
Identities arising from limit shapes of onstrainedrandom partitionsDan Romik �Marh 10, 2003Abstrat. Anatoly Vershik showed how to ompute limit shapes for uniformrandom partitions with onstraints on the parts, when the onstraints are in-dependent. Here, we develop tehniques for dealing with nonindependent on-straints. We ompute limit shapes for random partitions hosen uniformly fromthe set of partitions of n into nononseutive parts, and from the set of min-imal di�erene 2 partitions of n. This is done in two ways, �rst using speialombinatorial ideas, and seond using a probabilisti tehnique appliable inmore general settings. The equivalene of the two methods leads to interestingintegral identities.1. IntrodutionThe theory of integer partitions has traditionally provided a fertile ground forthe interation of algebrai, ombinatorial and analyti ideas. To this rih irleof ideas a new aspet has been added in reent years, that of probability. Thetheory of random partitions has its historial beginnings with the paper of Erd�osand Lehner [4℄ on the number of parts in random partitions. More reently,Fristedt's [6℄ onvenient representation of random partitions, whih he used toobtain new results on the behavior of the parts in a random partition, and thework of Vershik and his ollaborators [2,9,10℄ on the limiting shapes of randompartitions, have been major advanes in the �eld.In this paper, we ontinue the work of Vershik on the theory of limit shapesof random partitions. We prove limit shape theorems for two lasses of par-titions satisfying \non-independent" onstraints on the parts: partitions notontaining two onseutive parts, and partitions with \minimal di�erene" 2,i.e. not ontaining repeated parts or two onseutive parts (see below for preisede�nitions). The non-independene of the onstraints means that the tehniqueof Vershik annot be immediately extended to these ases, and some additionalingenuity is required. We shall derive the limit shapes in two ways: First, byspeially-tailored ombinatorial ideas whih, in eah of the two ases, transform�Department of Mathematis, Weizmann Institute of Siene, Rehovot 76100, Israel. email:romik�wisdom.weizmann.a.il 1



the onstraints into independent ones and thereby allow the omputation of theshapes; Seond, by introduing a probabilisti tehnique generalizing Vershik'stehnique for independent random variables, involving the omputation of sta-tionary probabilities of a ertain Markov hain. From the equivalene of thetwo methods, some interesting analyti identities arise.In setion 2 we state the main de�nitions and results. In setion 3 we re-view Fristedt's onditioning representation for uniform random partitions andgeneralize it to sub-lasses of partitions. In setion 4 we prove the limit shapetheorem for \ensemble A" of partitions with no two onseutive parts. Themethod of Markov hains is desribed and using it, a seond formula for thelimit shape is derived. In setion 5 we use similar ideas, together with a resultof Vershik on the limit shape of partitions of n into tpn parts, to ompute thelimit shape for \ensemble B" of partitions with minimal di�erene 2 and provethe related identities.2. De�nitions and main resultsReall that a partition � of an integer n is a sequene �1 � �2 � �3 � ::: ofnonnegative integers suh that P�k = n. The �k are alled the parts or thesummands of the partition. Alternatively, � an be desribed as a sequener1; r2; r3; ::: of nonnegative integers suh thatP krk = n. rk is alled the multi-pliity of k in �, or the oupation number. The Young diagram orrespondingto the partition � is the dereasing funtion �� on [0;1) de�ned by ��(t) = �dte,where dte = inffm 2 N : m � tg is the eiling funtion. (See Fig. 1 - note thatthe �k's represent the olumns of the diagram and not its rows, in ontrast tothe tradition in the ombinatoris literature; however, sine we are interested inthe atual shape of the diagram, it seems natural to have the x-axis as the vari-able axis and the y-axis as the funtion axis.) The normalized Young diagramof � is the funtion ~��(t) = 1pn��(pnt), i.e. the Young diagram with both axesontrated by a fator of pn to obtain a diagram of area 1.
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Figure 1: The Young diagram of the partition 21 = 6 + 6 + 4 + 3 + 1 + 1Let Pn be the set of partitions of an integer n. The ensemble of unrestritedpartitions is the sequene of probability spaes P = (Pn)1n=1, where eah Pn is2



