. The integral in the theorem can be interpreted as a double integral:

Ia,b :=

∫ 1

0

− log fa,b(x)

x
dx =

∫ 1

0

dx

x

∫ 1

fa,b(x)

dy

y
=

∫ ∫

D

dxdy

xy
,

where D is a symmetric domain bounded below by ya − yb = xa − xb, above
by y = 1, and to the right by x = 1. Bisect it along its symmetry axis y = x
and substitute y = xt, dy = xdt to get

Ia,b = 2

∫ ∫

D′

dxdt

xt
,

where D′ is bounded below by xb−a = (1 − ta)/(1 − tb), above by t = 1, and
to the right by x = 1. Integrating x we get

Ia,b =
2

b − a

∫ 1

0

log

(

1 − tb

1 − ta

)

dt

t
.

Finally, if we split the logarithm in two and substitute x = tb in the first
integral and x = ta in the second, the desired result is obtained.

Ia,b =
2

b − a

(

−1

b
+

1

a

)
∫ 1

0

log(1 − x)

x
dx =

π2

3ab
.

3.2 The restricted generating function

We must now substantially extend the definitions that appear at the begin-
ning of Section 2.

Let

gm,n(k,N) = the number of partitions of n into m parts in which

each part is ≤ N and there is no string of parts forming

a sequence of consecutive integers of length k,

Gk(N ; x, q) =
∞
∑

m,n=0

gm,n(k,N)xmqn.
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We note in passing that with regard to the definitions in Section 2,

gn =
∑

m≥0

gm,n(2,∞),

and

G2(q) = G2(∞; 1, q).

In [2; eq. [2.5]], it was proven that

Gk(∞; x, q) =
1

(xq; q)∞

∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )

(qk; qk)s(qk+1; qk+1)r

, (3.1)

where

(A; q)t = (1 − A)(1 − Aq) . . . (1 − Aqt−1), (A; q)0 = 1.

Our object here is to prove the following result for Gk(N ; x, q) which reduces
to (3.1) when N → ∞.

Theorem 3.3.

Gk(N ; x, q) =
1

(xq; q)N

∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1
s

]

k

[

N − kr − ks
r

]

k+1

, (3.2)

where
[

A
B

]

t

=

{

0 if B < 0 or B > A,
(qt;qt)A

(qt;qt)B(qt;qt)A−B
for 0 ≤ B ≤ A.

Proof. We begin by noting that there is a defining recurrence for Gk(N ; x, q).
Namely,

Gk(N ; x, q) =











1
(xq;q)N

, if 0 ≤ N < k,

Gk(N − 1; x, q)+
∑k−1

i=1
xiqN+(N−1)+···+(N−i+1)Gk(N−i−1;x,q)

(1−xqN )(1−xqN−1)...(1−xqN−i+1)

(3.3)
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This last assertion is easily verified as follows. If N < k, then there can be
no sequences of k consecutive integers among the parts. Hence for N < k,
all partitions with parts ≤ N must be included and the generating function
in this case is

1

(xq; q)N

as asserted.
To establish the bottom line of (3.3), we note that among the partitions

generated by Gk(N ; x, q) there are some in which N does not appear as
a part. These are generated by Gk(N − 1; x, q). If N does appear as a
part, it then lies in a sequence of consecutive integers of maximal length i
where 1 ≤ i < k. The portion of such partitions containing only parts in
[N − i + 1, N ] is generated by

xiqN+(N−1)+···+(N−i+1)

(1 − xqN)(1 − xqN−1) . . . (1 − xqN−i+1)
,

and all other parts must be < N − i, and consequently are generated by
Gk(N − i − 1; x, q). Hence the right-hand side of (3.3) generates precisely
those partitions generated by Gk(N ; x, q) thus establishing the second line of
(3.3).

We now define

S(k,N) = (xq; q)NGk(N ; x, q). (3.4)

Consequently S(k,N) is uniquely determined by the recurrence

S(k,N) =

{

1, if 0 ≤ N < k,
∑k−1

i=1 xiqN+(N−1)+···+(N−i+1)(1 − xqN−i)S(k,N − i − 1).
(3.5)

We now define

σ(k,N) =
∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1
s

]

k

[

N − kr − ks
r

]

k+1

. (3.6)

We wish to show that S(k,N) = σ(k,N) in order to complete the proof of
this theorem. To do this we need only show that σ(k,N) also satisfies the
defining recurrence (3.5).
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Immediately we see that if N < k, then the only non-vanishing term of
the double sum in (3.6) occurs for s = r = 0. Hence

σ(k,N) = 1 if 0 ≤ N < k.

We shall prove the following equivariant recurrence for σ(k,N) when n ≥ k:

k−1
∑

i=0

xiqNi−(i
2)

× (σ(k,N − i) − σ(k,N − i − 1)) + xkqkn−(k
2)σ(k,N − k) = 0. (3.7)
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We now simplify the left-hand side of (3.7).

k−1
∑

i=0

xiqNi−(i
2) (σ(k,N − i) − σ(k,N − i − 1))

=
k−1
∑

i=0

xiqNi−(i
2)
∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
{

qk(N−i−kr−ks−r+1−s)

[

N − kr − ks − r − i
s − 1

]

k

[

N − kr − ks − i
r

]

k+1

+q(k+1)(N−i−kr−ks−r)

[

N − kr − ks − r − i
s

]

k

[

N − kr − ks − 1 − i
r − 1

]

k+1

}

=
k−1
∑

i=0

xiqNi−(i
2)
∑

r,s≥0

(−1)s+ixks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r−i+1

2 )

