Integrals, partitions and MacMahon's Theorem George Andrews, Henrik Eriksson, Fedor Petrov[†]and Dan Romik[‡]

December 21, 2005

Abstract

In two previous papers, the study of partitions with short sequences has been developed both for its intrinsic interest and for a variety of applications. The object of this paper is to extend that study in various ways. First, the relationship of partitions with no consecutive integers to a theorem of MacMahon and mock theta functions is explored independently. Secondly, we derive in a succinct manner a relevant definite integral related to the asymptotic enumeration of partitions with short sequences. Finally, we provide the generating function for partitions with no sequences of length K and part exceeding N.

1 Introduction

In his classic two volume work, Combinatory Analysis [5], P.A. MacMahon devotes Chapter IV of Volume 2 to "Partitions Without Sequences". His object in this chapter is to make a thorough study of partitions in which no consecutive integers (i.e. integers that differ by 1) occur. He concludes this chapter with what we will call MacMahon's Theorem.

Theorem 1.1. The number of partitions of an integer N into parts $\not\equiv \pm 1 \pmod{6}$ equals the number of partitions of N with no consecutive integers as summands and no ones.

^{*}Research partially supported by NSF grant DMS.

[†]Research supported by grants CRDF RUM1-2622-CT04 ? ??2251-2003.1.

[‡]Research supported by NSF-FRG Grant #0244479

For example, for n = 10, the first set of partitions is 10, 8 + 2, 6 + 4, 6 + 2 + 2, 4 + 4 + 2, 4 + 3 + 3, 4 + 2 + 2 + 2, 3 + 3 + 2 + 2, 2 + 2 + 2 + 2 + 2;the second set is 10, 8 + 2, 7 + 3, 6 + 3, 6 + 4, 6 + 2 + 2, 5 + 5, 4 + 4 + 2, 4 + 2 + 2 + 2, 2 + 2 + 2 + 2 + 2. The fact that each set of partitions has the same number of elements (in this case 9), is MacMahon's assertion.

In two previous papers [2, 4], MacMahon's ideas have been generalized to the consideration of partitions in which sequences of consecutive integers have been restricted to contain fewer than k terms (MacMahon only dealt with k = 2).

In Section 2 of this paper we shall explore in detail various aspects of MacMahon's work in [5; Vol. II, Ch. IV]. In Section 3 we discuss the generalization to partitions without k consecutive parts: First, we obtain a new and simplified proof of the Holroyd-Liggett-Romik definite integral that was used in [4] to obtain results on the asymptotic enumeration of these classes of partitions. Secondly, we strengthen the results of [2] by obtaining a double series representation of the generating function for partitions in which each part is $\leq N$ and sequences of consecutive integers have length less than k. Finally, Section 4 contains some remarks on a probabilistic interpretation of the mock theta function $\chi(q)$ studied by Ramanujan.

2 Investigation of MacMahon's theorem

We begin with some definitions.

Definition 2.1. Let

- g_n = the number of partitions of n with no two consecutive parts,
- h_n = the number of partitions of n with no two consecutive parts and no 1's,

$$G_2(q) = \sum_{\substack{n=0\\\infty}}^{\infty} g_n q^n, \qquad (2.1)$$

$$H_2(q) = \sum_{n=0}^{\infty} h_n q^n, \qquad (2.2)$$

$$\chi(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{\prod_{j=1}^n (1 - q^j + q^{2j})},$$
(2.3)

where $\chi(q)$ is one of the third-order mock theta function studied by Ramanujan [6]; p. 354.

2.1 A bijective proof of Theorem 1.1

Proof. By passing to the conjugate partition, the number of partitions of n with no 1's and no two consecutive parts is clearly seen to be equal to the number of partitions of n not containing any part exactly once. Here is a bijection between the set C_n of partitions of n not containing any part exactly once. Here is a bijection between the set \mathcal{B}_n of partitions of n not containing any part exactly once, and the set \mathcal{B}_n of partitions of n into parts congruent to 0, 2, 3, 4 mod 6: If $n = \sum_{k=1}^{\infty} kr_k$ is a partition in C_n (r_k is the multiplicity of k, or the number of parts equal to k in the partition), $r_k \in \{0, 2, 3, 4, \ldots\}$, then each r_k can be written uniquely as $r_k = s_k + t_k$, where $s_k \in \{0, 3\}$ and $t_k \in \{0, 2, 4, 6, 8, \ldots\}$. Define a partition $n = \sum_{j=1}^{\infty} jb_j$ by

