
Identities arising from limit shapes of 
onstrainedrandom partitionsDan Romik �Mar
h 10, 2003Abstra
t. Anatoly Vershik showed how to 
ompute limit shapes for uniformrandom partitions with 
onstraints on the parts, when the 
onstraints are in-dependent. Here, we develop te
hniques for dealing with nonindependent 
on-straints. We 
ompute limit shapes for random partitions 
hosen uniformly fromthe set of partitions of n into non
onse
utive parts, and from the set of min-imal di�eren
e 2 partitions of n. This is done in two ways, �rst using spe
ial
ombinatorial ideas, and se
ond using a probabilisti
 te
hnique appli
able inmore general settings. The equivalen
e of the two methods leads to interestingintegral identities.1. Introdu
tionThe theory of integer partitions has traditionally provided a fertile ground forthe intera
tion of algebrai
, 
ombinatorial and analyti
 ideas. To this ri
h 
ir
leof ideas a new aspe
t has been added in re
ent years, that of probability. Thetheory of random partitions has its histori
al beginnings with the paper of Erd�osand Lehner [4℄ on the number of parts in random partitions. More re
ently,Fristedt's [6℄ 
onvenient representation of random partitions, whi
h he used toobtain new results on the behavior of the parts in a random partition, and thework of Vershik and his 
ollaborators [2,9,10℄ on the limiting shapes of randompartitions, have been major advan
es in the �eld.In this paper, we 
ontinue the work of Vershik on the theory of limit shapesof random partitions. We prove limit shape theorems for two 
lasses of par-titions satisfying \non-independent" 
onstraints on the parts: partitions not
ontaining two 
onse
utive parts, and partitions with \minimal di�eren
e" 2,i.e. not 
ontaining repeated parts or two 
onse
utive parts (see below for pre
isede�nitions). The non-independen
e of the 
onstraints means that the te
hniqueof Vershik 
annot be immediately extended to these 
ases, and some additionalingenuity is required. We shall derive the limit shapes in two ways: First, byspe
ially-tailored 
ombinatorial ideas whi
h, in ea
h of the two 
ases, transform�Department of Mathemati
s, Weizmann Institute of S
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.il 1



the 
onstraints into independent ones and thereby allow the 
omputation of theshapes; Se
ond, by introdu
ing a probabilisti
 te
hnique generalizing Vershik'ste
hnique for independent random variables, involving the 
omputation of sta-tionary probabilities of a 
ertain Markov 
hain. From the equivalen
e of thetwo methods, some interesting analyti
 identities arise.In se
tion 2 we state the main de�nitions and results. In se
tion 3 we re-view Fristedt's 
onditioning representation for uniform random partitions andgeneralize it to sub-
lasses of partitions. In se
tion 4 we prove the limit shapetheorem for \ensemble A" of partitions with no two 
onse
utive parts. Themethod of Markov 
hains is des
ribed and using it, a se
ond formula for thelimit shape is derived. In se
tion 5 we use similar ideas, together with a resultof Vershik on the limit shape of partitions of n into tpn parts, to 
ompute thelimit shape for \ensemble B" of partitions with minimal di�eren
e 2 and provethe related identities.2. De�nitions and main resultsRe
all that a partition � of an integer n is a sequen
e �1 � �2 � �3 � ::: ofnonnegative integers su
h that P�k = n. The �k are 
alled the parts or thesummands of the partition. Alternatively, � 
an be des
ribed as a sequen
er1; r2; r3; ::: of nonnegative integers su
h thatP krk = n. rk is 
alled the multi-pli
ity of k in �, or the o

upation number. The Young diagram 
orrespondingto the partition � is the de
reasing fun
tion �� on [0;1) de�ned by ��(t) = �dte,where dte = inffm 2 N : m � tg is the 
eiling fun
tion. (See Fig. 1 - note thatthe �k's represent the 
olumns of the diagram and not its rows, in 
ontrast tothe tradition in the 
ombinatori
s literature; however, sin
e we are interested inthe a
tual shape of the diagram, it seems natural to have the x-axis as the vari-able axis and the y-axis as the fun
tion axis.) The normalized Young diagramof � is the fun
tion ~��(t) = 1pn��(pnt), i.e. the Young diagram with both axes
ontra
ted by a fa
tor of pn to obtain a diagram of area 1.
-
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Figure 1: The Young diagram of the partition 21 = 6 + 6 + 4 + 3 + 1 + 1Let Pn be the set of partitions of an integer n. The ensemble of unrestri
tedpartitions is the sequen
e of probability spa
es P = (Pn)1n=1, where ea
h Pn is2



