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Abstract. Anatoly Vershik showed how to compute limit shapes for uniform
random partitions with constraints on the parts, when the constraints are in-
dependent. Here, we develop techniques for dealing with nonindependent con-
straints. We compute limit shapes for random partitions chosen uniformly from
the set of partitions of n into nonconsecutive parts, and from the set of min-
imal difference 2 partitions of n. This is done in two ways, first using special
combinatorial ideas, and second using a probabilistic technique applicable in
more general settings. The equivalence of the two methods leads to interesting
integral identities.

1. Introduction

The theory of integer partitions has traditionally provided a fertile ground for
the interaction of algebraic, combinatorial and analytic ideas. To this rich circle
of ideas a new aspect has been added in recent years, that of probability. The
theory of random partitions has its historical beginnings with the paper of Erdos
and Lehner [4] on the number of parts in random partitions. More recently,
Fristedt’s [6] convenient representation of random partitions, which he used to
obtain new results on the behavior of the parts in a random partition, and the
work of Vershik and his collaborators [2,9,10] on the limiting shapes of random
partitions, have been major advances in the field.

In this paper, we continue the work of Vershik on the theory of limit shapes
of random partitions. We prove limit shape theorems for two classes of par-
titions satisfying “non-independent” constraints on the parts: partitions not
containing two consecutive parts, and partitions with “minimal difference” 2,
i.e. not containing repeated parts or two consecutive parts (see below for precise
definitions). The non-independence of the constraints means that the technique
of Vershik cannot be immediately extended to these cases, and some additional
ingenuity is required. We shall derive the limit shapes in two ways: First, by
specially-tailored combinatorial ideas which, in each of the two cases, transform
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the constraints into independent ones and thereby allow the computation of the
shapes; Second, by introducing a probabilistic technique generalizing Vershik’s
technique for independent random variables, involving the computation of sta-
tionary probabilities of a certain Markov chain. From the equivalence of the
two methods, some interesting analytic identities arise.

In section 2 we state the main definitions and results. In section 3 we re-
view Fristedt’s conditioning representation for uniform random partitions and
generalize it to sub-classes of partitions. In section 4 we prove the limit shape
theorem for “ensemble A” of partitions with no two consecutive parts. The
method of Markov chains is described and using it, a second formula for the
limit shape is derived. In section 5 we use similar ideas, together with a result
of Vershik on the limit shape of partitions of n into ¢y/n parts, to compute the
limit shape for “ensemble B” of partitions with minimal difference 2 and prove
the related identities.

2. Definitions and main results

Recall that a partition A of an integer n is a sequence Ay > Ay > A3 > ... of
nonnegative integers such that > Ay = n. The Ay are called the parts or the
summands of the partition. Alternatively, A can be described as a sequence
r1,72,73,... of nonnegative integers such that Y kr; = n. ry, is called the multi-
plicity of £ in A, or the occupation number. The Young diagram corresponding
to the partition X is the decreasing function ¢y on [0, oc) defined by ¢ (t) = Ay,
where [t] = inf{m € N: m >t} is the ceiling function. (See Fig. 1 - note that
the Ag’s represent the columns of the diagram and not its rows, in contrast to
the tradition in the combinatorics literature; however, since we are interested in
the actual shape of the diagram, it seems natural to have the z-axis as the vari-
able axis and the y-axis as the function axis.) The normalized Young diagram
of X is the function ¢ (t) = ﬁq&,\(\/ﬁt), i.e. the Young diagram with both axes

contracted by a factor of \/n to obtain a diagram of area 1.

¢A.(t)

t
Figure 1: The Young diagram of the partition 21 =6+6+4+3+1+1

Let P, be the set of partitions of an integer n. The ensemble of unrestricted
partitions is the sequence of probability spaces P = (P,)%2,, where each P, is



equipped with the uniform probability measure. A sub-ensemble of partitions
is a sequence of subsets £ = (£,)%2,, where each &, C P, and is thought of
as a probability space equipped with the uniform probability measure, in other
words the measure on P, conditioned on the event &,.

Example 1. The ensemble R = (R,)52; of restricted partitions, i.e. parti-
tions not containing repeated parts.

When we say that a certain property (depending perhaps on n) holds for almost
all partitions in a partition ensemble £ = (£,)52;, we mean that as n — oo, the
uniform measure on &, of the set of partitions satisfying the property, converges
to 1.