equipped with the uniform probability measure. A sub-ensemble of partitionsis a sequene of subsets E = (En)1n=1, where eah En � Pn and is thought ofas a probability spae equipped with the uniform probability measure, in otherwords the measure on Pn onditioned on the event En.Example 1. The ensemble R = (Rn)1n=1 of restrited partitions, i.e. parti-tions not ontaining repeated parts.When we say that a ertain property (depending perhaps on n) holds for almostall partitions in a partition ensemble E = (En)1n=1, we mean that as n!1, theuniform measure on En of the set of partitions satisfying the property, onvergesto 1.Example 2: Limit shapes for the ensembles P and R. The followingtheorem was proved by Vershik [9℄: Let  = �=p6; d = �=p12, and let t > 0.Then for almost all partitions � in P , we have~��(t) ����!n!1 �(t) := �1 log �1� e�t� ;(Note: this is a slight abuse of notation; the true meaning of this is that for any� > 0, for almost all partitions in P we have j~��(t) + 1 log(1� e�t)j < �.)And for almost all partitions � in R we have~��(t) ����!n!1 � � 1d log �edt � 1� 0 < t < log(2)=d0 t > log(2)=dThe graphs of the limiting shapes are shown in Figure 2.
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Figure 2: Limit shapes of the ensembles P and RWe now de�ne the two partition ensembles whih are the main objets of inter-est in this paper: 3



Ensemble A = (An)1n=1 : Partitions not ontaining two onseutive parts,and not ontaining any parts equal to 1.Ensemble B = (Bn)1n=1 : Partitions not ontaining repeated parts and notontaining two onseutive parts.(The reason for the restrition on parts equal to 1 in Ensemble A will beomeapparent in setion 4; however, it is in fat immaterial as far as the limit shapeis onerned.)We now state the main results:Theorem 1 - the limit shapes. Let a = �=3; b = �=p15; � = (1+p5)=2,and let t > 0. Then for almost all partitions � in A, we have~��(t) ����!n!1 A(t) := 1a log�1� e�at + e�2at1� e�at � ;and for almost all partitions � in B we have~��(t) ����!n!1 B(t) := ( � 1b log� e�2bt1�e�bt � 0 < t < log(�)=b0 t > log(�)=bThe graphs of the limiting shapes A(t) and B(t) are shown in Figure 3.
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Figure 3: Limit shapes of the ensembles A and BIn the statement of the above theorem, the expressions for the limiting shapefuntions have been \leaned up" to oneal the proess whereby these shapeswere obtained. In fat, these funtions arise as ertain inde�nite integrals. Wewill show how thinking about partitions in two di�erent ways an lead to two dif-ferent expressions for the limit shapes. The fat that these expressions must beequal leads to an interesting identity, whih an also be veri�ed independently.We state these identities as a separate theorem:4