equipped with the uniform probability measure. A sub-ensemble of partitionsis a sequen
e of subsets E = (En)1n=1, where ea
h En � Pn and is thought ofas a probability spa
e equipped with the uniform probability measure, in otherwords the measure on Pn 
onditioned on the event En.Example 1. The ensemble R = (Rn)1n=1 of restri
ted partitions, i.e. parti-tions not 
ontaining repeated parts.When we say that a 
ertain property (depending perhaps on n) holds for almostall partitions in a partition ensemble E = (En)1n=1, we mean that as n!1, theuniform measure on En of the set of partitions satisfying the property, 
onvergesto 1.Example 2: Limit shapes for the ensembles P and R. The followingtheorem was proved by Vershik [9℄: Let 
 = �=p6; d = �=p12, and let t > 0.Then for almost all partitions � in P , we have~��(t) ����!n!1 �(t) := �1
 log �1� e�
t� ;(Note: this is a slight abuse of notation; the true meaning of this is that for any� > 0, for almost all partitions in P we have j~��(t) + 1
 log(1� e�
t)j < �.)And for almost all partitions � in R we have~��(t) ����!n!1 � � 1d log �edt � 1� 0 < t < log(2)=d0 t > log(2)=dThe graphs of the limiting shapes are shown in Figure 2.
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Figure 2: Limit shapes of the ensembles P and RWe now de�ne the two partition ensembles whi
h are the main obje
ts of inter-est in this paper: 3



Ensemble A = (An)1n=1 : Partitions not 
ontaining two 
onse
utive parts,and not 
ontaining any parts equal to 1.Ensemble B = (Bn)1n=1 : Partitions not 
ontaining repeated parts and not
ontaining two 
onse
utive parts.(The reason for the restri
tion on parts equal to 1 in Ensemble A will be
omeapparent in se
tion 4; however, it is in fa
t immaterial as far as the limit shapeis 
on
erned.)We now state the main results:Theorem 1 - the limit shapes. Let a = �=3; b = �=p15; � = (1+p5)=2,and let t > 0. Then for almost all partitions � in A, we have~��(t) ����!n!1 A(t) := 1a log�1� e�at + e�2at1� e�at � ;and for almost all partitions � in B we have~��(t) ����!n!1 B(t) := ( � 1b log� e�2bt1�e�bt � 0 < t < log(�)=b0 t > log(�)=bThe graphs of the limiting shapes A(t) and B(t) are shown in Figure 3.
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Figure 3: Limit shapes of the ensembles A and BIn the statement of the above theorem, the expressions for the limiting shapefun
tions have been \
leaned up" to 
on
eal the pro
ess whereby these shapeswere obtained. In fa
t, these fun
tions arise as 
ertain inde�nite integrals. Wewill show how thinking about partitions in two di�erent ways 
an lead to two dif-ferent expressions for the limit shapes. The fa
t that these expressions must beequal leads to an interesting identity, whi
h 
an also be veri�ed independently.We state these identities as a separate theorem:4



Theorem 2 - identities arising from the limit shapes. For 0 < p < 1de�neq(p) = p(1� p)2 1 + p+p1 + 2p� 3p22p1 + 2p� 3p2  1� p+p1� 2p+ 3p22 !�3Then with a; b; and � as before,A(t) = Z 1t 11� e�au + e�2au � e�2au1� e�au + e�2au� du == 1a log�1� e�at + e�2at1� e�at �A�1(t) = Z 1t 11� e�au q(e�au)du == 12a log"1 + e�at +p1 + 2e�at � 3e�2at2(1� e�at) #B(t) = ( � 1b log� e�2bt1�e�bt � 0 < t < log(�)=b0 t > log(�)=bB�1(t) = Z 1t q� e�bu1 + e�bu� du = �1b log �ebt +pe2bt + 4ebt2 !Remarks. 1. Note that, while verifying the identities in Theorem 2 is fairlystraightforward, 
omputing the integrals for A�1(t) and B�1(t) would have beenvery diÆ
ult without knowing the answer in advan
e! Symboli
 integration soft-ware su
h as Mathemati
a did not su