Example 2: Limit shapes for the ensembles P and R. The following
theorem was proved by Vershik [9]: Let ¢ = 7/v/6,d = 7/+/12, and let t > 0.
Then for almost all partitions A in P, we have

e 1 —ct
OA(t) = B(t) == —~ log (1—e),
(Note: this is a slight abuse of notation; the true meaning of this is that for any
€ > 0, for almost all partitions in P we have |¢(t) + %log(l —e Y| <e)
And for almost all partitions A in R we have

~ —Llog (e¥ —1) 0<t<log(2)/d
¢>A(t)—>{ 0" & ) t>log(2)§d

n— o0

The graphs of the limiting shapes are shown in Figure 2.
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Figure 2: Limit shapes of the ensembles P and R

We now define the two partition ensembles which are the main objects of inter-
est in this paper:



Ensemble A = (A,)5%; : Partitions not containing two consecutive parts,

and not containing any parts equal to 1.

Ensemble B = (B,)%%, : Partitions not containing repeated parts and not
containing two consecutive parts.

(The reason for the restriction on parts equal to 1 in Ensemble A will become
apparent in section 4; however, it is in fact immaterial as far as the limit shape
is concerned.)

We now state the main results:

Theorem 1 - the limit shapes. Leta=7/3, b=7/V15, 7= (1+5)/2,
and let ¢ > 0. Then for almost all partitions A in A4, we have

- _ ,—at —2at
I () —— A(t) := L og (“i) :

n—soo a 1—eo
and for almost all partitions A in B we have
- 1 e
() B(t) = blog(lie,,ﬁ) 0<t<log(r)/b
n—oo 0 t > log()/b
The graphs of the limiting shapes A(t) and B(t) are shown in Figure 3.
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Figure 3: Limit shapes of the ensembles A and B

In the statement of the above theorem, the expressions for the limiting shape
functions have been “cleaned up” to conceal the process whereby these shapes
were obtained. In fact, these functions arise as certain indefinite integrals. We
will show how thinking about partitions in two different ways can lead to two dif-
ferent expressions for the limit shapes. The fact that these expressions must be
equal leads to an interesting identity, which can also be verified independently.
We state these identities as a separate theorem:



Theorem 2 - identities arising from the limit shapes. For 0 < p <1
define

q(p) = p(1 = p)

-3
J14p+ /14 20— 3p? (1—p+\/1—2p+3p2>
2

2¢/1+ 2p— 3p?

Then with a, b, and 7 as before,

A(t) / i 1 )
= e u =
‘ 1 — e—au + ef2au 1 — eau

1 1— et 4 ¢—2at
()

a 1—eat

A7) = /too (e ) du =

1—e-au

=—1
2a 8

2(1 — e—af)

L+e 9 +/1+2eat — 3e—2ﬂt]

—2bt
B(t) = { —+ log (1576—_“) 0<t<log(r)/b

0 t > log(7)/b
00 —bu 1 __ bt 2bt 4ebt
B—l(t):/ q(%)duz——log e’ +vet +4de
: 14+ e bu b 2

Remarks. 1. Note that, while verifying the identities in Theorem 2 is fairly
straightforward, computing the integrals for A~1(¢) and B~!(¢) would have been
very difficult without knowing the answer in advance! Symbolic integration soft-
ware such as Mathematica did not succeed in solving these integrals, and in fact
it was using the alternative expressions for A(t) and B(t) that the answer was
obtained, and then verified.

2. The constant log(r)/b appearing in the formula for B(t) represents the
fact that almost all minimal difference 2 partitions of n have approximately
(log(7)/b)+/n parts. This fact (which is used in the proof of Theorem 1) was
proved using separate arguments in [8]. The proof involves identities satisfied
by the dilogarithm function.

3. Fristedt’s representation for random partitions

In this section, we review Fristedt’s representation for uniform random par-
titions, and recall Vershik’s approach to proving limit shape theorems using
this representation. The idea is to represent the multiplicities (or occupation
numbers) in a uniform random partition of n as independent geometric ran-
dom variables, conditioned on the number being partitioned being equal to n.
More precisely, let 0 < z < 1 be a real parameter, and for £k = 1,2, 3, ... define



independent random variables Ry, Rs, R3, ... such that R; + 1 has geometric
distribution with parameter 1 — z*, in other words

PRy =j)=(1-2M2"  j=0,1,2,..