Theorem 2 - identities arising from the limit shapes. For 0 < p < 1de�neq(p) = p(1� p)2 1 + p+p1 + 2p� 3p22p1 + 2p� 3p2  1� p+p1� 2p+ 3p22 !�3Then with a; b; and � as before,A(t) = Z 1t 11� e�au + e�2au � e�2au1� e�au + e�2au� du == 1a log�1� e�at + e�2at1� e�at �A�1(t) = Z 1t 11� e�au q(e�au)du == 12a log"1 + e�at +p1 + 2e�at � 3e�2at2(1� e�at) #B(t) = ( � 1b log� e�2bt1�e�bt � 0 < t < log(�)=b0 t > log(�)=bB�1(t) = Z 1t q� e�bu1 + e�bu� du = �1b log �ebt +pe2bt + 4ebt2 !Remarks. 1. Note that, while verifying the identities in Theorem 2 is fairlystraightforward, omputing the integrals for A�1(t) and B�1(t) would have beenvery diÆult without knowing the answer in advane! Symboli integration soft-ware suh as Mathematia did not sueed in solving these integrals, and in fatit was using the alternative expressions for A(t) and B(t) that the answer wasobtained, and then veri�ed.2. The onstant log(�)=b appearing in the formula for B(t) represents thefat that almost all minimal di�erene 2 partitions of n have approximately(log(�)=b)pn parts. This fat (whih is used in the proof of Theorem 1) wasproved using separate arguments in [8℄. The proof involves identities satis�edby the dilogarithm funtion.3. Fristedt's representation for random partitionsIn this setion, we review Fristedt's representation for uniform random par-titions, and reall Vershik's approah to proving limit shape theorems usingthis representation. The idea is to represent the multipliities (or oupationnumbers) in a uniform random partition of n as independent geometri ran-dom variables, onditioned on the number being partitioned being equal to n.More preisely, let 0 < x < 1 be a real parameter, and for k = 1; 2; 3; ::: de�ne5



independent random variables R1; R2; R3; ::: suh that Rk + 1 has geometridistribution with parameter 1� xk, in other wordsPx(Rk = j) = (1� xk)xkj j = 0; 1; 2; :::(Px denotes probability with respet to parameter hoie x.) Then R1; R2; R3; :::de�ne the multipliities in a random partition � of the (random) integer N =P1k=1 kRk. For a given partition n = 1 � r1+2 � r2+3 � r3+ ::: (given in terms ofthe multipliities), the probability to get this partition in the random model isPx(R1 = r1; R2 = r2; R3 = r3; :::) = 1Yk=1Px(Rk = rk) = 1Yk=1((1� xk)xkrk ) == xPk�1 kRkF (x) = xnF (x) ; (1)where F (x) = P1n=0 jPnjxn = Q1k=1(1 � xk)�1 is the generating funtion forunrestrited partitions. This expression is a funtion only of n (x is �xed), sowe get:Theorem 3. (Fristedt [6℄) Let Qn denote the uniform probability measureon Pn, then for all � 2 Pn, we have Qn(�) = Px(� j N = n).Theorem 3 extends easily to sublasses of partitions: one must further on-dition the partition to belong to the sublass. If the sublass an be de�nedby independent onstraints on eah of the Rk's, we all the sublass an \in-dependent onstraint" sublass. In this ase, we will have an equally simplerepresentation of the uniform measure on the sublass as the measure induedby independently hoosing random variables Rk, with distribution whih is sim-ply the geometri distribution onditioned on the relevant onstraint, and �nallyonditioned on the event N = n. For instane, for restrited partitions (\en-semble R") Rk will be a random variable taking the values 0; 1 with respetiveprobabilities 1=(1 + xk); xk=(1 + xk).It is now fairly easy to desribe the Young diagram of the partition in termsof the multipliities. A slight ompliation is that one must look at the onjugatepartition. Reall that the partition onjugate to the partition � : �1 � �2 �:::�k, is the partition �0 : �01 � �02 � :::�0m de�ned by�0j = #fi : �i � jg(graphially, the Young diagram of �0 is the inverse funtion to the Youngdiagram of �.) In terms of the multipliities r1; r2; ::: of � we have�0j =Xk�j rk:So we have expressed the Young diagram of the onjugate partition �0 in termsof the multipliities. For the normalized Young diagram, this an be written as~��0 (t) = 1pn Xk�tpn rk6