$$b_{6k+1} = 0 \qquad (k = 0, 1, 2, 3, ...)$$

$$b_{6k+5} = 0$$

$$b_{6k+2} = \frac{1}{2}t_{3k+1}$$

$$b_{6k+4} = \frac{1}{2}t_{3k+2}$$

$$b_{6k+3} = \frac{1}{3}s_{2k+1} + t_{6k+3}$$

$$b_{6k+6} = \frac{1}{3}s_{2k+2} + t_{6k+6}$$

This partition is in \mathcal{B}_n , and it is not difficult to check that any partition in \mathcal{B}_n is obtained in this way from a unique partition in \mathcal{C}_n .

2.2 A q-series for $G_2(q)$

We give a simplified proof of the following q-series representation for $G_2(q)$, which was stated in [2, eq. (4.2)]:

Theorem 2.2.

$$G_2(q) = 1 + \sum_{n=1}^{\infty} \frac{q^n \prod_{j=1}^{n-1} (1 - q^j + q^{2j})}{\prod_{j=1}^n (1 - q^j)}.$$
 (2.4)

Proof. Again by passing to the conjugate partition, we see that g_n is the number of partitions of n where all the parts except possibly the largest part do not appear exactly once.

Write (2.4) as

$$G_{2}(q) = 1 + \sum_{n=1}^{\infty} \left[\frac{q^{n}}{1-q^{n}} \cdot \prod_{j=1}^{n-1} \left(\frac{1-q^{j}+q^{2j}}{1-q^{j}} \right) \right]$$

= $1 + \sum_{n=1}^{\infty} \left[\frac{q^{n}}{1-q^{n}} \cdot \prod_{j=1}^{n-1} (1+q^{2j}+q^{3j}+q^{4j}+\dots) \right].$

The coefficient of q^N in the *n*-th summand on the right-hand side is equal to the number of partitions of N with maximal part n, where no part except possibly the largest part appears exactly once. So the coefficient of q^N in the entire sum on the right-hand side is exactly g_N .

2.3 The MacMahon-Fine identity

In [2], it was shown that a combination of identities due to MacMahon [5]; Vol. II, p. 52, and Fine [3]; p. 57 show that

$$G_2(q) = H_2(q)\chi(q).$$
(2.5)

This identity can be given the following combinatorial interpretation:

Theorem 2.3. For each integer $n \ge 1$ and $0 \le k \le \sqrt{n}$, let $f_{n,k}$ be the number of partitions of $n - k^2$ in which no part which is greater than k appears exactly once. Then for each $n \ge 1$,

$$g_n = \sum_{k=0}^{\lfloor \sqrt{n} \rfloor} f_{n,k}.$$
(2.6)

Proof. From the remark at the beginning of the proof of Theorem 2.2, we can write

$$H_2(q) = \prod (1 + q^{2j} + q^{3j} + q^{4j} + \dots) = \prod_{n=1}^{\infty} \frac{1 - q^j + q^{2j}}{1 - q^j}, \quad (2.7)$$

(this is an alternative way to prove Theorem 1.1). Now combining (2.5) and (2.7) and the definition of $\chi(q)$ gives

$$G_2(q) = \sum_{k=0}^{\infty} q^{k^2} \left(\prod_{j=1}^k \frac{1}{1-q^j} \right) \cdot \left(\prod_{j=k+1}^{\infty} \frac{1-q^j+q^{2j}}{1-q^j} \right)$$

The coefficients of q^n in the left- and right-hand side of this equation are clearly the left and right-hand sides of (2.6), respectively.

A natural question is whether Theorem 2.3 has a simple combinatorial explanation.

3 Partitions without k consecutive parts

3.1 The Holroyd-Liggett-Romik integral

In [4], the following result concerning the asymptotic enumeration of partitions without k consecutive parts was proved:

Theorem 3.1 (Holroyd, Liggett and Romik, [4]). Let $p_k(n)$ denote the number of partitions of n not containing k consecutive parts. Then for each fixed k > 1, we have as $n \to \infty$

$$p_k(n) = e^{(1+o(1))c_k\sqrt{n}},$$

where

$$c_k = \pi \sqrt{\frac{2}{3} \left(1 - \frac{2}{k(k+1)}\right)}.$$

The proof of this result relies on a special case of the following family of definite integrals, also proved in [4]: For every 0 < a < b, a decreasing function $f_{a,b} : [0,1] \rightarrow [0,1]$ can be defined by $f_{a,b}(0) = 1, f_{a,b}(1) = 0$ and $f_{a,b}(x)^a - f_{a,b}(x)^b = x^a - x^b$ in between. In the simplest case $f_{1,2} - f_{1,2}^2 = x - x^2$, we have $f_{1,2}(x) = 1 - x$. Then we have:

Theorem 3.2 (Holroyd, Liggett and Romik, [4]).

$$\int_{0}^{1} \frac{-\log f_{a,b}(x)}{x} dx = \frac{\pi^2}{3ab}.$$

We give here a new and shorter proof of this result. We remark that the proof given in [4], while considerably more complicated, seems to contain more interesting information, see [7].

Proof. The integral in the theorem can be interpreted as a double integral:

$$I_{a,b} := \int_0^1 \frac{-\log f_{a,b}(x)}{x} dx = \int_0^1 \frac{dx}{x} \int_{f_{a,b}(x)}^1 \frac{dy}{y} = \int \int_D \frac{dxdy}{xy},$$

where D is a symmetric domain bounded below by $y^a - y^b = x^a - x^b$, above by y = 1, and to the right by x = 1. Bisect it along its symmetry axis y = xand substitute y = xt, dy = xdt to get

$$I_{a,b} = 2 \int \int_{D'} \frac{dxdt}{xt}$$

where D' is bounded below by $x^{b-a} = (1 - t^a)/(1 - t^b)$, above by t = 1, and to the right by x = 1. Integrating x we get

$$I_{a,b} = \frac{2}{b-a} \int_0^1 \log\left(\frac{1-t^b}{1-t^a}\right) \frac{dt}{t}.$$

Finally, if we split the logarithm in two and substitute $x = t^b$ in the first integral and $x = t^a$ in the second, the desired result is obtained.

$$I_{a,b} = \frac{2}{b-a} \left(-\frac{1}{b} + \frac{1}{a} \right) \int_0^1 \frac{\log(1-x)}{x} dx = \frac{\pi^2}{3ab}.$$

3.2 The restricted generating function

We must now substantially extend the definitions that appear at the beginning of Section 2.

Let

$$g_{m,n}(k, N) =$$
 the number of partitions of *n* into *m* parts in which
each part is $\leq N$ and there is no string of parts forming
a sequence of consecutive integers of length *k*,

$$G_k(N;x,q) = \sum_{m,n=0}^{\infty} g_{m,n}(k,N) x^m q^n.$$

We note in passing that with regard to the definitions in Section 2,

$$g_n = \sum_{m \ge 0} g_{m,n}(2,\infty),$$

and

$$G_2(q) = G_2(\infty; 1, q).$$

In [2; eq. [2.5]], it was proven that

$$G_k(\infty; x, q) = \frac{1}{(xq; q)_{\infty}} \sum_{r,s \ge 0} \frac{(-1)^s x^{ks + (k+1)r} q^{\binom{k+1}{2}} (r+s)^2 + (k+1)\binom{r+1}{2}}{(q^k; q^k)_s (q^{k+1}; q^{k+1})_r}, \quad (3.1)$$

where

$$(A;q)_t = (1-A)(1-Aq)\dots(1-Aq^{t-1}), \qquad (A;q)_0 = 1.$$

Our object here is to prove the following result for $G_k(N; x, q)$ which reduces to (3.1) when $N \to \infty$.

Theorem 3.3.

$$G_{k}(N;x,q) = \frac{1}{(xq;q)_{N}} \sum_{r,s \ge 0} (-1)^{s} x^{ks+(k+1)r} q^{\binom{k+1}{2}(r+s)^{2}+(k+1)\binom{r+1}{2}} \times \begin{bmatrix} N-kr-ks-r+1\\s \end{bmatrix}_{k} \begin{bmatrix} N-kr-ks\\r \end{bmatrix}_{k+1}, \quad (3.2)$$

where

$$\begin{bmatrix} A \\ B \end{bmatrix}_t = \begin{cases} 0 & \text{if } B < 0 \text{ or } B > A, \\ \frac{(q^t;q^t)_B(q^t;q^t)_{A-B}}{(q^t;q^t)_{B-B}} & \text{for } 0 \le B \le A. \end{cases}$$