eed in solving these integrals, and in fa
tit was using the alternative expressions for A(t) and B(t) that the answer wasobtained, and then veri�ed.2. The 
onstant log(�)=b appearing in the formula for B(t) represents thefa
t that almost all minimal di�eren
e 2 partitions of n have approximately(log(�)=b)pn parts. This fa
t (whi
h is used in the proof of Theorem 1) wasproved using separate arguments in [8℄. The proof involves identities satis�edby the dilogarithm fun
tion.3. Fristedt's representation for random partitionsIn this se
tion, we review Fristedt's representation for uniform random par-titions, and re
all Vershik's approa
h to proving limit shape theorems usingthis representation. The idea is to represent the multipli
ities (or o

upationnumbers) in a uniform random partition of n as independent geometri
 ran-dom variables, 
onditioned on the number being partitioned being equal to n.More pre
isely, let 0 < x < 1 be a real parameter, and for k = 1; 2; 3; ::: de�ne5



independent random variables R1; R2; R3; ::: su
h that Rk + 1 has geometri
distribution with parameter 1� xk, in other wordsPx(Rk = j) = (1� xk)xkj j = 0; 1; 2; :::(Px denotes probability with respe
t to parameter 
hoi
e x.) Then R1; R2; R3; :::de�ne the multipli
ities in a random partition � of the (random) integer N =P1k=1 kRk. For a given partition n = 1 � r1+2 � r2+3 � r3+ ::: (given in terms ofthe multipli
ities), the probability to get this partition in the random model isPx(R1 = r1; R2 = r2; R3 = r3; :::) = 1Yk=1Px(Rk = rk) = 1Yk=1((1� xk)xkrk ) == xPk�1 kRkF (x) = xnF (x) ; (1)where F (x) = P1n=0 jPnjxn = Q1k=1(1 � xk)�1 is the generating fun
tion forunrestri
ted partitions. This expression is a fun
tion only of n (x is �xed), sowe get:Theorem 3. (Fristedt [6℄) Let Qn denote the uniform probability measureon Pn, then for all � 2 Pn, we have Qn(�) = Px(� j N = n).Theorem 3 extends easily to sub
lasses of partitions: one must further 
on-dition the partition to belong to the sub
lass. If the sub
lass 
an be de�nedby independent 
onstraints on ea
h of the Rk's, we 
all the sub
lass an \in-dependent 
onstraint" sub
lass. In this 
ase, we will have an equally simplerepresentation of the uniform measure on the sub
lass as the measure indu
edby independently 
hoosing random variables Rk, with distribution whi
h is sim-ply the geometri
 distribution 
onditioned on the relevant 
onstraint, and �nally
onditioned on the event N = n. For instan
e, for restri
ted partitions (\en-semble R") Rk will be a random variable taking the values 0; 1 with respe
tiveprobabilities 1=(1 + xk); xk=(1 + xk).It is now fairly easy to des
ribe the Young diagram of the partition in termsof the multipli
ities. A slight 
ompli
ation is that one must look at the 
onjugatepartition. Re
all that the partition 
onjugate to the partition � : �1 � �2 �:::�k, is the partition �0 : �01 � �02 � :::�0m de�ned by�0j = #fi : �i � jg(graphi
ally, the Young diagram of �0 is the inverse fun
tion to the Youngdiagram of �.) In terms of the multipli
ities r1; r2; ::: of � we have�0j =Xk�j rk:So we have expressed the Young diagram of the 
onjugate partition �0 in termsof the multipli
ities. For the normalized Young diagram, this 
an be written as~��0 (t) = 1pn Xk�tpn rk6