For a random partition, we have the random young diagram~��0(t) = 1pn Xk�tpnRkSo we see that it is simpler to approah the shape of the onjugate diagram.Alternatively, we may work with the multipliities R0k of the onjugate diagramand reonstrut from them the Young diagram of the original partition. InVershik's limit shape theorem for unrestrited partitions these two alternativesare equivalent, sine the onjugate of a uniform random unrestrited partition isalso a uniform random unrestrited partition. For these partitions, we now �x aspeial value xn = e��=p6n of the parameter x. For this hoie of parameter, wewill show that the event N = n has a relatively high probability, and thereforethe limit shape in the onditioned model (i.e. under the measure Qn) is thesame as in the independent model Pxn :Lemma 1. For parameter hoie x = xn, we have as n!1Pxn(N = n) = (1 + o(1)) 12 � 61=4n3=4and Exn(~��0(t)) = (1 + o(1))��1 log(1� e�t)� = (1 + o(1)) ��(t)(E denotes expetation;  = �=p6 as in Example 2.) Furthermore, there existsa funtion g(u) suh that for all u > 0, g(u) > 0 andPxn(j~��0 (t)��(t)j > u) � e�g(u)pnProof. For the �rst part, note that Pxn(N = n) is simply a sum over alldi�erent partitions of n of the right hand side of (1), soPxn(N = n) = jPnjxnF (x)The laim now follows from known asymptotis of jPnj and F (x) (see e.g. [7℄),namely jPnj = (1 + o(1)) 14p3ne�p2n=3; n!1logF (e�s) = �26s + 12 log s� 12 log(2�) + o(1); s& 0For the seond laimExn ~��0 (t) = 1pn Xk�tpnExn(Rk) = 1pn Xk�tpn xkn1� xkn =7



= (1 + o(1)) Z 1t e�u1� e�u du = (1 + o(1))�(t)The third laim is proved easily using standard tehniques of large deviationtheory, and its proof is omitted.Lemma 1 immediately implies Vershik's limit shape result, sineQn(j~��0 (t)��(t)j > u) = Pxn(j~��0 (t)��(t)j > u j N = n) == Pxn(j~��0 (t)��(t)j > u;N = n)N = n � Pxn(j~��0(t)��(t)j > u)N = n �� n3=4C e�g(u)pn ����!n!1 0Note that the preise asymptotis of Pxn(N) are not really required, and onean settle for a muh easier-to-prove estimate of the form Pxn(N = n) � 1=n�for some � > 0. (The above argument is a muh-distilled version of the large-deviations approah to limit shapes of partitions, developed extensively in [2℄.)4. Constrained partitions, onjugate partitions and theMarkov hain tehniqueWe now adapt Vershik's basi tehnique to alulate limit shapes for EnsembleA. Conditioning the random partition in Fristedt's model to lie in EnsembleA will yield, using this method, the limit shape for the partitions onjugate toEnsemble A, i.e. the funtion A�1(t). To get the limit shape of Ensemble A,we must deal with the onjugate partition ensemble! Fortunately, Ensemble Ahas a rather simple de�nition in terms of restritions on the onjugate of itspartitions (this is of ourse not so muh a stroke of good fortune as simply thereason why this paper deals with this partiular lass of partitions). We de�neEnsemble A0 = (A0n)1n=1: Partitions not ontaining any part exatly one.It is not diÆult to see that a partition � is in A if and only if �0 is in A0. (Thisis the reason why the restrition that � 2 A must ontain no 1's was added.) Inanother stroke of seemingly good fortune, we now observe that the restritionsin ensemble A0 operate separately on eah of the multipliities. In other words,A0 is an independent onstraint ensemble and its limit shape (or, rather, theonjugate limit shape A(t)) an be omputed by Vershik's tehnique. We �rststate the onditioned form of Theorem 3 appliable to this ase:Lemma 2. Let Qn denote the uniform probability measure on An. For 0 <x < 1, let Px be the measure on partitions in A indued by hoosing randommultipliities R01; R02; R03; ::: (of the onjugate partition) suh that R0k is a randomvariable taking the values 0; 2; 3; 4; ::: with probabilitiesPx(R0k = j) = 1� xk1� xk + x2k � xkj j = 0; 2; 3; :::8