(P, denotes probability with respect to parameter choice x.) Then Ry, Ra, R3, ...
define the multiplicities in a random partition A of the (random) integer N =
>, kRy. For a given partitionn =171 +2-75+3-7r3 + ... (given in terms of
the multiplicities), the probability to get this partition in the random model is

o0 oo
Py(Ry=r1,Ry =1y, Ry =13,..) = [[ Pu(Ri = 1) = [J((1 — 2¥)ab™) =
k=1 k=1
_ e _oan ]
F@) F@) W

where F(z) = Y00 [Pplz™ = [[i=, (1 — z¥)~" is the generating function for
unrestricted partitions. This expression is a function only of n (z is fixed), so
we get:

Theorem 3. (Fristedt [6]) Let @, denote the uniform probability measure
on P, then for all A € P,,, we have Q,(\) = P,(\ | N = n).

Theorem 3 extends easily to subclasses of partitions: one must further con-
dition the partition to belong to the subclass. If the subclass can be defined
by independent constraints on each of the Rj’s, we call the subclass an “in-
dependent constraint” subclass. In this case, we will have an equally simple
representation of the uniform measure on the subclass as the measure induced
by independently choosing random variables Rj,, with distribution which is sim-
ply the geometric distribution conditioned on the relevant constraint, and finally
conditioned on the event N = n. For instance, for restricted partitions (“en-
semble R”) Ry will be a random variable taking the values 0, 1 with respective
probabilities 1/(1 + z*), z*F/(1 + z*).

It is now fairly easy to describe the Young diagram of the partition in terms
of the multiplicities. A slight complication is that one must look at the conjugate
partition. Recall that the partition conjugate to the partition A : Ay > Ay >
...\, is the partition X' : A} > A, > ..\, defined by

o= #{i: N > )

(graphically, the Young diagram of X' is the inverse function to the Young
diagram of X.) In terms of the multiplicities r1,79,... of A we have

K=Y
k>3

So we have expressed the Young diagram of the conjugate partition A’ in terms
of the multiplicities. For the normalized Young diagram, this can be written as

~ 1
O (t) = % k;ﬁﬂc



For a random partition, we have the random young diagram

~ 1
o (t) = 7 Z Ry
k>ty/n

So we see that it is simpler to approach the shape of the conjugate diagram.
Alternatively, we may work with the multiplicities R}, of the conjugate diagram
and reconstruct from them the Young diagram of the original partition. In
Vershik’s limit shape theorem for unrestricted partitions these two alternatives
are equivalent, since the conjugate of a uniform random unrestricted partition is
also a uniform random unrestricted partition. For these partitions, we now fix a
special value z,, = e~™/Von of the parameter z. For this choice of parameter, we
will show that the event N = n has a relatively high probability, and therefore
the limit shape in the conditioned model (i.e. under the measure @) is the
same as in the independent model P, :

Lemma 1. For parameter choice x = x,,, we have as n — oo

1

P (N=n)=(1+ 0(1))W

and

Bu. (G (0) = (1 o(0) (~ 31081 = ) = (14 o(1)) - 2(0)

(E denotes expectation; ¢ = 7/v/6 as in Example 2.) Furthermore, there exists
a function g(u) such that for all u > 0, g(u) > 0 and

Po, (|6x (1) = ()] > u) < e 9VT
Proof. For the first part, note that P, (N = n) is simply a sum over all
different partitions of n of the right hand side of (1), so

_ | Pnlz™
- F(z)

P, (N =n)

The claim now follows from known asymptotics of |P,| and F(z) (see e.g. [7]),
namely
1
P — 1+O 1 67r 272/3’
Pul = (14 0(1) e
2

1 1
log F(e™?®) = % + 3 logs — 3 log(27) + o(1), s\ 0

n — o0

For the second claim

2k

- 1 1 ko
By, dn(t) = 7n k;sz"(Rk) =7 k;ﬁ ok




—Ccu

du = (14 0(1))®(t)

1—ecu

=(1+°(1”/t00 ¢

The third claim is proved easily using standard techniques of large deviation
theory, and its proof is omitted. [ |

Lemma 1 immediately implies Vershik’s limit shape result, since
Qu(|ox (1) = (t)] > w) = Py, (|9 (t) = ®(t)| > u | N =n) =
_ P (fn() @) >u,N=n) _ P, (¢xn(t) - ®(t) >u) _

N=n - N=n -

3/4
S %e_g(u)\/ﬁ — 0

Note that the precise asymptotics of P, (N) are not really required, and one
can settle for a much easier-to-prove estimate of the form P, (N =n) > 1/n®
for some a > 0. (The above argument is a much-distilled version of the large-
deviations approach to limit shapes of partitions, developed extensively in [2].)