For a random partition, we have the random young diagram~��0(t) = 1pn Xk�tpnRkSo we see that it is simpler to approa
h the shape of the 
onjugate diagram.Alternatively, we may work with the multipli
ities R0k of the 
onjugate diagramand re
onstru
t from them the Young diagram of the original partition. InVershik's limit shape theorem for unrestri
ted partitions these two alternativesare equivalent, sin
e the 
onjugate of a uniform random unrestri
ted partition isalso a uniform random unrestri
ted partition. For these partitions, we now �x aspe
ial value xn = e��=p6n of the parameter x. For this 
hoi
e of parameter, wewill show that the event N = n has a relatively high probability, and thereforethe limit shape in the 
onditioned model (i.e. under the measure Qn) is thesame as in the independent model Pxn :Lemma 1. For parameter 
hoi
e x = xn, we have as n!1Pxn(N = n) = (1 + o(1)) 12 � 61=4n3=4and Exn(~��0(t)) = (1 + o(1))��1
 log(1� e�
t)� = (1 + o(1)) ��(t)(E denotes expe
tation; 
 = �=p6 as in Example 2.) Furthermore, there existsa fun
tion g(u) su
h that for all u > 0, g(u) > 0 andPxn(j~��0 (t)��(t)j > u) � e�g(u)pnProof. For the �rst part, note that Pxn(N = n) is simply a sum over alldi�erent partitions of n of the right hand side of (1), soPxn(N = n) = jPnjxnF (x)The 
laim now follows from known asymptoti
s of jPnj and F (x) (see e.g. [7℄),namely jPnj = (1 + o(1)) 14p3ne�p2n=3; n!1logF (e�s) = �26s + 12 log s� 12 log(2�) + o(1); s& 0For the se
ond 
laimExn ~��0 (t) = 1pn Xk�tpnExn(Rk) = 1pn Xk�tpn xkn1� xkn =7



= (1 + o(1)) Z 1t e�
u1� e�
u du = (1 + o(1))�(t)The third 
laim is proved easily using standard te
hniques of large deviationtheory, and its proof is omitted.Lemma 1 immediately implies Vershik's limit shape result, sin
eQn(j~��0 (t)��(t)j > u) = Pxn(j~��0 (t)��(t)j > u j N = n) == Pxn(j~��0 (t)��(t)j > u;N = n)N = n � Pxn(j~��0(t)��(t)j > u)N = n �� n3=4C e�g(u)pn ����!n!1 0Note that the pre
ise asymptoti
s of Pxn(N) are not really required, and one
an settle for a mu
h easier-to-prove estimate of the form Pxn(N = n) � 1=n�for some � > 0. (The above argument is a mu
h-distilled version of the large-deviations approa
h to limit shapes of partitions, developed extensively in [2℄.)4. Constrained partitions, 
onjugate partitions and theMarkov 
hain te
hniqueWe now adapt Vershik's basi
 te
hnique to 
al
ulate limit shapes for EnsembleA. Conditioning the random partition in Fristedt's model to lie in EnsembleA will yield, using this method, the limit shape for the partitions 
onjugate toEnsemble A, i.e. the fun
tion A�1(t). To get the limit shape of Ensemble A,we must deal with the 
onjugate partition ensemble! Fortunately, Ensemble Ahas a rather simple de�nition in terms of restri
tions on the 
onjugate of itspartitions (this is of 
ourse not so mu
h a stroke of good fortune as simply thereason why this paper deals with this parti
ular 
lass of partitions). We de�neEnsemble A0 = (A0n)1n=1: Partitions not 
ontaining any part exa
tly on
e.It is not diÆ
ult to see that a partition � is in A if and only if �0 is in A0. (Thisis the reason why the restri
tion that � 2 A must 
ontain no 1's was added.) Inanother stroke of seemingly good fortune, we now observe that the restri
tionsin ensemble A0 operate separately on ea
h of the multipli
ities. In other words,A0 is an independent 
onstraint ensemble and its limit shape (or, rather, the
onjugate limit shape A(t)) 
an be 
omputed by Vershik's te
hnique. We �rststate the 
onditioned form of Theorem 3 appli
able to this 
ase:Lemma 2. Let Qn denote the uniform probability measure on An. For 0 <x < 1, let Px be the measure on partitions in A indu
ed by 
hoosing randommultipli
ities R01; R02; R03; ::: (of the 
onjugate partition) su
h that R0k is a randomvariable taking the values 0; 2; 3; 4; ::: with probabilitiesPx(R0k = j) = 1� xk1� xk + x2k � xkj j = 0; 2; 3; :::8