Let N =Pk kR0k. Then for all � 2 An, we have Qn(�) = Px(� j N = n).Next, we state the onstrained partition analogue of Lemma 1:Lemma 3. For parameter hoie x = xn := e��=3pn, we have as n!1Pxn(N = n) � Cn�for some onstants C;� > 0, andExn(~��(t)) = (1 + o(1))A(t)There exists a funtion h(u) : (0;1)! (0;1) suh thatPxn(j~��(t)�A(t)j > u) � e�h(u)pnProof. For the �rst part, we again make use of known results on the asymp-totis of partition ounting funtions and partition generating funtions. LetG(x) = P1n=0 jAnjxn. An argument similar to the one used in the previoussetion shows that Pxn(N = n) = jAnjxnG(x)We now use a partition identity due to P. A. MaMahon ([1℄, p. 14, examples9,10) to transform G(x) into a more manageable expression:Theorem 4. (Mamahon) For any n � 1, jAnj is equal to the numberof partitions of n into parts whih are ongruent to 0, 2, 3, or 4 modulo 6.Equivalently, we have the generating funtion identityG(x) = 1Yk=0 1(1� x6k+2)(1� x6k+3)(1� x6k+4)(1� x6k+6)The laim of the Lemma now follows from the results of [1℄, hapter 6. Forthe seond part, the expetation of R0k is easily omputed to beExn(R0k) = 11� xkn + x2kn � x2kn1� xkn + x2kn �and therefore Exn(��(t)) = 1pn Xk�tpnE(R0k) == (1 + o(1)) Z 1t 11� e�au + e�2au � e�2au1� e�au + e�2au� du = (1 + o(1))A(t)The third part is again an easy appliation of standard tehniques in largedeviation theory, and is omitted.The �rst part of Theorem 1 now follows from Lemma 3 in exatly the same wayas the proof of Vershik's theorem in the previous setion.9



The Markov hain tehniqueWe now explain the tehnique by whih we shall derive the limit shape for theensemble A0. This requires dealing with the multipliities R1; R2; ::: of a randompartition in A, whih are not independent. Rather, these random variables havethe distribution of independent geometri random variables onditioned on theevent that no two onseutive Rk's are non-zero.We shall present the tehnique in a form that is not fully rigorous. Sineour main results are also proven in another way, from a stritly formal pointof view this does not pose a problem. However, for the sake of possible futureappliation of these ideas, we wish to stress that eah of the steps that followsan be made rigorous using a more detailed analysis. The tools that are neededare the theory of non-homogeneous Markov hains, and the theory of largedeviations as explained e.g. in [3℄ and applied to random partitions in [2℄.Reall that, in the analysis of the limit shapes for the unrestrited ensembleP and for the onstrained ensemble A, the �rst step onsisted of identifyingthe orret value xn of the parameter required to make the onditioned modelbehave approximately the same as the non-onditioned one - this is simply the\saddle-point" of the generating funtion. The next step, whih is omputation-ally the ruial one, was to understand the behavior of Exn(Rk), for k � upn.The limit shape was then the integral of this quantity from t to in�nity. Forunrestrited partitions, Rk+1 was a geometri r.v. with parameter 1�xkn, withxn = e�=pn, so we had Exn(Rk) � e�u1� e�uwhereas for ensemble A, we had (with xn = e�a=pn)Exn(R0k) � 11� e�au + e�2au � e�2au1� e�au + e�2au�with the saddle point xn = e��=3pn. We now give a heuristi argument explain-ing why, for ensemble A0, we should expet to haveExn(Rk) � q(e�au)1� e�auwhih would explain the expression for A�1(t) given in Theorem 2. First, rep-resent the multipliities in the formRk = Sk � Tkwhere: Sk is a random variable taking the values 0; 1, and Tk is a randomvariable taking the values 1; 2; 3; :::. Sk orresponds to hoosing whether thepart k will be in the partition, and Tk represents the hoie of the number oftimes this part will appear, if hosen. Clearly, Sk and Tk are independent. Tkwill have the geometri distribution with parameter 1 � xkn. The distribution10