4. Constrained partitions, conjugate partitions and the
Markov chain technique

We now adapt Vershik’s basic technique to calculate limit shapes for Ensemble
A. Conditioning the random partition in Fristedt’s model to lie in Ensemble
A will yield, using this method, the limit shape for the partitions conjugate to
Ensemble A, i.e. the function A=1(¢). To get the limit shape of Ensemble A,
we must deal with the conjugate partition ensemble! Fortunately, Ensemble A
has a rather simple definition in terms of restrictions on the conjugate of its
partitions (this is of course not so much a stroke of good fortune as simply the
reason why this paper deals with this particular class of partitions). We define

Ensemble A’ = (A!)%% ;: Partitions not containing any part ezactly once.

It is not difficult to see that a partition A is in A if and only if A" is in A’. (This
is the reason why the restriction that A € A must contain no 1’s was added.) In
another stroke of seemingly good fortune, we now observe that the restrictions
in ensemble A’ operate separately on each of the multiplicities. In other words,
A’ is an independent constraint ensemble and its limit shape (or, rather, the
conjugate limit shape A(t)) can be computed by Vershik’s technique. We first
state the conditioned form of Theorem 3 applicable to this case:

Lemma 2. Let (), denote the uniform probability measure on A,. For 0 <
x < 1, let P, be the measure on partitions in A induced by choosing random
multiplicities R}, R), R}, ... (of the conjugate partition) such that Rj, is a random
variable taking the values 0,2, 3,4, ... with probabilities

k
) . 1-2x

— kj R
—m'ﬁj ]—0,2,3,...



Let N =), kRj. Then for all A € A,,, we have Q,(\) = P,(A | N =n).

Next, we state the constrained partition analogue of Lemma 1:

Lemma 3. For parameter choice z = z,, := e ™/3V" we have as n — oo
C

«

P, (N =n)>

3

for some constants C,a > 0, and
E,, (9x(8)) = (1 + o(1))A(t)
There exists a function h(u) : (0,00) — (0, 00) such that

Pxn(\ﬁgx(t) —At)] >u) < e—h(w)vn

Proof. For the first part, we again make use of known results on the asymp-
totics of partition counting functions and partition generating functions. Let
G(z) = >0 ;| Anlz™. An argument similar to the one used in the previous
section shows that

Py, (N =n)= |?;E;U)n

We now use a partition identity due to P. A. MacMahon ([1], p. 14, examples
9,10) to transform G(z) into a more manageable expression:

Theorem 4. (Macmahon) For any n > 1, |A,| is equal to the number
of partitions of n into parts which are congruent to 0, 2, 3, or 4 modulo 6.
Equivalently, we have the generating function identity

O 1

]];[0 (1 — x6k+2)(1 — x6k+3)(1 — x6k+4)(1 — x6k+6)

G(z) =

The claim of the Lemma now follows from the results of [1], chapter 6. For
the second part, the expectation of R}, is easily computed to be

E (Rl)_ ]' ;rglk + 2k
In AR T gk g2k \(1 — gk n

and therefore

Ex,L(m(t)):% S E(R,) =
E>tyn

oo 1 6—2au 9
=(1 1 ) du = (1 1)A(t
(o) [ 1 (T + 72 ) du= (1401400
The third part is again an easy application of standard techniques in large
deviation theory, and is omitted. [ |

The first part of Theorem 1 now follows from Lemma 3 in exactly the same way
as the proof of Vershik’s theorem in the previous section.



The Markov chain technique

We now explain the technique by which we shall derive the limit shape for the
ensemble A’. This requires dealing with the multiplicities Ry, Rs, ... of a random
partition in A, which are not independent. Rather, these random variables have
the distribution of independent geometric random variables conditioned on the
event, that no two consecutive Rj’s are non-zero.

We shall present the technique in a form that is not fully rigorous. Since
our main results are also proven in another way, from a strictly formal point
of view this does not pose a problem. However, for the sake of possible future
application of these ideas, we wish to stress that each of the steps that follows
can be made rigorous using a more detailed analysis. The tools that are needed
are the theory of non-homogeneous Markov chains, and the theory of large
deviations as explained e.g. in [3] and applied to random partitions in [2].