Proof. We begin by noting that there is a defining recurrence for $G_k(N; x, q)$. Namely,

$$G_k(N; x, q) = \begin{cases} \frac{1}{(xq;q)_N}, & \text{if } 0 \le N < k, \\ G_k(N-1; x, q) + \\ \sum_{i=1}^{k-1} \frac{x^i q^{N+(N-1)+\dots+(N-i+1)} G_k(N-i-1;x,q)}{(1-xq^{N-1})\dots(1-xq^{N-i+1})} \end{cases}$$
(3.3)

This last assertion is easily verified as follows. If N < k, then there can be no sequences of k consecutive integers among the parts. Hence for N < k, all partitions with parts $\leq N$ must be included and the generating function in this case is 1

$$(xq;q)_N$$

as asserted.

To establish the bottom line of (3.3), we note that among the partitions generated by $G_k(N; x, q)$ there are some in which N does not appear as a part. These are generated by $G_k(N-1; x, q)$. If N does appear as a part, it then lies in a sequence of consecutive integers of maximal length iwhere $1 \leq i < k$. The portion of such partitions containing only parts in [N-i+1, N] is generated by

$$\frac{x^{i}q^{N+(N-1)+\dots+(N-i+1)}}{(1-xq^{N})(1-xq^{N-1})\dots(1-xq^{N-i+1})},$$

and all other parts must be $\langle N - i$, and consequently are generated by $G_k(N - i - 1; x, q)$. Hence the right-hand side of (3.3) generates precisely those partitions generated by $G_k(N; x, q)$ thus establishing the second line of (3.3).

We now define

$$S(k,N) = (xq;q)_N G_k(N;x,q).$$
(3.4)

Consequently S(k, N) is uniquely determined by the recurrence

$$S(k,N) = \begin{cases} 1, & \text{if } 0 \le N < k, \\ \sum_{i=1}^{k-1} x^{i} q^{N+(N-1)+\dots+(N-i+1)} (1 - xq^{N-i}) S(k, N-i-1). \end{cases}$$
(3.5)

We now define

We wish to show that $S(k, N) = \sigma(k, N)$ in order to complete the proof of this theorem. To do this we need only show that $\sigma(k, N)$ also satisfies the defining recurrence (3.5).

Immediately we see that if N < k, then the only non-vanishing term of the double sum in (3.6) occurs for s = r = 0. Hence

$$\sigma(k, N) = 1 \quad \text{if } 0 \le N < k.$$

We shall prove the following equivariant recurrence for $\sigma(k,N)$ when $n\geq k$:

$$\sum_{i=0}^{k-1} x^{i} q^{Ni - \binom{i}{2}} \times (\sigma(k, N-i) - \sigma(k, N-i-1)) + x^{k} q^{kn - \binom{k}{2}} \sigma(k, N-k) = 0. \quad (3.7)$$

We now simplify the left-hand side of (3.7).

$$\begin{split} &\sum_{i=0}^{k-1} x^i q^{Ni - \binom{i}{2}} \left(\sigma(k, N-i) - \sigma(k, N-i-1) \right) \\ &= \sum_{i=0}^{k-1} x^i q^{Ni - \binom{i}{2}} \sum_{r,s \geq 0} (-1)^s x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^2 + (k+1)\binom{r+1}{2}} \\ &\times \left\{ q^{k(N-i-kr-ks-r+1-s)} \left[N-kr-ks-r-i \right]_k \left[N-kr-ks-1 - i \right]_{k+1} \right\} \\ &+ q^{(k+1)(N-i-kr-ks-r)} \left[N-kr-ks-r-i \right]_k \left[N-kr-ks-1 - i \right]_{k+1} \right\} \\ &= \sum_{i=0}^{k-1} x^i q^{Ni - \binom{i}{2}} \sum_{r,s \geq 0} (-1)^{s+i} x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^2 + (k+1)\binom{r-i+1}{2}} \\ &\times \left\{ q^{k(N-i-k(r+s)-r+i+1-s-i)} \left[N-kr-ks-r \right]_k \left[N-kr-ks-i \right]_{k+1} \right\} \\ &+ q^{(k+1)(N-i-k(r+s)-r+i)} \left[N-kr-ks-r \right]_k \left[N-kr-ks-i-1 \right]_{k+1} \right\} \\ &(\text{having replaced } s \text{ by } s+i \text{ and } r \text{ by } r-i) \\ &= \sum_{i=0}^{k-1} q^{Ni - \binom{i}{2}} \sum_{r,s \geq 0} (-1)^{s+i} x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^2 + (k+1)\binom{r-i+1}{2}} \\ &\times q^{k(N-i-k(r+s)-r-s+1)} \left[N-kr-ks-r \\ s+i-1 \right]_k \left[N-i-kr-ks \\ r-i \right]_{k+1} \\ &+ \sum_{i=1}^k q^{N(i-1) - \binom{i-1}{2}} \sum_{r,s \geq 0} (-1)^{s+i-1} x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^2 + (k+1)\binom{r-i+2}{2}} \\ &\times q^{(k+1)(N-kr-ks-r)} \left[N-kr-ks-r \\ s+i-1 \right]_k \left[N-i-kr-ks \\ r-i \right]_{k+1} \end{aligned}$$

