THE NUMBER OF STEPS IN THE ROBINSON-SCHENSTED ALGORITHM

DAN RoMIK !

Abstract. Suppose a permutation o € S,, is chosen at random (n large) and the Robinson-Schensted algorithm
is applied to compute its associated Young diagram. Then for almost all permutations, the number of bump-
ing operations performed is about (128/ 277r2)n3/ 2 and the number of comparison operations performed is about
(64/277%)n>/? log, n.

1. Introduction

The Robinson-Schensted algorithm (also known in a more general version as the Robinson-
Schensted-Knuth, or RSK, algorithm) is an important algorithm in combinatorics. It takes a
permutation o € S,;, and computes a partition A of n,

n=2A+ A+ ...+ Ag, A > A > > X

together with two associated Young tableaux P, of shape A (fillings of the Young diagram of
A with the numbers 1,2,...,n which are increasing along rows and columns). The correspon-
dence between permutations in S, and pairs of Young tableaux of equal shape and area n is a
bijection, known as the Robinson-Schensted correspondence. The partition A encodes the increas-
ing/decreasing subsequence profile of the permutation o, in the following sense: for any 1 < j < M|,
A1+ A2 + ... + Aj is equal to the maximal cardinality of a union of j disjoint increasing subse-
quences of o, and for any 1 < j < A;, A|+ ..+ )\;- is equal to the maximal cardinality of a
union of j disjoint decreasing subsequences of o (where ) is the partition conjugate to A, i.e.,
)\;- = #{i : \; > j}). In particular, A; is the length of the longest increasing subsequence of o,
an important statistic of permutations. For a full description of the algorithm and its remarkable
properties, see [4], section 5.1.4, and [8], chapter 7. Figure 1 shows a sample input-output pair.
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Figure 1: A permutation and its associated partition and Young tableaux
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A natural question is, How many steps are performed during the application of the algorithm?
Certainly, there are always exactly n steps of laying down a new square in the Young diagram
A being constructed. The other steps performed are of two types: comparisons, and executions
of the so-called bumping operation, which replaces a number with another number and pushes
the former down to the next row. For every bumping operation performed, a binary search of a
sorted list must be performed to find the place in the next row where a bumping will take place
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next (or a new square laid down). It is the steps of these two types which are interesting, as their
number is not fixed.

Note that the number of bumping steps can range between 0, in the best case, and n(n—1)/2,
in the worst case. We prove

Theorem. Asn — oo, for almost all (i.e. a (1 —o(1))-fraction) o € Sy, the number of bumping
operations performed is

12
(1) (1+o0(1)) 27—7?2 n%? = (1+ o(1)) 0.480337... n%/2,

and the number of comparison operations performed is
64
(2 (1+o(1) 5 n®?logyn = (1 + o(1)) 0.240169... n*/log,n

The average numbers of bumping operations and comparison operations over all permutations in
Sy, are also given by (1) and (2), respectively.

2. The proof

The number N of bumping operations is a function of the partition A\: The A; squares in the first
row were not bumped at all; the Ay squares in the second row were bumped down one row, etc.
Therefore N has the expression

k
N=0-M+1-do+..+E-1)- =) (i-1)\
i=1
Now, if the permutation ¢ € &, is chosen at random, then the distribution of the resulting
partition X is the so-called Plancherel measure Py, namely
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where d) is the number of standard Young tableaux of shape A - this follows from the bijection
mentioned above. Our objective is therefore to analyze the statistic N = N(A) of a Plancherel-
distributed random partition of n. Fortunately, Plancherel random partitions are an extensively
studied object, and our goal can be achieved quite easily using known results.

First, note the following geometric interpretation of N(\): If we choose a coordinate system
such that row ¢ in the Young diagram of A\ has y—coordinate ¢ — 1, then N())/n is simply the
y—coordinate of the center of mass of .

Let P, be the set of partitions of n. For a partition A € Py, let fi(z) be the graph of the
Young diagram of A, i.e.

f)\(iL') = A|_ac'|7 (:I’. > 0)
Let f)(z) be the rescaled Young diagram, given by
1

Alz) = %f,\(\/ﬁx)
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Let §x(u) be the rescaled Young diagram of \ in the rotated coordinate system u = (z — y)/v/2,
v = (z +y)/v2. That is, x(u) satisfies
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Recall the limit shape theorem for Plancherel random partitions:

Theorem. (Logan-Shepp [7], Kerov-Vershik [5, 6]) Define the function 2 : R — R by

Q) = { 2 (warcsin(u/v/2) + V2 —u?) |u] < V2
Ll lul > V2

Then for every € > 0,

n—oo

lim P, ()\ € Py, : sup |ga(u) — Qu)| > e) =0
u€ER

The proof of our Theorem is now essentially contained in the following picture:
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Figure 2: The limit shape v = Q(u) and the center of mass