of the Sk's an be desribed as follows: Take a sequene of independent eventsD1; D2; D3; ::: suh that P (Dk) = xkn, and de�ne the eventE = 1\k=1(Dk [Dk+1) = \no two onseutive Dk's oured"Then �Sk; k = 1; 2; :::� dist= �1Dk ; k = 1; 2; :::���� E�Now, Exn(Rk) = Exn(Sk) �Exn(Tk) � (1� e�au)�1Exn(Sk);and it remains to explain whyExn(Sk) = P (Dk j E) � q(e�au)Sine P (Dk) � e�au, this leads us to the following natural question: What is thedistribution of a sequene of independent events, of probability approximately p,onditioned on the event that no two onseutive events our? Note that thisis a slight simpli�ation of the true situation, sine in reality the probabilities1� xkn are hanging very slowly. The assumption (whih an be fully justi�edwith a little more work) is that onditioning on the event E only a�ets thesequene Dk \loally", i.e. if the probabilities of a large number of events nearDk are all approximately e�au, then we an neglet the e�et of the hange inthe probabilities over time. The answer to the simpli�ed question is given inthe followingLemma 4. Let A1; A2; A3; :::; An be independent events ourring eah withprobability p, and let En = \n�1k=1 (Ak [ Ak+1). Then if 1 � k � n and both kand n � k are suÆiently large (i.e. the event Ak is \far from the boundary")then P (Ak j En) � q(p)where q(p) is de�ned as in Theorem 2:q(p) = p(1� p)2 1 + p+p1 + 2p� 3p22p1 + 2p� 3p2  1� p+p1� 2p+ 3p22 !�3First proof. De�ne en = P (En). By onditioning on An�1; An, we have thereurrene en = (1� p)en�1 + p(1� p)en�2together with the initial onditions e0 = e1 = 1. Therefore it an easily beveri�ed thaten =  1 + p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p+p1 + 2p� 3p22 !n+11



+ �1� p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p�p1 + 2p� 3p22 !nFor large n we have simplyen �  1 + p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p+p1 + 2p� 3p22 !n =: C(p) � �(p)nNow P (Ak j En) an be represented in terms of independent events, as follows:P (Ak j En) = P (Ak \ En)P (En) == P �Ak \ Ak�1 \ Ak+1 \ �Tk�3j=1 (Aj [ Aj+1)� \ �Tn�1j=k+2(Aj [ Aj+1)��P (En) == p(1� p)2ek�2 en�k�1en � p (1� p)2C(p) � �(p)�3 = q(p)Seond proof. We sketh a proof of Lemma 4 whih is more oneptual, andwhih explains why the tehnique is related to Markov hains. Suh a oneptualoutlook will simplify the use of the tehnique in more general settings.One may think of the original sequene of events A1; A2; ::: as a stationaryMarkov hain, whose state spae is pairs of events. That is, there are 4 states:\00", \01", \10", and \11", where if at time n the hain is in state \��00(�; � 2 f0; 1g), then � signi�es whether event An ourred (i.e. � = 1An) and� signi�es whether event An+1 ourred.The transition matrix of this Markov hain is00 01 10 1100011011 0BB� 1� p p 0 00 0 1� p p1� p p 0 00 0 1� p p 1CCAConditioning on the eventEn is the same as onditioning the Markov hain neverto go into the state \11". The behavior of suh a \forbidden state" Markov hainan be omputed. We state this in more general terms as a lemma; the proof isan easy appliation of standard methods of Markov hains, see e.g. [5℄, h. 15.Lemma 5. (Forbidden state Markov hains) Let A = (aij)i;j2S be thetransition matrix of a Markov hain with �nite state spae S. Let F � Sbe a set of forbidden states, suh that the sub-matrix A0 = (aij)i;j2SnF isindeomposable and aperiodi, i.e. there exists a k suh that the entries a(k)ij12