(having replaced i by i - 1 in the second sum.)

Now examination of the exponents on x and q reveals that each term in the second sum for $1 \le i \le k - 1$ is the negative of each term in the first sum. Hence all that remains after cancellation is the term i = 0 in the first sum and the term i = k in the second.

Hence

$$\sum_{i=0}^{k-1} x^{i} q^{Ni - \binom{i}{2}} \left(\sigma(k, N-i) - \sigma(k, N-i-1) \right)$$

$$= \sum_{r,s \ge 0} (-1)^{s} x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^{2} + (k+1)\binom{r+1}{2} + k(N - (k+1)(r+s) + 1)} \\ \times \left[\binom{N - kr - ks - r}{s - 1} \right]_{k} \left[\binom{N - kr - ks}{r} \right]_{k+1} \\ + q^{N(k-1) - \binom{k-1}{2}} \sum_{r,s \ge 0} (-1)^{s+k-1} x^{ks + (k+1)r} q^{\binom{k+1}{2}(r+s)^{2} + (k+1)\binom{r-k+2}{2}} \\ \times q^{(k+1)(N-kr-ks-r)} \left[\binom{N - kr - ks - r}{s + k - 1} \right]_{k} \left[\binom{N - k - kr - ks}{r - k} \right]_{k+1} \\ := S_{1} + S_{2}$$
(3.8)

Let us now define

$$S_{3} := x^{k}q^{N+(N-1)+\dots+(N-k+1)}\sigma(k, N-k)$$
(3.9)

$$= x^{k}q^{kN-\binom{k}{2}}\sum_{r,s\geq 0}(-1)^{s}x^{ks+(k+1)r}q^{\binom{k+1}{2}(r+s)^{2}+(k+1)\binom{r+1}{2}}
\times \left[N-k-kr-ks-r+1 \right]_{k} \left[N-k-kr-ks \right]_{k+1}
= q^{kN-\binom{k}{2}}\sum_{r,s\geq 0}(-1)^{s-1}x^{ks+(k+1)r}q^{\binom{k+1}{2}(r+s-1)^{2}+(k+1)\binom{r+1}{2}}
\times \left[N-kr-ks-r+1 \right]_{k} \left[N-kr-ks \right]_{k+1}
(where we have replaced s by s-1).$$
(3.10)

In order to complete the proof of the recurrence (3.7) for $\sigma(k,n)$ we need only show that

$$S_1 + S_2 = -S_3.$$

Now

$$\begin{split} S_1 + S_3 \\ &= \sum_{r,s \ge 0} (-1)^s x^{ks + (k+1)r} \left[\frac{N - kr - ks}{r} \right]_{k+1} \\ &\left\{ q^{\binom{k+1}{2}(r+s)^2 + (k+1)\binom{r+1}{2} + k(N - (k+1)(r+s) + 1)} \left[\frac{N - kr - ks - r}{s-1} \right]_k \right. \\ &- q^{kN - \binom{k}{2} + \binom{k+1}{2}(r+s-1)^2 + (k+1)\binom{r+1}{2}} \left[\frac{N - kr - ks - r + 1}{s-1} \right]_k \right\} \\ &= -\sum (-1)^s x^{ks + (k+1)r} \left[\frac{N - kr - ks}{r} \right]_{k+1} q^{kN - \binom{k}{2} + \binom{k+1}{2}(r+s-1)^2 + (k+1)\binom{r+1}{2}} \\ &\times q^{k(N - kr - ks - r - s+2)} \left[\frac{N - kr - ks - r}{s-2} \right]_k \\ &(\text{by [1; eq. (3.3.3), p. 35])} \\ &- \sum_{r,s \ge 0} (-1)^{s+k+1} x^{ks + (k+1)r} \left[\frac{N - k - kr - ks}{r-k} \right]_{k+1} \\ &\times q^{kN - \binom{k}{2} + \binom{k+1}{2}(r+s)^2 + (k+1)\binom{r-k+1}{2}} \\ &\times q^{k(N - k(r+s+1) - (r+s+1)+2)} \left[\frac{N - kr - ks - r}{s+k-1} \right]_k \\ &= -S_2. \end{split}$$