Let N =Pk kR0k. Then for all � 2 An, we have Qn(�) = Px(� j N = n).Next, we state the 
onstrained partition analogue of Lemma 1:Lemma 3. For parameter 
hoi
e x = xn := e��=3pn, we have as n!1Pxn(N = n) � Cn�for some 
onstants C;� > 0, andExn(~��(t)) = (1 + o(1))A(t)There exists a fun
tion h(u) : (0;1)! (0;1) su
h thatPxn(j~��(t)�A(t)j > u) � e�h(u)pnProof. For the �rst part, we again make use of known results on the asymp-toti
s of partition 
ounting fun
tions and partition generating fun
tions. LetG(x) = P1n=0 jAnjxn. An argument similar to the one used in the previousse
tion shows that Pxn(N = n) = jAnjxnG(x)We now use a partition identity due to P. A. Ma
Mahon ([1℄, p. 14, examples9,10) to transform G(x) into a more manageable expression:Theorem 4. (Ma
mahon) For any n � 1, jAnj is equal to the numberof partitions of n into parts whi
h are 
ongruent to 0, 2, 3, or 4 modulo 6.Equivalently, we have the generating fun
tion identityG(x) = 1Yk=0 1(1� x6k+2)(1� x6k+3)(1� x6k+4)(1� x6k+6)The 
laim of the Lemma now follows from the results of [1℄, 
hapter 6. Forthe se
ond part, the expe
tation of R0k is easily 
omputed to beExn(R0k) = 11� xkn + x2kn � x2kn1� xkn + x2kn �and therefore Exn(��(t)) = 1pn Xk�tpnE(R0k) == (1 + o(1)) Z 1t 11� e�au + e�2au � e�2au1� e�au + e�2au� du = (1 + o(1))A(t)The third part is again an easy appli
ation of standard te
hniques in largedeviation theory, and is omitted.The �rst part of Theorem 1 now follows from Lemma 3 in exa
tly the same wayas the proof of Vershik's theorem in the previous se
tion.9



The Markov 
hain te
hniqueWe now explain the te
hnique by whi
h we shall derive the limit shape for theensemble A0. This requires dealing with the multipli
ities R1; R2; ::: of a randompartition in A, whi
h are not independent. Rather, these random variables havethe distribution of independent geometri
 random variables 
onditioned on theevent that no two 
onse
utive Rk's are non-zero.We shall present the te
hnique in a form that is not fully rigorous. Sin
eour main results are also proven in another way, from a stri
tly formal pointof view this does not pose a problem. However, for the sake of possible futureappli
ation of these ideas, we wish to stress that ea
h of the steps that follows
an be made rigorous using a more detailed analysis. The tools that are neededare the theory of non-homogeneous Markov 
hains, and the theory of largedeviations as explained e.g. in [3℄ and applied to random partitions in [2℄.Re
all that, in the analysis of the limit shapes for the unrestri
ted ensembleP and for the 
onstrained ensemble A, the �rst step 
onsisted of identifyingthe 
orre
t value xn of the parameter required to make the 
onditioned modelbehave approximately the same as the non-
onditioned one - this is simply the\saddle-point" of the generating fun
tion. The next step, whi
h is 
omputation-ally the 
ru
ial one, was to understand the behavior of Exn(Rk), for k � upn.The limit shape was then the integral of this quantity from t to in�nity. Forunrestri
ted partitions, Rk+1 was a geometri
 r.v. with parameter 1�xkn, withxn = e�
=pn, so we had Exn(Rk) � e�
u1� e�
uwhereas for ensemble A, we had (with xn = e�a=pn)Exn(R0k) � 11� e�au + e�2au � e�2au1� e�au + e�2au�with the saddle point xn = e��=3pn. We now give a heuristi
 argument explain-ing why, for ensemble A0, we should expe
t to haveExn(Rk) � q(e�au)1� e�auwhi
h would explain the expression for A�1(t) given in Theorem 2. First, rep-resent the multipli
ities in the formRk = Sk � Tkwhere: Sk is a random variable taking the values 0; 1, and Tk is a randomvariable taking the values 1; 2; 3; :::. Sk 
orresponds to 
hoosing whether thepart k will be in the partition, and Tk represents the 
hoi
e of the number oftimes this part will appear, if 
hosen. Clearly, Sk and Tk are independent. Tkwill have the geometri
 distribution with parameter 1 � xkn. The distribution10