The limit shape theorem asserts that for large n, P,-almost all partitions of n have the graph
of their rescaled rotated Young diagrams lying within a stripe of thickness e around the curve
Q(u). This is almost sufficient to imply that the center of mass of those (rescaled) Young diagrams
is close to the ideal center of mass (i, i4,) of the area lying between the curve Q(u) and the curve
|u|; one need only mention the additional simple fact that the support of gy(u) — |u| is known to



be contained in the interval [—e/v/2, e/v/2] for P,-almost all partitions of n as n — oo (see e.g.
[4], p. 68, exercise 29. In fact, the number e in the above assertion can be replaced by 2, but this
is much more difficult to prove. Also, the P,, measure of the set of partitions where the support is
not contained in the interval [—e/v/2, e/v/2], decreases to 0 exponentially fast in n. This justifies
the assertion that the average number of bumping operations over all permutations is the same
as the number of operations for a typical permutation.)

It remains to calculate the coordinates of the center of mass (yy, piy). Clearly p, = 0 by the
symmetry Q(u) = Q(—u). py is evaluated as

_ [ Q) +lul\ 1V, 1282
P = /ﬁ(ﬂ(u) = lul) (ﬁ> du = 5/ﬁ(g(u) —u?)du = =5,

as can be easily verified by hand or using a symbolic algebra system. This gives the values asserted
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This finishes the proof of the claim about the number of bumping operations, since N()\) is n
times the y-coordinate of the center of mass of the diagram A, or n3/2 times the y-coordinate of
the center of mass of the rescaled diagram.

Next, we turn to the number T of comparison steps. This number is not a function of
the partition A, but depends on the order by which the elements are inserted into the tableau.
However, we can bound T from both sides by functions of A, and these bounds are asymptotically
tight.

Our claim is, roughly, that the vast majority of binary search operations performed during
the application of the Robinson-Schensted algorithm for a typical permutation require about
logy(y/n) = %loan comparison operations. Indeed, the number of comparisons differs by at
most one from the logarithm to base 2 of the length of the row in the tableau where the search is
being performed. This gives immediately the upper bound

T < (N(A) + A1) - (logy M + 1)

(the additional A; accounts for binary searches in the first row, before the first bumping in each
insertion.) Since, as was mentioned above, we have A; < ey/n P,-almost-surely, this proves that
(2) is an upper bound for the number of comparison steps in P,-almost all diagrams.

The lower bound is obtained in a similar fashion: Fix i, 1 < ¢ < A{. Observe that, over all
permutations leading to the diagram A, the number of comparisons is minimized if, during the
construction of the tableau, the inserted elements are pushed down as fast as possible, so the first
Al elements form a column of height A}, the next X, elements form a column of height \,, etc.
After X| + ... + A} insertions, this minimal tableau will have columns of heights A, ..., A}, and any
binary search performed thereafter will require at least log, ¢ comparisons. This gives us the lower
bound

NN -1 A2
T > N(A)—ZJ(#) -log2i2<N()\)—i71)-log2i
=1



This is enough to prove our claim, since for a typical diagram, i.e. one for which N () is close
to its expected value (1) and A] is no more than ey/n, we may take i = |ey/n] for some € > 0 to
obtain finally

662
T > N(A)logy(vn) — 7n3/ ?loga(v/n) — N(X) logy (e)

Since € > 0 is arbitrary, this shows that (2) is a lower bound for 7.

3. Concluding remarks

In this paper, we initiated the probabilistic analysis of the Robinson-Schensted algorithm, by
obtaining the asymptotics of the average and typical number of steps performed during the ap-
plication of this algorithm. It would be interesting to pursue this study further by trying to
determine asymptotics of the next order, namely the variance of the number of steps and its lim-
iting distribution. For the number of bumping operations at least, this does not seem a completely
hopeless venture, as it consists of analyzing the statistic N (A) of a Plancherel-distributed random
partition. The current state of the art concerning asymptotics of Plancherel measure, such as
the paper [3], is not sufficient to solve this problem (although it does suggest that the limiting
distribution is almost certainly Gaussian), but it is to be hoped that future developments might
make this problem more accessible.

We remark further that we are not aware of many previous works dealing with computational
aspects in the theory of Young tableaux. The interested reader may consult the papers [1], [9], [2],
of which only [1] deals with questions of a probabilistic nature (we thank the referee for pointing
out these references). In the theory of combinatorial structures such as Young tableaux, plane
partitions etc., there appear many fascinating and beautiful algorithms, and the analysis of such
algorithms seems like a promising unexplored direction.
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