of A0k are all non-zero. Let X1; X2; :::; Xn be a random sample of the Markovhain, with any initial distribution. Let E be the eventE = n\j=1fXj =2 FgLet m be a �xed positive integer, and let 1 < k < n suh that k and n� k arelarge. Then the distribution of�Xk; Xk+1; Xk+2; :::; Xk+m����E�is approximately the same as the distribution of a random sample Y1; Y2; :::; Ym�1from the Markov hain, with stationary initial distribution, whose transitionmatrix is B = (bij)i;j2SnF , de�ned as follows:bij = aijvj�viWhere: � is the Perron-Frobenius eigenvalue of the matrix (aij)i;j2SnF , and(vi)i2SnF is its assoiated eigenvetor.To �nish the seond proof of Lemma 4, all that remains is to ompute thetransition matrix for the onditioned Markov hain, and ompute its stationaryprobabilities. The desired quantity P (Ak j En) is the stationary probabilityof the state \10". The omputation may easily be arried through to give thestated result.5. Ensemble BIn this setion, we �nish the proof of Theorem 1 by omputing the limit shapeof ensemble B. The omputation using the Markov hain tehnique is similar tothe one in the last setion, and is omitted. The approah that will be presentedrelies on the following simple observation: A minimal di�erene 2 partition� : �1 > �2 > ::: > �k of n an be onverted into an unrestrited partition� : �1 > �2 > ::: > �k of n � k(k � 1), de�ned by �i = �i � 2(k � i); i =1; 2; :::; k. This mapping establishes a bijetion between the minimal di�erene2 partitions of n into k parts and unrestrited partitions of n� k(k � 1) into kparts. Geometrially, this an be thought of as taking the Young diagram of thepartition and deleting a triangular array of squares, of slope �2, that hits thex-axis at the (k � 1)-th part. Phrasing this in the language of probability, wemay say that even though minimal di�erene 2 partitions are not de�ned usingindependent onstraints on the multipliities of the parts, the multipliities areonditionally independent, given the number of parts. It is this observation thatwill enable us an alternative method for omputing the limit shape. Two fatsare needed: one is Vershik's result on the limit shape of unrestrited partitionsof n into spn parts, and the other is a result on the number of parts in a typialminimal di�erene 2 partition: 13



Theorem 5. As n ! 1, almost all partitions of n in ensemble B have(1 + o(1))(p15 log((1 +p5)=2)=�) � pn parts.Proof. See [8℄.Reall that the dilogarithm funtion is de�ned byLi2(x) = Z x0 � log(1� t)dtt = 1Xm=1 xmm2 ; 0 � x � 1De�ne funtions y : (0;1) ! (0; 1); z : (0;1) ! (0; �=p6) by the impliitequations s2Li2(y(s)) = log2(1� y(s))z(s) =pLi2(y(s))Theorem 6 - the limit shape of partitions into spn parts. (Vershik[9℄, see also [10℄) Fix s > 0. Let Ps = (Psn)1n=1 be the partition ensembleof partitions of n into k = bspn parts. Then for almost all partitions � in Ps,we have ~��(t) ����!n!1 Fs(t) := ( � 1z(s) log� 1�e�z(s)ty(s) � 0 < t < s0 t > sThe ground is now set for the omputation of the limit shape B(t) in Theo-rem 1. From the above disussion, it follows that B(t) an be built up from thetriangular graph 2(s0�t), together with a saled version of the graph Fs0=p1�s20 ,where b = �=p15; � = (1 +p5)=2 as in Theorem 1, and s0 = log(�)=b. Morepreisely, B(t) = 0; t > s0whereas for 0 < t < s0, we haveB(t) = 2 (s0 � t) +q1� s20 Fs0=p1�s20  tp1� s20!Now, using the speial valuesy�s0=q1� s20� = ��2; z�s0=q1� s20� =qb2 � log2(�)this an easily be simpli�ed to arrive at the expression given in Theorem 1.
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