Recall that, in the analysis of the limit shapes for the unrestricted ensemble
P and for the constrained ensemble A4, the first step consisted of identifying
the correct value x,, of the parameter required to make the conditioned model
behave approximately the same as the non-conditioned one - this is simply the
“saddle-point” of the generating function. The next step, which is computation-
ally the crucial one, was to understand the behavior of E, (Ry), for k ~ u\/n.
The limit shape was then the integral of this quantity from ¢ to infinity. For
unrestricted partitions, Ry + 1 was a geometric r.v. with parameter 1 —z¥ with
T, = e /Y7 50 we had

—Cu

e
1—e—cu

Eacn (Rk) ~

whereas for ensemble A, we had (with z,, = e~*/V")

1 —2au
E.,(RL) ~ < ‘ + e2a“>

1—e—au 4 6—2au 1 —e—au

with the saddle point z,, = e~™/3V" We now give a heuristic argument explain-
ing why, for ensemble A’, we should expect to have

q(e™"")
1—eau

E‘m,1 (Rk) ~

which would explain the expression for A71(t) given in Theorem 2. First, rep-
resent, the multiplicities in the form

Rk:Sk-Tk

where: Sy is a random variable taking the values 0,1, and T} is a random
variable taking the values 1,2,3,.... Sy corresponds to choosing whether the
part k£ will be in the partition, and T} represents the choice of the number of
times this part will appear, if chosen. Clearly, S, and T} are independent. T}
will have the geometric distribution with parameter 1 — z*. The distribution

n-

10



of the Si’s can be described as follows: Take a sequence of independent events
D1, Dy, D3, ... such that P(Dy) = ¥, and define the event

E = |(D;UDj,,) = “no two consecutive D}’s occured”

DX

k

dist
{Sk, k=1,2,...} - {1Dk, k:l,Q,...‘ E}

E,. (Ri) = E,, (Sk) - By, (Th) ~ (1 —e )" 'E, (Sk)

and it remains to explain why

1

Then

Now,

E;,(Sk) = P(Dy | E) = q(e”"")

Since P(Dy) &~ e~ **, this leads us to the following natural question: What is the
distribution of a sequence of independent events, of probability approximately p,
conditioned on the event that no two consecutive events occur? Note that this
is a slight simplification of the true situation, since in reality the probabilities
1 — z¥ are changing very slowly. The assumption (which can be fully justified
with a little more work) is that conditioning on the event E only affects the
sequence Dy, “locally”, i.e. if the probabilities of a large number of events near
Dy, are all approximately e™%%, then we can neglect the effect of the change in
the probabilities over time. The answer to the simplified question is given in

the following

Lemma 4. Let Ay, Ay, Az, ..., A, be independent events occurring each with
probability p, and let E, = N?Z](Ax U Ag41). Then if 1 < k < n and both k
and n — k are sufficiently large (i.e. the event Ay is “far from the boundary”)
then

P(Ay | E,) = q(p)

where ¢(p) is defined as in Theorem 2:

-3
(1_p)21+p+\/1+2p—3p2 (1—p+\/1—2p+3p2>
2

24/1+ 2p — 3p?

q(p) =p

First proof. Define e, = P(E,). By conditioning on A,,_1, A,,, we have the
recurrence
€n = (1 _p)enfl +p(1 _p)en72

together with the initial conditions ey = e; = 1. Therefore it can easily be
verified that

~ <1+p+\/1+2p—3p2> (1—p+\/1+2p—3p2>n+
2

" 2y/1+ 2p — 3p?

11



N RV A W e VAR VAN
24/1+2p—3p? 2

For large n we have simply

T4p+vI+2p—32\ (1—p+/1+2p—37\ .
z( . - p)( 5 p) = C(p) - Ap)

24/1 + 2p — 3p?

Now P(Ay | E,) can be represented in terms of independent events, as follows:

_ P(Ak N En) _
P(Ay | En) = T PE)
P (A gy 0z, 0 (M52 (450 45,0)) 0 (N5 (45 U 45,)) )
P(E,)

_ 1 —p)2eek72 Cnkl o p(1—p)2CWK) - AMp)~® = q(p)

Second proof. We sketch a proof of Lemma 4 which is more conceptual, and
which explains why the technique is related to Markov chains. Such a conceptual
outlook will simplify the use of the technique in more general settings.

One may think of the original sequence of events A;, A,, ... as a stationary
Markov chain, whose state space is pairs of events. That is, there are 4 states:
“00”, “01”, “10”, and “11”, where if at time n the chain is in state “af”
(a, B € {0,1}), then « signifies whether event A, occurred (i.e. & = 14,) and
B signifies whether event A, ; occurred.