Thus $S_1 + S_2 = -S_3$; so the desired recurrence is established for $\sigma(k, n)$. Consequently $S(k, n) = \sigma(k, n)$ for all $k \ge 1, n \ge 0$ which is the result to be proved.

4 Further remarks

4.1 A probabilistic interpretation of $\chi(q)$

The mock theta function $\chi(q)$ has an interpretation in terms of conditional probabilities in some probability space. Let 0 < q < 1, and let C_1, C_2, \ldots be a sequence of independent events with probabilities

$$P(C_n) = 1 - q^n, \quad n = 1, 2, 3...$$

Define events A and B by

$$A = \bigcap_{n=1}^{\infty} (C_n \cup C_{n+1}),$$

$$B = \bigcap_{n=2}^{\infty} (C_n \cup C_{n+1}).$$

Theorem 4.1. The following relations hold:

$$\mathbf{P}(A|B) = (1-q)\chi(q),$$

$$\mathbf{P}(C_1|A) = 1/\chi(q).$$

Proof. Let

$$F(q) = \prod_{n=1}^{\infty} \frac{1}{1-q^n}.$$

Holroyd, Liggett and Romik [4] proved that

$$\mathbf{P}(A) = \frac{G_2(q)}{F(q)},$$

and by a similar argument it follows that

$$\mathbf{P}(B) = \frac{H_2(q)}{(1-q)F(q)}.$$

Then, using (2.5):

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(A)}{\mathbf{P}(B)} = \frac{(1-q)G_2(q)}{H_2(q)} = (1-q)\chi(q),$$

$$\mathbf{P}(C_1|A) = \frac{\mathbf{P}(C_1 \cap A)}{\mathbf{P}(A)} = \frac{\mathbf{P}(C_1 \cap B)}{\mathbf{P}(A)} = \frac{\mathbf{P}(C_1)\mathbf{P}(B)}{\mathbf{P}(A)}$$

$$= \frac{(1-q)H_2(q)/(1-q)F(q)}{G_2(q)/F(q)} = 1/\chi(q).$$

Incidentally, since probabilities are between 0 and 1, we get that for 0 < q < 1,

$$\chi(q) < \frac{1}{1-q}.$$

L		

References

- G.E. Andrews, *The Theory of Partitions*, Addison-Wesley, Reading, 1976 (reissued; Cambridge University Press 1984, 1998).
- G.E. Andrews, Partitions with short sequences and mock theta functions, Proc. Nat. Acad. Sci. U.S.A. 102 (2005), 4666–4671.
- [3] N.J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs, No. 27, American Math. Soc., Providence, 1988.
- [4] A.E. Holroyd, T.M. Liggett and D. Romik, Integrals, partitions and cellular automata Trans. Amer. Math. Soc. 356 (2004), 3349–3368.
- [5] P.A. MacMahon, *Combinatory Analysis*, Vol. I and II, Cambridge University Press, Cambridge, 1915, 1916 (Reissued, Chelsea, 1960).
- [6] S. Ramanujan, *Collected Papers*, Cambridge University Press, Cambridge, 1927. (Reissued: Chelsea, 1962).
- [7] D. Romik, Some formulas for the central trinomial and Motzkin numbers.J. of Integer Sequences 6 (2003), article 03.2.3.

GEORGE ANDREWS DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802, USA andrews@math.psu.edu

HENRIK ERIKSSON KTH, COMPUTER SCIENCE SE-10044 STOCKHOLM, SWEDEN henrik@nada.kth.se

FEDOR PETROV PETERSBURG DEPARTMENT OF THE RUSSIAN ACADEMY OF SCIENCES fedorpetrov@mail.ru DAN ROMIK DEPARTMENT OF STATISTICS 367 EVANS HALL UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720-3860, USA romik@stat.berkeley.edu