×
{

qk(N−i−k(r+s)−r+i+1−s−i)

[

N − kr − ks − r
s + i − 1

]

k

[

N − kr − ks − i
r − i

]

k+1

+ q(k+1)(N−i−k(r+s)−r+i)

[

N − kr − ks − r
s + i

]

k

[

N − kr − ks − i − 1
r − i − 1

]

k+1

}

(having replaced s by s + i and r by r − i)

=
k−1
∑

i=0

qNi−(i
2)
∑

r,s≥0

(−1)s+ixks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r−i+1

2 )

×qk(N−i−k(r+s)−r−s+1)

[

N − kr − ks − r
s + i − 1

]

k

[

N − i − kr − ks
r − i

]

k+1

+
k
∑

i=1

qN(i−1)−(i−1
2 )
∑

r,s≥0

(−1)s+i−1xks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r−i+2

2 )

×q(k+1)(N−kr−ks−r)

[

N − kr − ks − r
s + i − 1

]

k

[

N − i − kr − ks
r − i

]

k+1

(having replaced i by i − 1 in the second sum.)

Now examination of the exponents on x and q reveals that each term in
the second sum for 1 ≤ i ≤ k − 1 is the negative of each term in the first
sum. Hence all that remains after cancellation is the term i = 0 in the first
sum and the term i = k in the second.
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Hence

k−1
∑

i=0

xiqNi−(i
2) (σ(k,N − i) − σ(k,N − i − 1))

=
∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )+k(N−(k+1)(r+s)+1)

×
[

N − kr − ks − r
s − 1

]

k

[

N − kr − ks
r

]

k+1

+qN(k−1)−(k−1
2 )
∑

r,s≥0

(−1)s+k−1xks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r−k+2

2 )

×q(k+1)(N−kr−ks−r)

[

N − kr − ks − r
s + k − 1

]

k

[

N − k − kr − ks
r − k

]

k+1

:= S1 + S2 (3.8)

Let us now define

S3 := xkqN+(N−1)+···+(N−k+1)σ(k,N − k) (3.9)

= xkqkN−(k
2)
∑

r,s≥0

(−1)sxks+(k+1)rq(
k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − k − kr − ks − r + 1
s

]

k

[

N − k − kr − ks
r

]

k+1

= qkN−(k
2)
∑

r,s≥0

(−1)s−1xks+(k+1)rq(
k+1
2 )(r+s−1)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1
s − 1

]

k

[

N − kr − ks
r

]

k+1

(where we have replaced s by s − 1). (3.10)

In order to complete the proof of the recurrence (3.7) for σ(k, n) we need
only show that

S1 + S2 = −S3.
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Now

S1 + S3

=
∑

r,s≥0

(−1)sxks+(k+1)r

[

N − kr − ks
r

]

k+1
{

q(
k+1
2 )(r+s)2+(k+1)(r+1

2 )+k(N−(k+1)(r+s)+1)

[

N − kr − ks − r
s − 1

]

k

−qkN−(k
2)+(k+1

2 )(r+s−1)2+(k+1)(r+1
2 )
[

N − kr − ks − r + 1
s − 1

]

k

}

= −
∑

(−1)sxks+(k+1)r

[

N − kr − ks
r

]

k+1

qkN−(k
2)+(k+1

2 )(r+s−1)2+(k+1)(r+1
2 )

×qk(N−kr−ks−r−s+2)

[

N − kr − ks − r
s − 2

]

k

(by [1; eq. (3.3.3), p. 35])

−
∑

r,s≥0

(−1)s+k+1xks+(k+1)r

[

N − k − kr − ks
r − k

]

k+1

×qkN−(k
2)+(k+1

2 )(r+s)2+(k+1)(r−k+1
2 )

×qk(N−k(r+s+1)−(r+s+1)+2)

[

N − kr − ks − r
s + k − 1

]

k

= −S2.

Thus S1 + S2 = −S3; so the desired recurrence is established for σ(k, n).
Consequently S(k, n) = σ(k, n) for all k ≥ 1, n ≥ 0 which is the result to be
proved.

4 Further remarks

4.1 A probabilistic interpretation of χ(q)

The mock theta function χ(q) has an interpretation in terms of conditional
probabilities in some probability space. Let 0 < q < 1, and let C1, C2, . . . be
a sequence of independent events with probabilities

P (Cn) = 1 − qn, n = 1, 2, 3 . . .

12



Define events A and B by

A =
∞
⋂

n=1

(Cn ∪ Cn+1),

B =
∞
⋂

n=2

(Cn ∪ Cn+1).

Theorem 4.1. The following relations hold:

P(A|B) = (1 − q)χ(q),

P(C1|A) = 1/χ(q).

Proof. Let

F (q) =
∞
∏

n=1

1

1 − qn
.

Holroyd, Liggett and Romik [4] proved that

P(A) =
G2(q)

F (q)
,

and by a similar argument it follows that

P(B) =
H2(q)

(1 − q)F (q)
.

Then, using (2.5):

P(A|B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

(1 − q)G2(q)

H2(q)
= (1 − q)χ(q),

P(C1|A) =
P(C1 ∩ A)

P(A)
=

P(C1 ∩ B)

P(A)
=

P(C1)P(B)

P(A)

=
(1 − q)H2(q)/(1 − q)F (q)

G2(q)/F (q)
= 1/χ(q).

Incidentally, since probabilities are between 0 and 1, we get that for
0 < q < 1,

χ(q) <
1

1 − q
.
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