The transition matrix of this Markov chain is

00 01 10 11

00 1-p p 0 0
01 0 0 1—-p p
10 1-p p 0 0
11 0 0 1-p p

Conditioning on the event E,, is the same as conditioning the Markov chain never
to go into the state “11”. The behavior of such a “forbidden state” Markov chain
can be computed. We state this in more general terms as a lemma; the proof is
an easy application of standard methods of Markov chains, see e.g. [5], ch. 15.

Lemma 5. (Forbidden state Markov chains) Let A = (a;;)i jes be the
transition matrix of a Markov chain with finite state space S. Let FF C S
be a set of forbidden states, such that the sub-matrix A" = (a;); jes\r is

indecomposable and aperiodic, i.e. there exists a k such that the entries aﬁf)

12



of A’ are all non-zero. Let Xi,X>,..., X,, be a random sample of the Markov
chain, with any initial distribution. Let E be the event

B=[){X; ¢ F)

Let m be a fixed positive integer, and let 1 < k < n such that k& and n — k are
large. Then the distribution of

{Xkan+1=Xk+2= ---:Xk+mE}

is approximately the same as the distribution of a random sample Y7,Y5, ..., Y, 1
from the Markov chain, with stationary initial distribution, whose transition
matrix is B = (bi;); jes\r, defined as follows:
AV

)\’UZ'

bij =

Where: X is the Perron-Frobenius eigenvalue of the matrix (a;j); jes\r, and
(vi)ies\F is its associated eigenvector.

To finish the second proof of Lemma 4, all that remains is to compute the
transition matrix for the conditioned Markov chain, and compute its stationary
probabilities. The desired quantity P(Ay | E,) is the stationary probability
of the state “10”. The computation may easily be carried through to give the
stated result. ]

5. Ensemble B

In this section, we finish the proof of Theorem 1 by computing the limit shape
of ensemble B. The computation using the Markov chain technique is similar to
the one in the last section, and is omitted. The approach that will be presented
relies on the following simple observation: A minimal difference 2 partition
A: A > Ay > ... > A of n can be converted into an unrestricted partition
Woiopr > po > .. > pp of n— k(k — 1), defined by p; = N — 2(k — 1), i =
1,2, ..., k. This mapping establishes a bijection between the minimal difference
2 partitions of n into k parts and unrestricted partitions of n — k(k — 1) into k
parts. Geometrically, this can be thought of as taking the Young diagram of the
partition and deleting a triangular array of squares, of slope —2, that hits the
x-axis at the (k — 1)-th part. Phrasing this in the language of probability, we
may say that even though minimal difference 2 partitions are not defined using
independent constraints on the multiplicities of the parts, the multiplicities are
conditionally independent, given the number of parts. It is this observation that
will enable us an alternative method for computing the limit shape. Two facts
are needed: one is Vershik’s result on the limit shape of unrestricted partitions
of n into s\/n parts, and the other is a result on the number of parts in a typical
minimal difference 2 partition:

13



Theorem 5. As n — oo, almost all partitions of n in ensemble B have

(14 0(1))(V151log((1 + v/5)/2)/7) - /n parts.

Proof. See [8]. |

Recall that the dilogarithm function is defined by
x 0 m
Lig(az)z/o —logl—t Z:m— 0<z<1

Define functions y : (0,00) — (0,1), =z : (0,00) — (0,7/+/6) by the implicit
equations
s”Liz(y(s)) = log”(1 — y(s))

z(s) = V/Lia(y(s))

Theorem 6 - the limit shape of partitions into s\/n parts. (Vershik
[9], see also [10]) Fix s > 0. Let P® = (P7)>2, be the partition ensemble
of partitions of n into k = |sy/n| parts. Then for almost all partitions A in P*,
we have

n—o0 t>8

e—z(a)t
éx(t)—>Fs(t);:{0 ()log( () ) 0<t<s

The ground is now set for the computation of the limit shape B(t) in Theo-
rem 1. From the above discussion, it follows that B(¢) can be built up from the
triangular graph 2(so —t), together with a scaled version of the graph F %

so/\/1—53

where b = 7/v/15, 7 = (14 +/5)/2 as in Theorem 1, and sy = log(7)/b. More
precisely,
B(t) =0, t> sp

whereas for 0 < t < sg, we have

B(t):2(80—t)+\/1—83 Fso/m (%)
50

Now, using the special values

y<so/ 1—s%>:r2, z(so/ 1—5%): b2 — log?(7)

this can easily be simplified to arrive at the expression given in Theorem 1. H
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