of the Sk's 
an be des
ribed as follows: Take a sequen
e of independent eventsD1; D2; D3; ::: su
h that P (Dk) = xkn, and de�ne the eventE = 1\k=1(D
k [D
k+1) = \no two 
onse
utive Dk's o

ured"Then �Sk; k = 1; 2; :::� dist= �1Dk ; k = 1; 2; :::���� E�Now, Exn(Rk) = Exn(Sk) �Exn(Tk) � (1� e�au)�1Exn(Sk);and it remains to explain whyExn(Sk) = P (Dk j E) � q(e�au)Sin
e P (Dk) � e�au, this leads us to the following natural question: What is thedistribution of a sequen
e of independent events, of probability approximately p,
onditioned on the event that no two 
onse
utive events o

ur? Note that thisis a slight simpli�
ation of the true situation, sin
e in reality the probabilities1� xkn are 
hanging very slowly. The assumption (whi
h 
an be fully justi�edwith a little more work) is that 
onditioning on the event E only a�e
ts thesequen
e Dk \lo
ally", i.e. if the probabilities of a large number of events nearDk are all approximately e�au, then we 
an negle
t the e�e
t of the 
hange inthe probabilities over time. The answer to the simpli�ed question is given inthe followingLemma 4. Let A1; A2; A3; :::; An be independent events o

urring ea
h withprobability p, and let En = \n�1k=1 (Ak [ Ak+1). Then if 1 � k � n and both kand n � k are suÆ
iently large (i.e. the event Ak is \far from the boundary")then P (Ak j En) � q(p)where q(p) is de�ned as in Theorem 2:q(p) = p(1� p)2 1 + p+p1 + 2p� 3p22p1 + 2p� 3p2  1� p+p1� 2p+ 3p22 !�3First proof. De�ne en = P (En). By 
onditioning on An�1; An, we have there
urren
e en = (1� p)en�1 + p(1� p)en�2together with the initial 
onditions e0 = e1 = 1. Therefore it 
an easily beveri�ed thaten =  1 + p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p+p1 + 2p� 3p22 !n+11



+ �1� p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p�p1 + 2p� 3p22 !nFor large n we have simplyen �  1 + p+p1 + 2p� 3p22p1 + 2p� 3p2 ! 1� p+p1 + 2p� 3p22 !n =: C(p) � �(p)nNow P (Ak j En) 
an be represented in terms of independent events, as follows:P (Ak j En) = P (Ak \ En)P (En) == P �Ak \ A
k�1 \ A
k+1 \ �Tk�3j=1 (A
j [ A
j+1)� \ �Tn�1j=k+2(A
j [ A
j+1)��P (En) == p(1� p)2ek�2 en�k�1en � p (1� p)2C(p) � �(p)�3 = q(p)Se
ond proof. We sket
h a proof of Lemma 4 whi
h is more 
on
eptual, andwhi
h explains why the te
hnique is related to Markov 
hains. Su
h a 
on
eptualoutlook will simplify the use of the te
hnique in more general settings.One may think of the original sequen
e of events A1; A2; ::: as a stationaryMarkov 
hain, whose state spa
e is pairs of events. That is, there are 4 states:\00", \01", \10", and \11", where if at time n the 
hain is in state \��00(�; � 2 f0; 1g), then � signi�es whether event An o

urred (i.e. � = 1An) and� signi�es whether event An+1 o

urred.The transition matrix of this Markov 
hain is00 01 10 1100011011 0BB� 1� p p 0 00 0 1� p p1� p p 0 00 0 1� p p 1CCAConditioning on the eventEn is the same as 
onditioning the Markov 
hain neverto go into the state \11". The behavior of su
h a \forbidden state" Markov 
hain
an be 
omputed. We state this in more general terms as a lemma; the proof isan easy appli
ation of standard methods of Markov 
hains, see e.g. [5℄, 
h. 15.Lemma 5. (Forbidden state Markov 
hains) Let A = (aij)i;j2S be thetransition matrix of a Markov 
hain with �nite state spa
e S. Let F � Sbe a set of forbidden states, su
h that the sub-matrix A0 = (aij)i;j2SnF isinde
omposable and aperiodi
, i.e. there exists a k su
h that the entries a(k)ij12



of A0k are all non-zero. Let X1; X2; :::; Xn be a random sample of the Markov
hain, with any initial distribution. Let E be the eventE = n\j=1fXj =2 FgLet m be a �xed positive integer, and let 1 < k < n su
h that k and n� k arelarge. Then the distribution of�Xk; Xk+1; Xk+2; :::; Xk+m����E�is approximately the same as the distribution of a random sample Y1; Y2; :::; Ym�1from the Markov 
hain, with stationary initial distribution, whose transitionmatrix is B = (bij)i;j2SnF , de�ned as follows:bij = aijvj�viWhere: � is the Perron-Frobenius eigenvalue of the matrix (aij)i;j2SnF , and(vi)i2SnF is its asso
iated eigenve
tor.To �nish the se
ond proof of Lemma 4, all that remains is to 
ompute thetransition matrix for the 
onditioned Markov 
hain, and 
ompute its stationaryprobabilities. The desired quantity P (Ak j En) is the stationary probabilityof the state \10". The 
omputation may easily be 
arried through to give thestated result.5. Ensemble BIn this se
tion, we �nish the proof of Theorem 1 by 
omputing the limit shapeof ensemble B. The 
omputation using the Markov 
hain te
hnique is similar tothe one in the last se
tion, and is omitted. The approa
h that will be presentedrelies on the following simple observation: A minimal di�eren
e 2 partition� : �1 > �2 > ::: > �k of n 
an be 
onverted into an unrestri
ted partition� : �1 > �2 > ::: > �k of n � k(k � 1), de�ned by �i = �i � 2(k � i); i =1; 2; :::; k. This mapping establishes a bije
tion between the minimal di�eren
e2 partitions of n into k parts and unrestri
ted partitions of n� k(k � 1) into kparts. Geometri
ally, this 
an be thought of as taking the Young diagram of thepartition and deleting a triangular array of squares, of slope �2, that hits thex-axis at the (k � 1)-th part. Phrasing this in the language of probability, wemay say that even though minimal di�eren
e 2 partitions are not de�ned usingindependent 
onstraints on the multipli
ities of the parts, the multipli
ities are
onditionally independent, given the number of parts. It is this observation thatwill enable us an alternative method for 
omputing the limit shape. Two fa
tsare needed: one is Vershik's result on the limit shape of unrestri
ted partitionsof n into spn parts, and the other is a result on the number of parts in a typi
alminimal di�eren
e 2 partition: 13



Theorem 5. As n ! 1, almost all partitions of n in ensemble B have(1 + o(1))(p15 log((1 +p5)=2)=�) � pn parts.Proof. See [8℄.Re
all that the dilogarithm fun
tion is de�ned byLi2(x) = Z x0 � log(1� t)dtt = 1Xm=1 xmm2 ; 0 � x � 1De�ne fun
tions y : (0;1) ! (0; 1); z : (0;1) ! (0; �=p6) by the impli
itequations s2Li2(y(s)) = log2(1� y(s))z(s) =pLi2(y(s))Theorem 6 - the limit shape of partitions into spn parts. (Vershik[9℄, see also [10℄) Fix s > 0. Let Ps = (Psn)1n=1 be the partition ensembleof partitions of n into k = bspn
 parts. Then for almost all partitions � in Ps,we have ~��(t) ����!n!1 Fs(t) := ( � 1z(s) log� 1�e�z(s)ty(s) � 0 < t < s0 t > sThe ground is now set for the 
omputation of the limit shape B(t) in Theo-rem 1. From the above dis
ussion, it follows that B(t) 
an be built up from thetriangular graph 2(s0�t), together with a s
aled version of the graph Fs0=p1�s20 ,where b = �=p15; � = (1 +p5)=2 as in Theorem 1, and s0 = log(�)=b. Morepre
isely, B(t) = 0; t > s0whereas for 0 < t < s0, we haveB(t) = 2 (s0 � t) +q1� s20 Fs0=p1�s20  tp1� s20!Now, using the spe
ial valuesy�s0=q1� s20� = ��2; z�s0=q1� s20� =qb2 � log2(�)this 
an easily be simpli�ed to arrive at the expression given in Theorem 1.
14
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